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Abstract
This paper presents Chimera, a low-power platform for

research and experimentation with reconfigurable hardware
for end-devices in the Internet of Things. Through an archi-
tecture based on a Flash FPGA, Chimera aims to offer flex-
ibility in the usage via live over-the-air hardware and soft-
ware reconfiguration. This adaptability enables low-cost in-
situ deployment of upgrades without the need for physical
access to devices as well as the capability to absorb a tem-
porary heavy calculations in response to events. Chimera
offers a step forward in pushing computation to the edge,
by offering a modular hardware embedded platform that is
able to switch instantaneously between largely passive sen-
sor tasks and computing intensive operations while still re-
taining multi-year battery lifetimes. This paper reviews the
factors which have thus far prevented Field Programmable
Gate Arrays (FPGAs) from being used as the primary pro-
cessors in IoT end-devices and demonstrates through evalu-
ation that the Chimera hardware and software platform work
together to overcome these barriers.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and embedded systems

General Terms
Performance, Design, Measurement, Experimentation

Keywords
Reconfigurable Sensor Node, Sensor Network, FPGA

1 Introduction
The Internet of Things (IoT) is being deployed in an ever

growing range of applications; from industrial monitoring,
through smart buildings to wearable devices. A strategic do-
main in this deployment comprises low-cost battery powered

wireless sensors meant to enrich the understanding and con-
trol of a given environment. Generic IoT platforms such as
Spark.io, Electric Imp, Libellium and VersaSense enable the
rapid roll-out of IoT applications in this domain, without the
need to develop specialized hardware[16]. This deploy-and-
forget approach in populating an environment with multi-
years battery life sensors is appreciated thanks to its low cost
and convenience. At least until an hardware or software se-
curity update must be applied to a remotely deployed plat-
form, or a reworking of tasks is temporary needed on a given
sensors platform. The need for repurposable end-devices is
constantly aggravated by the extension of the cloud comput-
ing paradigm to the edge of the network. However Micro
Controller Units (MCUs) used in these platforms are often
incapable of supporting all but the simplest in-situ process-
ing power intensive analysis, which prevents them from be-
ing used to develop IoT applications including high speed
signal processing or multimedia. The need for energy effi-
ciency on these resource constrained devices have also pre-
vented them to offer on-the-fly software updates. In short,
these platforms do only one thing but do it efficiently by be-
ing tailored for their task.

Different leads have been investigated to extend the flex-
ibility and the ability to scale up to task for these platforms.
Among the promising ones, one involving generic platforms
and a second turned towards FPGAs stood up. While flag-
ship generic platforms such as Raspberry Pi and BeagleBone
are capable of supporting a wide range of applications, their
power consumption precludes their application in battery
powered scenarios. For the lead standing on FPGA-based
platforms, allowing for hardware and software updates, pre-
vious research and products [2, 3, 10] have been developed in
that way to extend the flexibility of an infrastructure far away
for its core components. Alas, their role stop at the gateway
level and their cost and power consumption prevent them to
be spread deeper in the infrastructure. Chimera attempt to
narrow the gap by providing a deeply re-configurable FPGA-
based hardware platform that is capable of both high-speed
signal analysis and multi-year battery lifetime.

Extensive prior work on the application of FPGAs in em-
bedded applications has shown their potential as: multimedia
co-processors [26], cryptographic accelerators [20] and flex-
ible network accelerators [29]. As of today, this work has yet
to break through into main-stream IoT platforms. We iden-
tify two key reasons for this adoption delay: (i.) the highInternational Conference on Embedded Wireless 
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Figure 1. Chimera Platform.

power consumption of most FPGA-based platforms and (ii.)
the lack of systematic support for FPGA use in contemporary
IoT tool-chains. Chimera addresses this problem by provid-
ing a fully open-source FPGA-based platform that is capable
of achieving multi-year battery life on standard AA batter-
ies, allows over-the air reconfiguration of both software and
hardware resources and provides a tool-chain that can op-
timize and reconfigure the FPGA cores transparently based
upon the demands of application software.

We demonstrate that Chimera achieves its goals of
adaptability and flexibility without sacrificing long lifetime
through the implementation and evaluation of a number of
archetypal IoT applications. We then demonstrate the ca-
pability of Chimera to tailor FPGA hardware dynamically
based upon the changing needs of application software. Our
results show that: (i.) Chimera achieves more than one year
of battery lifetime using a couple of pairs of retail store
AA/LR6 batteries, (ii.) optimizing the FPGA based upon the
needs of its application software can increase battery life by
up to 30% depending on the application and (iii.) the costs
of online or offline reconfiguration are acceptable (worst case
0.002% of a couple of pairs of AA battery life) even in the
absence of partial reconfiguration support.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the background and pertinence of our work.
Section 3 discusses the related work while Section 4 de-
scribes design analysis as well as the hardware & software
details of the platform. Section 5 details our evaluation sce-
narios and discusses the results. Section 6 highlight direc-
tions for future work and Section 7 concludes.

2 Background
Programmable logic devices has long been an incentive in

the embedded networked sensor devices field. The ability to
redefine the hardware functionalities of an already deployed
platform offers the promise of a tailored architecture for each
task, allowing much more agility and efficiency in a domain
where resources are constrained. Among the various fam-
ily of programmable logic devices, Complex Programmable
Logic Device (CPLD) and Field-Programmable Gate Array
(FPGA) are the two dominant branches, with the major dif-
ference being for the FPGAs to be built upon lookup ta-
bles instead of sum of products. The configuration or pro-
gramming of an FPGA mostly starts with a digital design of
required functionality by using a hardware description lan-
guage (HDL) like VHDL or Verilog. Various functionali-
ties from basic digital XOR gates to complete processor or
micro-controller designs can be implemented [4]. These de-

signs are translated into register transfer level(RTL), then to
a netlist and finally to a bitstream that is used to program
the FPGA. Various limitations have prevented FPGAs to be
suited for constrained networked sensor devices among them
the ability to describe these devices using Hardware Descrip-
tion Languages, and their power consumption [34].

