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Abstract
Continuous heart rate variability (HRV) monitoring can

monitor a user’s health and help them make adjustments and
treatments. The current methods of using ECG or externally
mounted sensors are accurate, but inconvenient for the us-
er. Other methods of using computer vision rely on ambi-
ent lighting conditions, and there are issues that may vio-
late user privacy. Mobile devices such as smart watches and
smartphones hold the promise of providing a more conve-
nient, practical, and non-invasive method of detection. In
this paper, we propose S-HRVM, a smart watch-based heart
rate variability monitoring system. The basic idea behind
S-HRVM is to combine the physiological representation and
motion state of user. In physiological representation, we pro-
pose SP-HR method to process heart rate data and extract
HRV features. The motion state, which can be derived by us-
ing accelerometer data of smart watch, is used to reduce the
power consumption. In addition, the HRV features are used
as calculation parameters of G-MSPC (the general health
monitoring model based on MSPC), which can be used to
detect mental states and diseases associated with autonom-
ic function. Extensive experimental results demonstrate the
effectiveness of the proposed methods.

1 Introduction
Heart rate (HR) is a very important function indicator of

the human body. Numerous studies have shown that ubiqui-
tous heart rate sensing can provide possibilities for enabling
clinical-grade services [5]. Short-term heart rate variabili-
ty (HRV) monitoring in terms of the RR-intervals(RRI) is
particularly useful, and it is often used to track human body
mental states such as stress and fatigue [1], which are impor-
tant for driving safety and personal well-being.

Previous work has taken many approaches, including
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electrocardiograms, and cameras, sometimes combined to
get heart rate data from people. Electrocardiogram (ECG) or
photoplethysmography (PPG) is currently the most advanced
and most commonly used method of heart rate monitoring,
it can directly reflect changes in the heart rate of the human
body. However, this method requires special equipment used
in medical diagnosis or research, which is costly and incon-
venient to carry, and has poor practicality. The accuracy of
the method using the camera depends on the ambient light-
ing conditions. The data collected during the day and night
may vary greatly which cannot truly reflect the user’s heart
rate changes, and it may involve the privacy of the user.

Thus, we want to design an accurate and portable moni-
toring system with strong robustness, embedding on mobile
devices, to detect HRV of user. Fortunately, heart rate sen-
sors are widely embedded in mobile devices such as smart
watches, we can collect the user’s heart rate data by smart
watch. Heart rate can be used to estimate the HRV, which
is the RRI fluctuation of an ECG, as an important physical
indicator. In addition, other sensing data (e.g. accelerometer
and gyroscope) from smart watches can be used to assist the
detection system and reduce power consumption.

There are two key technical challenges. The first chal-
lenge is how to reduce the power consumption of the heart
rate sensor. The most common method of measuring heart
rate in smart watches is the reflective optoelectronic method,
which measures heart rate by measuring the blood flow at
the bottom of the LED, the heart rate sensor is the same as
all sensor nodes in WSNs, energy can be quickly depleted if
kept working for a long time [2]. Moreover, heart rate mea-
surements will be more accurate in relatively static situation-
s. Considering these two aspects comprehensively, we pro-
pose SSPA (static state prediction algorithm) which detects
the relative static state of the human body using the inertial
measurement unit (accelerometer and gyroscope, etc.) in the
smart watch as a starting mechanism for the heart rate sen-
sor. The heart rate sensor starts working only when it detects
that the user is in a relatively static state.

The second challenge is how to obtain the HRV from the
heart rate data. The traditional HRV is obtained from the
ECG. In our work, we only obtain the heart rate data from
the smart watch, and we can’t get the interval between two
adjacent heartbeats like an ECG. To address this challenge,
we propose the SP-HR (statistical processing of heart rate)
which utilize the statistics to calculate the RR-interval be-
tween two adjacent heartbeats, then calculate HRV featuresInternational Conference on Embedded Wireless 
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based on these RR intervals. We further perform statistical
results as a threshold on real-time processing of heart rate
data.

Since the fluctuations in the RRI of the electrocardio-
gram reflect autonomic function, the disease and physical
state associated with the autonomic nervous system can be
monitored by monitoring RRI data, such as epilepsy [9], is-
chemic stroke [11], stress and other mental states. According
to the fact that the autonomic nervous function affects heart
rate variability, we design a general health monitoring mod-
el based on MSPC (Multivariate Statistical Process Control),
G-MSPC, which uses multiple HRV features from RRI anal-
ysis as input variables. In G-MSPC, detection and recog-
nition of outliers are very important, we adopt Yang et.al
work [10] to define and identify outliers. In the experiment,
we collected a large number of heart rate data of different
people in both awake and drowsy state, the awake data sets
as modeling data of G-MSPC, the two statistic Q and T 2 are
used to detect whether the user is drowsy.

The contributions of this paper are summarized as fol-
lows:

1) We design a relatively static state prediction algorithm
SSPA as the starting mechanism for the heart rate sensor to
reduce power consumption and obtain more accurate heart
rate data.

2) We propose the SP-HR method to process heart rate da-
ta, and then extract HRV features that reflects the autonomic
function.

3) We propose a general health monitoring model based
on MSPC (G-MSPC) to monitor the user’s physical condi-
tion related to the autonomic nervous system.

4) We implement S-HRVM and evaluate its performance
in a simulated driving environment. The experiment results
demonstrate the effectiveness of S-HRVM.

In the rest of this paper, we will present the preliminaries
in Section II. Then we describe architecture of S-HRVM in
Section III. We elaborate the design details of S-HRVM in
Section IV and evaluate its performance in Section V. We
will introduce the related work in Section VI. Section VII
concludes the whole paper.

2 PRELIMINARIES
2.1 Heart Rate Variability

Since HRV reflects autonomic activity which changes
during stress, extreme fatigue, and sleepiness episodes. HRV
analysis has been used for stress or sleepiness estimation and
cardiovascular disease monitoring. In this section, the com-
monly used HRV features are briefly described.

RR-interval (RRI): A typical electrocardiographic tra-
jectory of the cardiac cycle (standard lead II) consists of sev-
eral peaks, the highest of which is called the R wave. The
RRI [ms] is the interval between the R wave and the next R
wave.

The following time domain features are calculated direct-
ly from the raw RRI data.

meanNN: Mean of RRI.
SDNN: Standard deviation of RRI.
rMSSD: Root mean square of difference of adjacent RRI,

it reflects the rapid change of HRV.

Figure 1: Comparison of ECG and heart rate sensor.

NN50: The number of pairs of adjacent RRI whose dif-
ference is more than 50 msec.

pNN50: The number of pairs of adjacent RRI, whose d-
ifference is more than 50 msec, divided by the total number
of RRI.

TP: Total power, the variance of RRI.
The frequency domain features are mainly the following:
LF: Power in the low frequency range (0.04 Hz - 0.15 Hz)

of PSD. It reflects sympathetic nervous system activity and
parasympathetic nervous system activity.

HF: Power in the high frequency range (0.15 Hz - 0.4 Hz)
of PSD. HF reflects the activity of parasympathetic nervous
system.

LF/HF: Ratio of LF to HF. LF/HF represents the balance
between sympathetic and parasympathetic nervous system
activities.

As shown in Figure.1, the RRI can be obtained direct-
ly from the ECG, and then the time domain and frequency
domain features can be calculated from the RRI. However,
when using a smart watch to monitor heart rate, we can’t di-
rectly get these parameters, the first challenge we face when
getting these parameters is how to get RRI from heart rate
data. The proposed SP-HR is used to solve this problem, and
the detailed content is in section IV.
2.2 Built-in Sensors

The heart rate sensor detects heart rate by PPG (Photo-
plethysmography). Its principle is that the LED behind the
watch can emit green light, and the photodiode can deter-
mine the instantaneous blood flow by detecting the absorp-
tion of green light. When the heart contracts, blood flow
velocity increased, so the amount of green light absorption
is also large. Conversely, when the heart is dilated, the blood
flow decreased, and the amount of green light absorption is
also small. The smart watch can measure the heart beat by
detecting hundreds of green light exposures per second and
changes in the regularity of green light absorption.