One of these problems encountered by the S-RAM based
FPGAs is the storage of the design. Contrary to the CPLDs
which embed non-volatile memory in the chips, the look-up
tables are a form of memory but a non-persistent one when
powering down the device. Requiring to power an external
memory to store the design of an FPGA and load it at every
change of configuration or reboot was a limiting factor which
as of today is progressively vanishing with the rise of Flash-
based FPGAs. As a reminder, the idea of using flash memory
to externally store the design of an FPGA was already in use,
but the added costs in consumption, security and integration
were high and the attempts to include a non-volatile mem-
ory in an FPGA were unconvincing for highly constrained
domains. However, recent advances in flash memory and in-
tegration allowed Flash-based FPGAs to become more and
more relevant. By leveraging Flash properties, design of FP-
GAs can now offer competitive advantages compared to S-
RAM based ones, allowing the upcoming of low cost and
low power flash-based FPGAs [8].

Competitive advantages offered by this design of FPGAs
are still challenged by traditional preference over simple and
efficient MCUs-based design issued by the embedded hard-
ware industry. These designs have a long-lasting record of
efficiency in low-power and constrained environment, mak-
ing them the actual best candidates for being cost-effectively
deployed and efficiently perform a simple task for a decade
without intervention in an industrial environment [33, 21].
Some domains however tend to be closer to humans than oth-
ers and as such are more subject to influence and change of
habits by them. Repurposing a storage room into a meet-
ing room in an office building is a common and frequent
change. Discoveries of security flaws with ties to hardware
has been increasingly present in the news over the past year.
Implementing an AES core for privacy in the first case, or
adding a precise RTC for wireless channel hoping synchro-
nisation in the second are costly operations requiring manual
intervention or even end-device replacement among the low-
cost wireless MCU-based sensor space, where devices tend
to be static and tailored for a particular task. On the scale
of a smart hospital or the reorganization of a university these
costs could sky-rocket. This is where end-devices based on
platforms like Chimera are relevant.

In this context, these devices can now takes place in the
embedded sensor systems environment, allowing platforms
to be much more flexible yet power efficient [5], thus being
able to perform computing-power intensive applications for
a given amount of time before being remodelled in power
saving devices, collaborative data processing between plat-
forms or being remodelled in a different system at each life
cycle.

195



Table 1. Comparison of platforms with reconfigurable hardware
Platform FPGA as Programmable Radio Dynamic Main Active Sleep

main processor device module reconf. features power power

Cyclops[26] no CPLD CC2420 no imaging 64.8mW 0.7mWMICA2 applications

mplatform[14] no CPLD CC2420 no real-time 5mW-13mW -msp430 applications

PowWoW[1] no FPGA CC2420 no hardware 1-30mW 16uWMSP430 Igloo Nano accelerator

Cookie[12] no FPGA Zigbee yes sensor 150-240mW 60mWADuC841 Xilinx Spartan3 management

Sentiof[29] no FPGA CC2520 yes high-end 158mW 0.313mWAtmel AT32U Xilinx Spartan6 application

Marmote[30] no FPGA 2.4Ghz RF no used as 287-852mW 71mWSmart Fusion fabric in SOC frontend SDR

uSDR[13] no FPGA 2.4Ghz RF no used as 1400 mW 71 mWSmart Fusion fabric in SOC frontend SDR
IEEE1451 no PSOC CC2420 yes analog 62.7mW + 6.6uW +

based node[6] Telos B[24] accelerator telosB power telosB power

3 Related Work
Over the years, several academic research results have

been published and tools have been proposed to introduce
FPGAs in resource-constrained environment. None of these
explored leads used FPGAs as main processing units but as
accelerators for complex algorithms such as AES encryp-
tion, error correction or fast Fourier transform. Among them,
Cyclops[26] is one of the very first application of using re-
configurable hardware on resource constrained embedded
devices. It is developed as an extension for MICA Motes
[15] as a smart vision sensor card that can be controlled by a
host (in this case the MICA Mote) to bridge the performance
gap between the resource constrained embedded device and
CMOS imagers, to that extend it utilizes a CLPD to accel-
erate image capturing process. Although it was specifically
designed for embedded devices, the presence of the CPLD
in the Cyclops platform still makes image capturing and
processing power-hungry tasks. Another work that utilizes
a CPLD is called mplatform[14]. The authors designed a
modular 4-module stack platform that is capable of process-
ing real-time data while supporting dynamic reconfiguration.
A similar platform making use of reconfigurable hardware
is Sentiof[29], a complete platform designed to be used in
smart camera applications. It utilizes a high-end FPGA and a
radio chip based on the IEEE 802.15.4 standard. The FPGA
in this platform is meant to be used as an accelerator for dif-
ferent tasks in the image processing pipeline. Since all three
platforms uses high-end CPLD and/or FPGA, respectively
Xilinx XC2C256, XC2C512 and a Spartan-6 FPGA, their
uses are unsuitable outside very specific applications, in par-
ticular for the resource constrained nature of battery powered
wireless sensors.

Another research direction is targeting constrained end-
devices in order to cope with the heterogeneous nature and
constant change in IoT and applications. Krasteva et al.
states that FPGAs can be used not only in high-end applica-
tions but also in low power sensor applications[12]. Cookie

is a reconfigurable wireless sensor platform that utilizes a
high-end FPGA with dynamic reconfiguration features to up-
date hardware or software in run-time. However, remote re-
configuration is very power demanding and they reported the
used radio technology (Zigbee) not suitable for remote re-
configuration. Moreover, this platform is not an embedded
one, made to operate via a fixed power supply or an USB
interface. A second work in that domain is a platform called
PowWow [1]. Different from other platforms, it uses a low-
power Flash FPGA, very similar to the one used in Chimera.
Low-power by design, dynamic voltage and frequency scal-
ing features are provided to minimize the power consump-
tion. However in that case, it cannot be reprogrammed once
it is deployed. These platforms were specifically developed
for low-power IoT/WSN applications, yet their high power
consumption during application, power demanding recon-
figuration and non-versatile characteristics limits them to be
used in the application domain targeted by Chimera.

In the semiconductor field, extensive research both in
academia and industry has been pursued on new reconfig-
urable architectures and devices during the last decade. Field
Programmable System on Chips(FPSOC) are one of the re-
cent products in the market popular among academics and in-
dustrial actors [23]. A FPSOC combines a FPGA fabric with
several high-performance embedded processors. Gomes et
al. [7] states that these devices can be used as an edge de-
vice to enable offloading computation from server side. An-
other work which makes use of FPSOC is a platform called
µSDR [13]. The platform utilizes a flash based FPSOC de-
vice to scale down SDRs (software defined radios) in size,
cost and power. Although the design and the main goals are
similar to Chimera, the platform is specifically developed as
a SDR. Due to not having Flash Freeze technology to clock-
gate the FPGA fabric, even in deep sleep mode, this platform
draws substantially higher current than ours and is thus not
suitable for resource-constrained battery powered environ-
ment. On the other hand, Tanaka et al. [31] makes use of
FPSOC to prototype a similar platform like Chimera. They
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Figure 2. Influence of resource utilization on power con-
sumption

state that accelerating tasks by using FPGA optimizes power
consumption since tasks will be processed way faster than
conventional CPUs. This vision aims to compensate the high
power consumption of most FPGA-based platforms and al-
lows them to be used in battery powered ones. However,
FPSOCs are not as power efficient as Flash FPGAs or low-
power microcontrollers yet. Therefore, it is hard to achieve
multi-year battery life while having FPSOC hardware in IoT
embedded devices.

On the developer side, in order to tackle the lack of sys-
tematic support for FPGA use and make them more appeal-
ing to work with, new software paradigms/architectures have
been investigated and proposed. One proposition is a low-
overhead FPGA middleware of Kirchgessner et al. [11].
They presented a middleware called RCMW that improves
and enables application and tool portability. Another propo-
sition was a complete toolchain called Click2NetFPGA [27],
presented to bridge the gap between digital design of FPGAs
and software development. This tool-chain converts Click
C++ codes into a VHDL netlist. The essence of both pa-
pers is to bring reconfigurable hardware opportunities to the
software world, by easing the handling and development pro-
cesses, making them appealing for actors used to traditional
MCU-based platforms. However, these approaches are not
designed nor optimized for battery powered or resource con-
strained devices, making them not suitable for the applica-
tion domain targeted by Chimera.

A comparison of major platforms with reconfigurable
hardware in literature is presented in Table 4. As discussed
previously, most of them utilize either a FPGA or a CLPD
to accelerate a specific task (image processing, encryption,
Fourier transform, etc) and none are using them as the main
processing unit. In addition, most of these platforms are un-
suitable for a wide range of IoT applications due to being
developed/used as dedicated hardware or having a too high
power consumption.

Figure 3. Effect of Reconfiguration Frequency over bat-
tery life.

4 Architecture
The design of the Chimera platform takes place in the

wireless embedded sensor network domain and as such is
oriented towards three goals. We want to propose a platform
that can have its hardware and software functionalities re-
configured both locally and over-the-air at a minimal power
cost. We want to design a power efficient device with min-
imal active and sleep power consumption, able to last mul-
tiple years on a couple of standard retail batteries. We want
our platform to be easy to use with an open and accessible
toolchain, in order to facilitate the work for actors more fa-
miliar with other domains. We present in the following sec-
tion a more in-depth analysis of our goals as such as their
implications on hardware and software design.
4.1 Design Analysis

As mentioned before, our primary goal is to offer low-cost
dynamic hardware and software reconfiguration on our plat-
form. Using a FPGA as main computing unit is the logical
choice to be able to perform this task, especially flash-based
ones for their cost and performances. After analysing the
market and comparing various products, our choice has been
set on an IGLOO Nano FPGA from Microsemi [18]. The
wide range of capacities of that FPGA had yet to be assessed
in terms of power consumption to determine its viability in
performing our goals. In our design process, we developed
a test version of Chimera in order to assess the impact of re-
sources use in the FPGA. We created a heavy computation
task and we extended gradually the percentage of resource
array used in the FPGA. The measured consumption results
are presented in Figure 2. The various components neces-
sary to operate the system and their associated current con-
sumption is represented for reference. These results display
a modest power consumption and its logarithm-shaped evo-
lution under the increase of resource usage thus confirmed
us the choice of this particular FPGA as core unit of our ar-
chitecture.

We then analysed our needs in order to match the frame
in which reconfiguration should occur. The support of on-
line reconfiguration should take place over the radio module
used for sensor data communications. Moreover, the ability
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Table 2. Cost of reconfiguration for involved modules
Processing Wi-Fi Module Bluetooth Modules Non-Volatile Elapsed CostUnit Memory Time

Reconfiguration 7mA Rx:50mA - Writing:10µA 45sec 0.4925mAhover Wi-Fi
Reconfiguration 7mA - Rx:5.4mA Writing:10µA 36sec 0.2635mAhover Bluetooth

Offline 7mA - - Reading:20µA 31sec 0.2325mAhReconfiguration

for the device to embed and provision reconfiguration im-
ages for previously planned reaction to a particular event is
a very interesting feature. In order to support this offline
reconfiguration process and thus saving on radio transmis-
sion costs when switching between predefined configuration,
our platform must include an onboard memory module ded-
icated to store FPGA images. We again used our dummy
platform to perform current consumption of the reconfigura-
tion process and analyse the choice of communication mod-
ules. This process requests then download an FPGA image
from a connected gateway, store it locally, then performs
an offline reconfiguration, meaning transferring the image
stored in the external Flash to the programming array of the
FPGA. The comparison between various candidates modules
are presented in Table 2 and indicates clear preference for a
Bluetooth based approach in our design. In Figure 3, we ob-
serve these effects on the lasting battery life of our dummy
platform, as well as the influence of the evolution of recon-
figuration frequency over time.