The accelerometer is an inertial sensor, which is triaxial
accelerometer used to detect the acceleration on the x, y and
z axes of equipment, always embedded in the smart phone
and smart watch. The essence of the accelerometer is to mea-
sure the deformation of the sensitive components inside the
sensor caused by the force, and transform the deformation
into an electrical signal output with the relevant circuit to

179



Low Power 
Listening

HR data 
Processing

Health 
monitoring 

Raw IMU 

Data

SSPA

HRV 

features

SP-HR

Raw HR 

Data

G-MSPC

 Drowsiness, Stress, 

Epilepsy, Etroke...

S-HRVM

Suggestions
adjustment, 

treatment...

Figure 2: Overview of S-HRVM.

obtain the corresponding acceleration signal. The three-axis
acceleration sensor can fully and accurately reflect the mo-
tion properties of the object.

3 Overview
In this part, we introduce the processing flow of the sys-

tem. The overview of system is shown in Figure.2. S-HRVM
is mainly composed of three modules: low power listening
module, heart rate data processing module and health moni-
toring module.

Low power listening module: Considering the power
consumption of the heart rate sensor and the more accurate
heart rate detection at rest, we design SSPA, a static state
prediction algorithm which process acceleration data are ex-
tracted from the IMU sensor of the smart watch and smart-
phone to predict whether the user is in a relatively stationary
state for a short period of time. If the user is in a relatively
static state, the heart rate sensor works, otherwise, low power
listening in a cycle.

Heart rate data processing module: After the heart rate
sensor is activated. We extract heart rate data from the smart
watch in real time, then process them by our proposed SP-
HR method and extract HRV features.

Health monitoring module: In this part, the multiple
HRV features extracted from the heart rate data processing
module as input variables for our proposed the general health
detection model, G-MSPC. The model uses two statistics in
the multivariate statistical process to measure the degree of
deviation of the sample from the modeling data. Since our
data sets are all composed of normal samples, when any s-
tatistic exceeds the corresponding control limit and is judged
to be abnormal. Therefore, G-MSPC can monitor the user’s
physical status such as stress, drowsiness, epilepsy, stroke,
and other cardiovascular diseases.

4 SYSTEM DESIGN
In this section, we will introduce the design details of S-

HRVM.
4.1 Static state prediction algorithm(SSPA)

In order to reduce the power consumption of the heart
rate sensor, and measure the heart rate data more accurately.
We designed a relative static state prediction algorithm (SS-
PA) as a heart rate sensor startup mechanism. In S-HRVM,
A smartphone placed around the user is used to monitor the
dynamics of the environment, while a smart watch on the us-
er’s wrist tracks the movement of the user’s hand. For exam-
ple, in a traveling vehicle environment, a smartphone placed

in the car is used to monitor the movement of the vehicle.
S-HRVM continuously samples the accelerometers of smart
phone and smart watch at a sampling rate of 50Hz to collec-
t motion data. Each sample contains an acceleration vector−→a .

Usually the variance of −→a can be used to detect whether
a device is moving, but it is ineffective in a driving environ-
ment where −→a is disturbed by the movement of the vehi-
cle. We solve this problem by comparing the −→a of the smart
phone and the smart watch. Due to the inconsistent coor-
dinates of smart phone and smart watch, we cannot directly
compare −→a . However, an important observation is that if
there is no relative motion between these devices, the |−→a | in
these devices should be similar [4]. Based on this, S-HRVM
determines if the user is in a relatively static state by com-
paring each device’s −→a and checking the following formula:

L
∑

i=1

∣∣∣∣−−−−→ai,swatch
∣∣− ∣∣−−−−→ai,sphone

∣∣∣∣
L

> ξ (1)

Here L is the window length, when equation (1) is satisfied,
S-HRVM considers that the user to be in a relatively static
state. The size of ξ determines the performance of the detec-
tor, because a small ξ will reduce the robustness of the clas-
sifier and increase the false alarm rate when there are noisy
motion signals. If ξ is too large, S-HRVM may not detect
relative static state, which will reduce the detection rate. In
our experiments, ξ = 1.0m/s2 performs best in most cases.
4.2 Statistical processing of heart rate(SP-

HR)
The HRV signal is usually calculated by analyzing the

time series of beat-to-beat intervals measured by electrocar-
diogram (ECG) or PPG waveform. However, due to the com-
plexity of the equipment and the discomfort of wearing, the
practicality of these two methods is very low. In our work,
we use smart watch to monitor heart rate data and obtain
HRV signals that can be further analyzed. In this section, we
mainly introduce SP-HR method, which can obtain the RRI
from the heart rate data to calculate the HRV features.