We then focussed on practical considerations in terms of
handling the platform and its ability to be flexible in its us-
age, especially for the application development part. Pro-
gramming on a MCU is considered easy and very common
in the application domain that we target. Emulating one in
a FPGA is well understood as a significant loss of perfor-
mance, but as Chimera aims at being also an experimental
platform, giving the ability to actors to do so in a controlled
environment was an interesting feature. Having the capabil-
ity to transpose a familiar and comfortable development en-
vironment is a must for any actor who is willing to discover
and apprehend a new platform. Our aim was to analyse the
conditions of implementing a softcore microprocessor in our
FPGA, especially an iconic one in the embedded world, the
Texas Instruments MSP430. For openness and customiza-
tion reasons we chose the NEO430 [19] project, based on
the MSP430 ISA and providing 100% compatibility with the
original instruction set. This project is open, highly cus-
tomizable and have a reduced footprint. We implemented it
with an UART, a SPI module, one hardware Timer, a GPIO
module supporting 16 I/Os, 4kB of RAM and 4kB of ROM
as well as an internal bootloader (2kB ROM) with a serial in-
terface. Having an experimental platform that can offer this
facility is in our opinion a good incentive for academics and
industrial actors, thus comforting us in our choice of design
hardware.
4.2 Hardware Design

After having analysed how to reach our design goals and
expressed the related needs in the previous subsection, we
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Figure 4. Hardware architecture of the Chimera plat-
form.

designed a final hardware version of Chimera where the
power consumption has been optimized to achieve the above
mentioned objectives with a minimal cost. We designed the
platform around three main blocks, the radio transceiver, the
core FPGA, the embedded additional memory. These blocks
and their interactions are illustrated in Figure 4.

The first main block, labelled RF Communication Unit,
revolves around a Nordic Semiconductor SoC nRF52832
transceiver supporting Bluetooth Low-Energy, ANT and
2.4GHz proprietary communication protocols. In charge of
the radio interface with the outside world, this block in his
daily usage interfaces the communication of sensors values
with the rest of the infrastructure and is also responsible for
receiving over-the-air the communicated reconfiguration im-
ages for the FPGA. Interacting with the memory during this
process via a Serial Peripheral Interface (SPI), this module
stores in it the newly received image, or in response to an
external order reads the memory to retrieve the designated
configuration image that has to be loaded in our flash-based
FPGA. This module further allows for a direct reconfigura-
tion of the FPGA, without storing it beforehand in the on-
board memory, and funnel it directly into the FPGA’s inter-
nal programming array. The interface used in this process
between the SoC and the FPGA is a JTAG port. Besides the
previous mentioned tasks this module and its computing unit
in its core are responsible of the duty-cycle and the power
management of the other two units. As represented in Fig-
ure 4, the RF communication Unit is responsible to power-
ing up and down the other units, and as such act as the sleep
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mode timer of the entire platform. Such choice has been
guided by the ability of the SoC to have a reduced power con-
sumption inferior at 2µA when operating in minimal mode.
Having a timing element able to implement custom firmware
for smarter actions during the awakening or sleeping phase
while draining so little power makes him the perfect candi-
date to deport the power management to.

The second block consists of the Main Processing Unit.
As discussed previously, recent advances in Flash technol-
ogy have turned the tables on FPGA’s architectures, allowing
the Flash-based ones to become competitive both in cost and
power consumption in the low-power domain against more
traditional platforms such as the SRAM-based ones. Our
main processing unit is centred around an Igloo Nano FPGA
from MicroSemi. It is one of the lowest power FPGAs in the
market with a power consumption of 2.2µW, 16µW and an
interval of 1-30mW respectively for sleep mode, flash freeze
mode and run mode depending on the routed design com-
plexity. As our main processing unit has been designed to
support reassignments in tasks and their varying complexity,
we adjunct the computing unit a dedicated external mem-
ory. This memory is a non-volatile flash-based one with a
capacity of 2MB. It aims providing support for information
storage as it be in case of a loss of connection between the
rest of the infrastructure, or a reassignment to perform signal
processing operations. In some extreme cases such as imple-
menting convolutional neural networks on embedded FPGA
platforms [25], having an external memory to store and pro-
cess information is mandatory.

The third block is designated as Secondary Memory Unit.
The role of this block is fully tied to the reconfiguration pro-
cess. It is mainly composed of an external flash-based mem-
ory, solely in charge of storing the reconfiguration images
for the Main Processing Unit. This low-power unit is man-
aged by the RF Communication Unit for awake and sleep
cycles as well as for any read or write access to the memory.
As of today, the memory has a capacity of 2MB, and is able
to store up to 4 different reconfiguration images. Its power
characteristics of 2.5-20mA, 2-10mA, and 5µA respectively
for a reading cycle, writing cycle and sleep mode with a
clock speed varying between 20MHz and 120MHz allows
Chimera to economises on the reconfiguration in avoiding to
request a wireless transmission every time an image change
is requested. Moreover, when no reconfiguration process is
initiated, this memory is powered off by the RF Communica-
tion Unit, preventing the undue power consumption of 5µA
from the sleep mode and only powering the power manage-
ment unit for a nominal consumption of 3nA.
4.3 Software Design

Chimera is a reconfigurable hardware platform combined
with a software architecture designed to provide a complete
IoT solution for both high-end and low-level applications.
The hardware platform is build on a radio module, a low-
power Flash-based FPGA used as the main processing unit
and a radio transceiver supporting multiple protocols. In-
stead of using separate modules to create a complete plat-
form, Chimera integrates programming, computation and
communication onto a single board. It introduces new fea-
tures to improve the versatility and the energy efficiency

Soft
Application

Layer

Application
Layer

Driver Layer

Physical
Layer

Non-
Volatile
Memory

Radio
Module

Reconf 
Hardware 
(Softcore)

Bluetooth/Radio Application

User Application

Low Level Drivers

Low Power Management
Drivers

JTAG library

Figure 5. Versatile Software Stack of the Chimera plat-
form.

while delivering the abstraction features of FPGAs for soft-
ware developers.
4.3.1 Software Stack

The versatile architecture of the platform can be seen in
the Figure 5 and consists of four layers: hardware, drivers,
application and soft-application layer. The physical layer is
formed by the three previously detailed hardware units so the
driver level contains required low-level drivers to interface
properly with these elements. The bluetooth/radio applica-
tion layer contains the bluetooth application to connect blue-
tooth gateway and programmer application to program and
reconfigure the FPGA when it is needed. As mentioned pre-
viously, a soft processor core is implemented into the FPGA
to be used as a main processor and when doing so it adds an-
other extra layer on top of the common software stack. This
top layer called the user application layer defines the applica-
tion implemented in the soft processor core. The advantage
provided by the flexibility of this platform is to allow any
layer to be entirely customizable. Removing an hardware
component in the FPGA will influence not only the power-
consumption but also the software stack. This great adapt-
ability allows Chimera’s users to bare-strip the platform to
the minimum in order to implement a large FFT module or
an AES core, but also to fine tune the power management
drivers, adapt the number of I/Os actually handled or the in-
teractions between hardware components.
4.3.2 Toolchain and Environment

In order to run the platform properly and efficiently we
need to develop and program both hardware and software
from bottom to top. To assist in coping with the complex-
ity of that task we used a set of tool-chains and development
platforms. Digital designs for a given FPGA are developed
and turned into a bit stream by using a development environ-
ment, often provided by the FPGA vendor, in our case Mi-
crosemi provides one called Libero SoC Design Software.
Low level drivers and MCU applications are developed by
using integrated development environment that can be ob-
tained from Atmel’s website free of charge. For the soft ap-
plication layer we used the free TI msp430-gcc compiler tool
chain since the implemented soft-core is 100% compatible
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with the original instruction set of the MSP430. Having a
platform with a simple tool chain with enough abstraction
to allow academics students to develop in an Arduino-like
environment some simple tinkering exercises, while in the
same time allowing industrial actors to deploy a multiple
hardware-configurations platform with tailored power con-
sumption profiles is to us one of the keys to ease low-power
FPGAs in the low-power domain.
4.3.3 Reconfiguration Process

One of our main purpose is to develop a platform able
to adapt its hardware and software to the ever-changing and
heterogeneous nature of the IoT. For power consumption re-
lated reasons, we wanted to design a system able to perform
both remote (online) reconfiguration of the FPGA as well as
offline one. To that extend, we articulated the three units
of the platform (Main Processing Unit, RF Communication
Unit and Secondary Memory Unit) in a way allowing us to
perform both type in a power efficient manner. It is important
to note that a complete reconfiguration requires a time that is
linear to the size of the bit-stream and during this process
the entire chip is inoperable. The radio module is in charge
of receiving the new FPGA image when it is needed and to
initiate the reconfiguring process. This image consists of a
bitstream representing the new hardware and software design
of the FPGA and intended for the Programming Array, inside
the FPGA. This bitstream can be obtained from two different
manners, depending on the operated type of reconfiguration.

In Online mode, the MCU receive through its radio chan-
nel the given bitstream, and use its SPI interface to forward
and store it in the dedicated flash-memory for the storage
of images. When the image transfer is finished and stored
in memory, the RF module is then shut down and the MCU
will read the flash-memory and initiate the transfer of the
bitstream towards the Programming Array of the FPGA. If
the image is not destined to be stored locally and simply im-
plemented in the FPGA as soon as possible, the MCU has
the ability to skip the write and read sequence on the mem-
ory and directly reprogram via JTAG the FPGA with the bit-
stream in the course of its reception by the radio module. It
is worth mentioning that this method will not allow the ac-
tor to later retrieve and store the newly implemented image.
This image is immediately implemented and operational but
will not be available for further analysis or once it have been
rewritten by another reconfiguration cycle.

In Offline mode, the MCU will select the desired image
in memory and will then read it bit by bit and forwards them
along to the FPGA. The dedicated memory can hold up to
four different images, allowing the platform to adapt au-
tonomously to a non-scheduled but planned event, without
needing to request a dedicated reconfiguration image from a
distant server. This mode allows us to perform faster recon-
figuration at a cheaper energy cost than in the Online mode
due to the inactivity of the radio module. At last, to un-
derstand that the extend of the reconfiguration process goes
way higher than just low-level drivers, lets remember that the
soft-processor which is part of the FPGA’s image can be re-
configured in Online mode on a hardware level. As the soft
processor core have an optional bootloader which is also part
of that image, we can by extend reconfigure in Online or Of-

fline mode the soft-application layer, thus performing remote
dynamic update on the code run by the emulated MCU in the
FPGA Programming Array.
4.3.4 Images for IoT Applications

To illustrate the capacities of Chimera we developed
three different images suited for archetypal IoT applications.
These images are three different configurations of the soft-
core processor saved into the dedicated non-volatile Flash
memory.

The first one is a standard sensor application. Common
sensor applications such as temperature-humidity measure-
ments, sun-light tracking or motion detection only have two
tasks; reading the sensor data and sending it to a gateway via
wireless link to be relayed to an application server. These
applications do not need to process data on the end-device
thus allowing the end-device to not have additional hardware
modules such as communication interfaces for extra hard-
ware module, secondary timer module or requiring external
memory to process the information. Therefore, the configu-
ration was made according to applications needs to optimize
the resource utilization for low power consumption.

The second one is a remote control and relay application.
Recent developments in IoT aimed to empower an actor by
easing control and interactions with the surrounding environ-
ment in its daily life. Smart home and home automation ap-
plications are widely implemented and offers remote control
for embedded systems and electronics devices such as light,
heating, entertainment systems, ventilation, appliances, etc.
These applications are more complex than the first passive
sensor application and need more capabilities such as vari-
ous communication interfaces and a larger memory. In order
to support required functionality, the resource utilization in
this configuration is higher than for the first one.