We obtain a large number of HR data from a smart watch
under different scenarios. According to the HRV analysis
guidelines, RRI data should be measured for at least 2 to 5
minutes for accurate frequency analysis. We use a sliding
window wh to extract the heart rate sequence, and wh = 300,
which is about five minutes long.

The sliding window wh = 300, represents 300 consec-
utive heart rate data. Assume that the heart rate data se-
quence is Hn =

{
hn,hn−1,hn−2, . . . ,hn−(wh−1)

}
. The average

of the wh data is the average heart rate of Hn, denoted as R,
and R = (hn +hn−1 +hn−2 + · · ·+hn−(wh−1))/wh. The total
number of heartbeats in five minutes is 5R, and the num-
ber of RRI is 5R-1. We first calculate the reciprocal of wh
data separately, and then multiply the result after the recip-
rocal by 60, Hn =

{
hn,hn−1,hn−2, . . . ,hn−(wh−1)

}
becomes

H ′n =
{

60
/

hn,60
/

hn−1,60
/

hn−2, . . . ,60
/

hn−(wh−1)
}

. The
H ′n represents wh RR intervals. The remaining 5R− 1−wh
RR intervals are generated by two methods, one is the mean
value of wh RR intervals. Another method is to calculate the
maximum and minimum values of wh RR intervals, and then
use the random number generator to generate random num-
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bers in the range of minimum and maximum values. The step
size of the random number is obtained from the statistics of
a large amount of data.

We have made sufficient statistics on the large amoun-
t of data collected from 28 different individuals. Including
RRI mean, minimum RRI value, maximum RRI value and
step size for different genders, different age groups, different
heart rate ranges. At the same time, they were corrected with
the data collected by the ECG. The corrected statistics are
used to process the heart rate data collected in real time.

RRI data is not directly used for clinical testing, and fur-
ther extraction of HRV time and frequency domain features
is required. As mentioned before, time domain features in-
clude meanNN, SDNN, rMSSD, etc. They are calculated by
the following formulas:

meanNN =
(
∑

N
i=1 RRIi

)/
N (2)

SDNN =

√
1
N ∑

N
i=1 (RRIi−meanNN)2 (3)

rMSSD =

√
1

N−1 ∑
N
i=1 (RRIi+1−RRIi)2 (4)

Commonly used frequency domain features are LF, HF, and
LF/HF, which are typically obtained by power spectral den-
sity of resampled RRI data.

4.3 The general health monitoring model
based on MSPC (G-MSPC)

MSPC, as a useful technique for multivariate process
monitoring, has a wide range of applications [8, 17]. The
main content is to build a multivariate statistical model (P-
CA, PLS model), to map a large number of highly relevant
process variables to the low-dimensional space defined by a
small number of hidden variables through multivariate sta-
tistical methods, and to use T 2 and Q indicate the degree of
deviation of the sample from the pivot model. If the statistic
control limit is exceeded, the sample is considered abnormal.
The application of MSPC to health detection fully considers
the time and frequency domain features of HRV.

Let X denote the normal data set, and N and M denote
the number of samples and variables, respectively. Then we
need to construct the PCA model based on X and project
the multivariable data into the low-dimensional feature space
defined by a few hidden variables by using the correlation
between variables. First, the singular value decomposition
of X is recorded as:

X =UΣV T

= [UR U0]

[
∑R 0
0 ∑0

]
[VR V0]

(5)

In principal component analysis, VR is the right singular ma-
trix of X, and the column space of VR is the subspace s-
panned by principal components, R (≤ M) represents the
number of principal components retained in the PCA mod-
el. TR ∈ℜN×R, which is the projection of X on the subspace
spanned by principal components, is given by

TR = XVR (6)

X can be reconstructed or estimated from TR by linear trans-

formation of VR.
X̂= TRV T

R = XVRV T
R (7)

The loss of information (that is errors) caused by dimension-
al compression, is written as

E = X− X̂ = X(I−VRV T
R ) (8)

According to the errors, the Q statistic is defined as

Q = ∑
M
m=1 (xm− x̂m)

2 = x(I−VRV T
R )xT (9)

Where x is a newly measured sample, The Q statistic is the
squared distance between the sample and the subspace com-
posed of the principal components. That is, the Q statistic
measures the difference between the sample and the model-
ing data from the perspective of the correlation between the
variables.