The third configuration is a real-time embedded OS ap-
plication. Among the domain of embedded applications
high-end ones such as industrial temperature control, vehi-
cle tracking or unmanned robotic missions have real-time
requirements demanding the use and reliance of real-time
embedded operating systems. Use of an embedded operat-
ing system brings a lot of advantages in terms of reliability
and portability, and since the complexities in embedded ap-
plications are increasing various research and products tends
to have a glimpse as these solutions [9, 35]. Therefore, we
implemented FreeRTOS on top of the Chimera platform to
demonstrate such applications can be developed using this
platform. In order to implement FreeRTOS, extra timers and
watchdog-timers have been added. The resource utilization
of our main processing unit in this case is close to 100%
and the power consumption reflects it by being superior to
the consumption of the two previous configurations (active
power consumption of the first image: 14mA, the second
image: 17mA, the third image: 22mA).

The versatility of the needs in resources of these three
different configurations implemented successfully, each one
reflecting a common situation in the IoT end-devices do-
main, represents the ability of the Chimera platform to adapt
and perform complex tasks while being already employing a
large amount of its own resources to emulate an MCU archi-
tecture. Getting rid of that handicap, voluntarily introduced
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to give a glimpse of the performances of our platform, help
to understand the flexibility and the possibilities embodied
by Chimera.
4.3.5 Energy Management

To achieve multi-year battery life in the resource-
constrained devices domain targeted by our platform, one
cannot rely solely on the hardware design or the software
design. It is only by a fine tuning of both, and a seamless
application of low-power policies through both that cost-
less multi-year battery life can be achieved. The agility of
our platform combined with its fully customizable hardware-
software interaction allows us to compete along more static
tailored and dedicated hardware for that goal. In order to
reach this goal, the power lines of major components in the
platform are isolated from each other and can be turned off
and on by individual power switches. Therefore, the soft-
ware has a fine grained control over the power of Chimera
modules and it is optimized through low power manage-
ment drivers where all major components including the RF
Communication Unit, the Main Processing Unit and the Sec-
ondary Memory Unit can be switched off, on or switched to
low-power modes at run time. In addition, Chimera bases
its activity pattern on low duty cycle principle. Duty cy-
cling, between a period of activity and a period of deep
sleep, is a common concept and widely spread in wire-
less sensor network applications to reduce the overall power
consumption[36]. The sensor nodes constantly switch states
between active mode and sleep mode, the active mode being
the activity mode where the sensor collects information, pro-
cess it, store or send it to the rest of the infrastructure, and the
sleep mode being a period of activity where all the indispens-
able elements are reduced to the lowest power consumption
by disabling unused features, and the rest of the components
is turned off or put asleep. The ratio between the active time
and the total time is called duty cycle[28]. Low-power wire-
less sensors typically operates on a low duty cycle in order to
spare the battery as much as possible without compromising
their ability to interact with their environment. Therefore,
all the major components are in low power mode for most
of the time. Once an event happens, has it be a scheduled
measurement or a reaction to an unplanned event, they wake
up quickly, process the event and returns to low power mode
again.

5 Evaluation
Our evaluation of the Chimera platform focuses on the

power consumption and reconfiguration characteristics to
demonstrate its low-power characteristics. For a better com-
prehension, we integrate the evaluated performances in a use
case scenario which comprises a series of different tasks. We
later on detail the evaluation strategy and methodology then
present and discuss the results.
5.1 Scenario

We consider a scenario in a smart building, where for cost
and maintenance reasons only one type of platform is de-
ployed in each room. As the usage changes, we consider
adapting the deployed Chimera platforms to match the up-
coming needs unplanned during the deployment phase. Sen-
sors are deployed to perform simple passive wireless sen-

Table 3. Composition details of the different cores used
in the evaluation scenario.

Resource Memory Hardware
Utilization Modules

Base core 50% 1kB RAM GPIO, UART1kB ROM

AES core 99% 2kB RAM GPIO, UART, AES2kB ROM

sor applications, but the repurposing of a given room might
trigger a need for platform reconfiguration, as it be for se-
curity or privacy reasons. Chimera offers a modular embed-
ded platform able to switch between a regular sensor task
and more computing intensive operations. The implication
of our platform in this scenario aims at analysing the cost
of these changes and assess their impact on the low-power
capabilities of the platform.

The standard task for a wireless sensor device in IoT or
WSNs is to collect environmental parameters such as tem-
perature, humidity, light intensity and send the related data
to a centralized server via a network gateway or a neigh-
bour node for relay purposes. These sensor devices are de-
signed to achieve multi-year battery life due to costly manual
maintenance or for their deployment in remote areas, thus
they have very limited resources and stick to a low-power
consumption model. In our scenario, the data collected by
sensors in laboratories, meeting rooms or offices during the
working hours might be a sensitive information that as to re-
mains private. An extra layer of security needs to be applied
to ensure the security of the sensor data. However, running
encryption algorithms such as AES all-the-time directly af-
fects and decreases battery-life drastically, while manufac-
turing end-devices with additional dedicated hardware ele-
ments ”just in case” is not an option in regards of the added
costs. As an evaluation application, we implemented 3 sen-
sor devices inside of our university building. These sensors
are dedicated to environment data measurements, but on the
course of a two days meeting event, we consider one of the
rooms as a sensitive meeting room during working hours on
a 8am-8pm basis, and a second one as a full-time sensitive
office dedicated to experiments. The platform in the meeting
room starts with default sensor image and re-configures itself
in every 12 hours to a bigger core with AES module to per-
form encryption process. Every night it then re-configures
itself to the default sensor image to save energy. The plat-
form in the sensitive experiments room is reconfigured with
the same large AES core at day one, and stay continuously
in this configuration until 48 hours later and the end of the
meeting days. The third platform is deployed in an unaf-
fected room of the building by these events, and serves as a
baseline comparison on the consequences and costs of that
changes.
5.2 Methodology

We evaluate the impacts of this scenario on the three plat-
forms based on two power consumption markers; current
trends in active cycle and evolution of the battery charge over
these two days of meeting. As mentioned previously, we de-
ployed the experimental setup in our university building to
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Figure 6. Battery Charge Trend for three different sce-
narios.

measure temperature and humidity. We tested three different
configurations on the end-devices. One with the basic core
sending sensor data, the second with an added AES core en-
crypting data and sending it, and the third one which recon-
figures itself every 12 hours to switch between the two pre-
vious configurations, the AES supporting one and the non-
supporting one. The details of the FPGA images correspond-
ing to these configurations can be found in Table 3, detailing
the core composing units and their associated resource utili-
sation. All the three platforms alternate between active cycle
where measurements are done, then encrypted or not before
being sent to the rest of the infrastructure via a BLE connec-
tion to a gateway, and a sleep cycle where platforms sleep in
minimum energy mode. As the three platforms perform dif-
ferent tasks through the duration of the scenario, they don’t
draw the same current and don’t have similar consumption
profiles. Therefore we evaluate the battery charge during the
application to get more accurate view of the impact on power
consumption.