In addition, Hotelling’s T 2 statistic is used to monitor
anomalies in the subspace composed of principal compo-
nents.

T2 =
R

∑
r=1

t2
r

σ2
tr
= xVR ∑

−2
R V T

R xT (10)

Where σtr denotes the standard deviation of the rth score
tr. The T 2 statistic represents the Mahalanobis distance from
the origin in the subspace composed of the principal com-
ponents. When the T 2 statistic is small, it indicates that the
sample is close to the mean of the modeling data. When
the T 2 or Q statistic exceeds the corresponding control lim-
it, it indicates that the current sample is abnormal. Since G-
MSPC is constructed using only normal HRV data, G-MSPC
can be used for user’s physical condition detection.

Particularly, in the study of drowsiness detection, many
studies have shown that drowsiness is a cumulative process,
that is, the drowsiness at the current moment is related to the
previous drowsiness condition. When calculating the devia-
tion between the current sample and the modeling data using
the T 2 and Q statistic, we take the deviation of the sample
from the previous moment into the sample at the current mo-
ment. The Q and T 2 can be formalized as:

Qi = αxi(I−VRV T
R )xT

i +(1−α)Qi−1 (11)

T 2
i = βxiVR ∑

−2
R V T

R xT
i +(1−β)T 2

i−1 (12)

The values of α and β are 0.9 in our implementation, T 2 and
Q statistic have different thresholds.

5 IMPLEMENTATION AND EVALUATION
In this section, we conduct experiments to evaluate the

performance of the proposed system. In order to verify our
drowsiness detection model, twelve healthy subjects with at
least one year of driving experience (including 9 males and
3 females, with an average age of 38±15 yr) are recruited to
participate in our experiments. They do not have any sleep
disorders, sleep apnea and other related diseases that may af-
fect the results of the analysis. Subjects are asked to fill out
survey forms before and after the experiment. We performed
our experiments on a driving simulator, and each participant
had two to three hours before the formal experiment to sim-
ulate the system. We conducted experiments during the day
and night to collect data. And the total dataset, which is di-
vided into awake data sets and sleepy data sets, 70% is used
for training and 30% is used for testing. During the exper-
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iment, we obtain the ground truth of the subjects through
video.

We use these metrics to quantify the performance of S-
HRVM.

Precision: The percentage of samples accurately detected
by S-HRVM in the total sample.

Recall: The percentage of correctly detected samples in
all relevant samples.
5.1 Performance of SSPA

1)The effect of ξ to SSPA: According to equation (1),
the performance of the user’s relatively static state detection
depends on ξ, Figure.3 presents the accuracy of hand move-
ment detection at different values of ξ. We can observe that
as ξ increases, the precision gradually increases and the re-
call decreases slowly and the precision exceeds 90% when
ξ = 1m/s2. ξ = 1m/s2 is considered to be the most appro-
priate setting to detect the user’s relative static state.

2)Power consumption: One of the biggest challenges in
using a heart rate sensor is power consumption. In the ex-
periment, we used a power monitor to test the power con-
sumption during heart rate detection. When the heart rate
start algorithm is not used, the smart watch has only 8 hours
of standby time. However it can last for 13.5 hours when
using the startup algorithm, the life time of the smart watch
is greatly extended compared to the case where the startup
mechanism is not used, which is enough to monitor the us-
er’s heart rate throughout the day.
5.2 Performance of SP-HR

1)RRI mean absolute error: RRI (RR-interval) is the
time interval between two adjacent heartbeats. In order to
validate the performance of our proposed SP-HR, we obtain
RRI from the heart rate data collected from the smart watch
by SP-HR, and the RRI in the electrocardiogram is used as
a reference for comparison. RRI mean absolute errors corre-
sponding to different instantaneous heart rates are obtained.
From Figure.4, we can see that the maximum RRI mean ab-
solute error is less than 4ms, and the average is about 1.5ms,
which is a relatively low level. It explains that our SP-HV
method can be used to extract RR-interval from heart rate
data, which has a good effect on HRV analysis.