Duty cycle in the evaluation scenario is arbitrarily set
at 1%, mimicking a commonly observed set-up in LPWAN
space. In our case, we set up the activity cycle duration for
the first configuration at 200ms. This window of activity al-
lows for collecting sensor data, processing it and performs a
successful transmission to the rest of the infrastructure. The
sleep cycle duration is by consequence of 20s, in regards to
the duty-cycle set at 1%. For the second case in the scenario,
where an AES code is added for permanent encryption of
the collected data, the active cycle duration is set at 400ms
to encompass the necessary duration to perform AES cal-
culation then sending the encrypted data before going back
for a 40s cycle of sleep. Each device is connected to an ex-
ternal coulomb counter to measure the current consumption
and discharge profile of the batteries. For specific events and
periods of time, a digital multi-meter with data-logger ca-
pability is employed. The platforms use a couple of pair of
retail store standard AA/LR6 batteries totalling an electric
charge of 4800mAh. We run these experiments for the sce-
nario duration of 48 hours and analyse the collected results
in the following subsection.

Figure 7. Current trend in a complete cycle operation.

Figure 8. Current trend during an active cycle. Sensor
core (green) vs Sensor core + AES core (red)

5.3 Results
We collect and analyse the impact of our scenario on

the energy consumption of our evaluated platforms. To that
extent we focus on the evolution of the remaining battery
charge after the duration of our scenario, and its various evo-
lutions to cope with the requirements of the three different
use cases. This global perception is illustrated in Figure 6
where the battery discharge curves of our platforms are rep-
resented. As identified previously during the Design Anal-
ysis in Section 4.1, the resource utilization of the core has
a major effect on the power consumption of the concerned
processing unit. With all platforms having a similar duty-
cycle of 1%, the comparison of the elapsed power consump-
tion between the basic core and the greedy AES one display
some large disparities. At the end of our evaluation scenario,
the basic configuration core has recorded a remaining battery
charge of 99.64%. The heavy loaded core where an AES
core has been added finished its run with a remaining battery
charge of 99.46% marking a one third increase compared
to the baseline core. Utilizing the extra modules in the de-
sign even when it is not needed comes with sensible cost of
battery life, advocating for reconfiguration process over em-
bedding unused elements susceptible to influence negatively

202



the overall performances. The third platform alternating be-
tween the two remains with 99.52% of battery charge. The
reconfiguration process every 12 hours allows to save bat-
tery charge compared to the permanent use of AES core in
the use case plotted in red, illustrating that the overall recon-
figuration costs, depending of course of their frequency, are
low enough in this scenario to allow a larger battery life time
than the permanently dedicated to encryption platform.

The power consumption model of the baseline core and
the one implementing AES are displayed in Figure 7. Each
surge in current consumption represents the awakening of a
platform, its task processing profile then the current drops
suddenly, due to the re-entry in sleep mode. The difference
in delay between the two spikes of activity of these two plat-
forms is due to their respective activity cycle duration, pre-
sented in the above section, being respectively of 200ms and
400ms. As their duty-cycle is similar, their sleep cycle du-
ration is thus with a factor 2 difference ratio. We observe
that the sleep mode consumption appears to be of two orders
of magnitude smaller than the active mode consumption for
both platforms. Figure 8 provides us a more detailed view
of the current consumption during the active cycle. Sensor
reading, serial transmission to the RF Communication Unit
and Bluetooth communication are the main tasks that affects
the active cycle of the baseline core represented in green.
The curve details nicely the wake up of the main computing
unit in order to collect the data and communicates it to the
RF Communication Unit, the turning off of the computing
unit, the wake up of the radio module and it’s transmission
via BLE, then the busy-wait time to complete the active du-
ration of 200ms before returning to a deep sleep state. On the
second use case, in red in Figure 8, we witness a predominant
rise of power consumption at the beginning corresponding to
the AES computation after having retrieved the sensor mea-
sured value. The AES core is then turned off, and the data
interface with the RF Communication Unit is then turned on
for data transmission, like in the first use case. The rest of
current activity is identical to the one in the first use case.
The effects of an extra AES module and its proportions are
now clearly visible.

As observed previously and illustrated with more details
in Figure 9, one Chimera platform has multiple different
reconfigurations processes happening during the evaluation
scenario, each one having a cost in power, witnessed by sud-
den drops of battery remaining charge. In this second part of
the results analysis, we focus on the cost of reconfiguration
for Chimera. The platform has two types of reconfiguration
process, one dubbed Offline and the second Online. Differ-
ent hardware components are involved in each process. In
Offline reconfiguration, one of the core images previously
saved in the dedicated Secondary Memory Unit is selected
then fetched by the RF Communication Unit and forwarded
to the FPGA bit by bit towards JTAG interface. The overall
process can be divided into four tasks and these four tasks
can be observed in Figure 10. The Offline process starts
by erasing the previously used image in the FPGA program-
ming Array during the period denoted A1 in this figure. In
period A2, the new image is read from the memory and pro-
grammed in the FPGA. Period A3 corresponds to the veri-

Reconf
Cost
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AES module Basic Core Core with 

AES module

Reconf
Cost

Reconf
Cost

Figure 9. Battery Charge Trend during reconfiguration.