2)Time and frequency domain features of HRV: We
also compare the time and frequency domain features of
HRV extracted from ECG and HR data using SP-HR method.
Figure.5 and Figure.6 show that several HRV features ex-
tracted from the ECG and from HR data are approximately

equal, and several other features have similar results. The
results show that the SP-HR method proposed in this paper
has higher accuracy as the HRV analysis method of heart rate
data.
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5.3 G-MSPC for drowsiness detection
1)Overall accuracy: We use the methods proposed in the

S-HRVM to process awake data sets and drowsiness data set-
s from different drivers. The HRV features extracted from
these data are processed to obtain the model G-MSPC, and
the corresponding Q, T thresholds. The overall accuracy of
G-MSPC is shown in Figure.7. We can see that the G-MSPC
has achieved 90.3% precision and 91.5% recall. The perfor-
mance of the system in different gender groups is similar,
and the male group is closer to the total accuracy. The low-
er accuracy of the female group is mainly due to the smaller
number of samples used for training, however, the detection
accuracy is still higher than 87.5%.

2)Performance comparison between different method-
s during the day and night: We compare the performance
of G-MSPC during day and night with the method of steer-
ing wheel movement (SWM) and computer vision (CV) in
Figure.8. We can see that the accuracy of both SWM and CV
methods has decreased at night, especially the CV method is
very obvious, mainly because the CV method relies heavi-
ly on ambient lighting, and the light at night is much worse
than during the day, which seriously affects the performance
of the system. The performance of the SWM method is not
much different between day and night, but the overall accu-
racy is not high, mainly due to the small number of features
detected, which cannot fully reflect the state of the driver.
Compared to them, G-MSPC is highly accurate and robust,
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whether day or night, because our system measures human
physiological characterization.
6 Related Work

Heart rate monitoring Methods: Various methods of
monitoring heart rate have been explored. A common
method is to use electrocardiogram (ECG) and PPG sen-
sors [16]. These methods generally require installation, al-
lowing direct skin contact between the user and the sensor,
although their performance is promising, but such installa-
tion requirements prevent widespread use of these methods.

Other heart rate measurement methods include the use
of capacitive sensors in the seat, high-resolution cameras
to capture skin tone fluctuations, and thermal imaging. Al-
though these methods work well in the static environment of
the laboratory, they are affected by (such as light, vibration,
etc.) in environments such as vehicles. These methods can-
not accurately measure a single heartbeat interval [6,18], this
is not useful for user stress and fatigue inference.

Drowsiness detection methods: Physiological signal-
s are considered to be an accurate indicator of drowsiness
because they are strongly related to fatigue [3, 16]. Elec-
troencephalogram (EEG) is widely regarded as one of the
most reliable physiological indicators [15]. Electrocardio-
gram (ECG) is another widely used method to detect sleepi-
ness [14, 16]. Although these methods provide effective de-
tection of physiological and cognitive states of the human
body. However, the feasibility of these methods in the actual
environment is severely limited due to the wearability of the
equipment. In addition, the computer vision method main-
ly uses image processing technology to detect the driver’s
behavior characteristics to judge the driver’s drowsiness [7].
The performance of this method is greatly affected by the
ambient light intensity and other factors [19], the reliability
of such methods is low, although they are non-invasive.

The motion sensor method mainly detects the steering
wheel movement, speed variability, lane departure of the ve-
hicle through sensors [12, 13]. These measures are highly
dependent on road conditions and their performance is lim-
ited, they require a lot of training.
7 Conclusions

This paper presents S-HRVM, a smart watch-based heart
rate variability monitoring system. S-HRVM obtains the RR
interval between adjacent heartbeats and extracts HRV fea-
tures from heart rate data by SP-HR, and the HRV features
are used as the input of the general health monitoring model
G-MSPC to detect the user’s physical condition. The ac-
celeration data collected from smart phone and smart watch
is used to detect if the driver is in a relatively static state
which acts as a starting mechanism for turning on the heart
rate sensor, it reduces the power consumption of the system
while measuring heart rate data is more accurate. A large
number of experimental results showed the effectiveness of
S-HRVM.
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