A1 A2 A3 A4

A1 A2 A3 A4A0

Figure 10. Current trend during reconfiguration.

fication of the newly programmed image and period A4 is
when FPGA’s clock is programmed and the core is run for
verification purposes. When we observe the Online recon-
figuration process, we witness an increase in duration and
overall power consumption. The difference originates from
the use of the Bluetooth Low-Energy module to receive a
remotely sent FPGA image. In the newly appeared period
identified as A0, the RF Communication Unit wakes up, and
start downloading the reconfiguration image and storing it bit
by bit in the Secondary Memory Unit. This situation leads
to an overall power consumption of respectively 61µAh and
95µAh for the Offline process and the Online one. As the
evolution of the consumed current stays in the same order of
magnitude, this difference is mainly due to duration of the
reception and storage of the image, leading the Online re-
configuration process to happen in 45s compared to 31s for
the Offline one.

5.4 Discussion
Evaluation shows that Chimera offers a deeply reconfig-

urable platform while achieving multi-year battery-life. Re-
source utilization of the FPGA directly affects power con-
sumption, in return reconfiguring the FPGA to tailor the
application needs can help to optimize power consump-
tion. The Offline reconfiguration process costs 0.0013% of
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Table 4. Comparison of different platforms.
Platform Processing Radio Active Sleep

Unit module Current Current

Cookie[12] Xilinx Spartan3 2.4Ghz RF transceiver 45mA-72mA 18mA+ ADuC841 supports Zigbee

Sentiof[29] Xilinx Spartan6 2.4Ghz RF transceiver 47mA(max) 95uA+ Atmel AT32U Supports Zigbee

Telos-Tmote[24] MSP430F1611 2.4Ghz RF transceiver 18.8mA(max) 5.1uASupports Zigbee

MicaZ[17] Atmel ATmega128L 2.4Ghz RF transceiver 18.8mA(max) 10uA

SunSpot[22] Atmel ARM920T 2.4Ghz RFtransceiver 35mA(max) 520uAsupports Zigbee

Chimera Igloo Nano250 2.4GHz transceiver supports 19mA(max) 250uABLE and ANT

the batteries life and the Online reconfiguration via Blue-
tooth costs 0.002%. Up to four different FPGA images
can be stored in the platform. Depending on the appli-
cation environment, these images could cover any possi-
ble use case suppressing the need for an Online reconfig-
uration and the associated costs. Table 4 represents com-
parison of different platforms used in wireless sensor net-
works. Chimera consumes less active power than any
reported FPGA based platforms[12],[29],[14],[26],[6],[13].
Although Chimera consumes more power in sleep mode than
traditional MCU based sensor platforms, its repurposable
hardware capabilities as an experimental hardware platform
while still providing multi-year battery life offers an inter-
esting trade-off. Designing different hardware modules to
enhance the platform features or prioritizing the autonomy
duration of the end-device are modular choices offered by
our architecture. In essence, Chimera combines the best of
high-end FPGA based platforms and low-power application
specific ones applied to low-power wireless network domain.

6 Future Work
The initial results of Chimera demonstrates the capacity

of this experimental platform to perform in the low-power
wireless sensors domain and motivates us to extend the work
further. Although we used generic hardware components
to support the tasks in it, a more cutting-edge trade-off be-
tween costs and power performances in sleep and active
mode could be investigated further. One of the main primary
future works includes using the platform where specialized
hardware is required. Having a deeply reconfigurable and
versatile battery powered device in a sensitive area with a
dynamic approach on repurposable elements like in smart
hospitals can reduce the need for specialized hardware in
high speed signal processing tasks or multimedia applica-
tions. One of the extended directions for future work on a
software level resides in the power saving algorithms. Hav-
ing a framework able to perform automatically aggressive
power savings operations based on an overall comprehen-
sion and integration of the task flow, would lead to shorter
activity cycles, and a more tailored approach of the sleep
mode regardless of the application, increasing drastically the
battery life time. On a more performance oriented note,

one future work direction could matching our platform with
wireless acoustic sensor networks, being promising technol-
ogy to perform surveillance based on sounds captured from
the environment. Thoen et.al[32] suggests that with special-
ized hardware, acoustic surveillance applications can be per-
formed in decentralized environment by battery powered de-
vices. We believe that the versatile and low power nature of
Chimera is suitable for these kind of applications and will
increase re-usability of such dedicated devices. We would fi-
nally like to leverage existing literature on data processing in
sensor networks and use the platform to perform heavy pro-
cessing tasks in distributed environment (such as cooperative
sensor networks) to reduce the need of centralized servers.

7 Conclusion
This paper presents a flexible and low-power experimen-

tal platform with multi-year battery life based on a Flash
FPGA designed to introduced in the low-power wireless net-
works domain, designated Chimera. We justify the need for
such platform by witnessing the rise of smart environments
such as smart buildings or smart healthcare facilities, where
traditional static low-power wireless sensors infrastructure
are deployed in order to increase the understanding and con-
trol on these environments, while being confronted to dy-
namically evolving operating conditions as it be related to
unplanned events or a need repurposable devices to match
future uses, all of these being direct characteristics of a close
proximity with human interactions. We identify two main
reasons that prevents FPGAs from being used in low-power
embedded platforms : (i) The high power consumption of
SRAM-based FPGAs and (ii) the lack of systematic support
of FPGAs used in contemporary IoT tool-chains. We ad-
dress these problems by designing a fully-open source plat-
form based on a Flash FPGA, capable of over-the air re-
configuration of both software and hardware resources while
still achieving multi-year battery life. We detailed the design
analysis leading to hardware and software solutions around
which Chimera is built, and present the physical product as
well as a standard panel of IoT applications with different
resources needs to illustrate the capacities of Chimera.

We evaluated the platform in its operating domain by fo-
cusing on its power consumption and presented the current
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trend during normal operation, battery capacity discharge
and the cost of reconfiguration in three different scenar-
ios. The results show that Chimera can achieve multi years
battery-life time with a pair of couple of standard retail store
AA batteries, depending on the FPGA design and application
requirements. We discussed the applicability and the future
work of the platform and showed that it is possible to utilize
an FPGA-based deeply reconfigurable design for a versatile
platform with multi-year battery life. With Chimera we in-
tend to bridge the gap between low-power static end-devices
performance and growing trends to extend the flexibility of
an architecture as close as possible to its edge.
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