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Abstract
In large scale networks with many concurrently active

IoT devices, Multi-user MIMO (MU-MIMO) is an impor-
tant technology to improve data transmission efficiency, due
to its ability of enabling multiple clients’ concurrent trans-
missions. To achieve concurrent diversity gains, the network
resource allocation relies on the feedback of Channel State
Information (CSI) from clients. Inaccurate CSI estimation
and unnecessary CSI feedback, however, heavily degrade the
capacity and throughput of a MU-MIMO network, leading to
superfluous energy consumption and potential channel colli-
sion of battery constrained wireless systems (EWS) in IoT.

Pursuing smart CSI feedback, we present QUICK, a pro-
tocol to achieve CSI quality estimation and power realloca-
tion based on self-adaptive beamforming before data trans-
mission, which could improve the CSI quality and reduce
bit error rate (BER) efficiently. Based on the accurate CSI
estimation, QUICK introduces a mobility-aware mechanism
to eliminate unnecessary CSI feedback within coherence
time. QUICK is fully compatible with the current IEEE
802.11ac standard and most state-of-the-art CSI feedback
strategies, and is easy to be deployed on existing WiFi sys-
tems. Our software-radio based implementation and testbed
experimentation demonstrate that QUICK substantially im-
proves the throughput of both MU-MIMO downlink and up-
link by 100% to up to 5×.
Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Ne-
towrk protocol—Network architectures;
General Terms

Design, Experimentation, Performance
Keywords

MU-MIMO Networks, CSI quality estimation, Embed-
ded wireless systems

1 Introduction
Advancements in computing and networking gave birth

to the Internet of Things (IoT), which plays an increasingly
indispensable role in modern life. Efficient access to the net-
work is necessary, especially when transmitting data in large
scale networks with many concurrently active IoT devices.
Fortunately, the Multi-user MIMO (MU-MIMO) technology
in IEEE 802.11ac standard holds the potential to substan-
tially improve spectrum efficiency, by allowing concurrent
transmissions between a multi-antenna access point (AP)
and multiple users. In MU-MIMO, users need to report the
estimation of its Channel State Information (CSI) to AP, and
the AP selects the concurrent users with strong channel or-
thogonality to maximize total capacity.

Energy consumption must be taken into consideration
when utilizing battery constrained embedded wireless sys-
tems (EWS) in MU-MIMO networks. With new chipsets
becoming available, it is feasible to use WiFi enabled bat-
tery powered nodes in the IoT. For example, Bor et al.[3]
have analyzed the energy consumption patterns of WiFi en-
abled nodes and have shown that future improved WiFi chips
are likely to support common sensing and actuation tasks.
However, there is still superfluous energy consumption that
shortens the lifetime bound of battery powered EWS signif-
icantly in MU-MIMO networks, which mainly comes from
invalid data transmissions, retransmission and unnecessary
CSI feedback.

Invalid data transmission which mainly stems from inac-
curate CSI estimation, is a major cause of the degraded per-
formance in MU-MIMO network. CSI estimation is the fun-
damental requirement for various versions of MU-MIMO,
e.g., precoding & successive interference cancellation [9],
rate adaptation [7], channel control [21], and some specific
MU-MIMO applications [1, 11, 27]. Most recent research
assumes perfect CSI in MU-MIMO networks, which is not
true in many practical applications. In fact, inaccurate CSI
estimation is usual in real-world MU-MIMO transmission
due to noise. Based on our empirical study shown in section
3, if one user reports inaccurate CSI, its own downlink per-
formance will become poor. Even worse, the uplink trans-
mission of all the concurrent users may be incorrectly de-
coded by the AP. Under this situation, MU-MIMO transmis-
sion becomes extremely inefficient. Traditional error recov-
ery methods such as data retransmission cannot resolve this
problem effectively, which leads to superfluous energy con-International Conference on Embedded Wireless 
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sumption and channel collision. Unfortunately most existing
solutions that aim to improve MU-MIMO throughput only
focus on data recovery and ignore the CSI quality.

Unnecessary CSI feedbacks [22] in MU-MIMO network
is another major cause which leads to low network through-
put and superfluous energy consumption. When the user
population is large, the channel resource spent on CSI feed-
back will overwhelm that spent on data transmission. Prior
solutions for reducing this overhead mainly focused on feed-
back compressing or distributed user selection [29]. Unfortu-
nately, those approaches only take effects after proper trans-
mission modes and user groups are selected, which are im-
practical for uplink in MU-MIMO [15]. Some studies, e.g.,
OPUS [28], reduce CSI overhead via AP’s iterative probing.
In each round, it enables a distributed contention mechanism
that each user evaluates its orthogonality with the selected
users. Then, the best user is distributed selected to join the
current group. Only the selected users feedback their CSI.
When the user population grows, these solutions are ineffec-
tive because collisions may frequently happen, which will
result in system performance sliding down.

In this paper we propose to “prevention in advance” be-
fore data transmission to eliminate all the unnecessary trans-
mission including both inaccurate CSI feedback and data
transmission. We argue that efficient channel quality esti-
mation and power reallocation before data transmission is a
crucial issue in improving MU-MIMO performance, which
is also a challenging task. Based on that CSI can be utilized
to sense the mobility of wireless devices (For example, Bagci
et al. [2] used CSI information to deduce device mobility for
security purposes), we use CSI to estimate the moving speed
of wireless devices, and eliminate unnecessary CSI feedback
based on the devices moving speed.

In this paper we present QUICK, a protocol that allows
users to assess CSI-quality, improve CSI accuracy, and re-
duce CSI feedback. QUICK works in three phases. 1)
QUICK evaluates CSI-quality based on the distribution of
received training symbols in the VHT preamble of the null
data packet (NDP). 2) QUICK uses downlink beamforming
to improve the SNR to obtain high-quality CSI. 3) QUICK
allows users to reply with lightweight ACK instead of a long
CSI packet, if the previously CSI is still valid for subsequent
MU-MIMO data transmission.

We summarize our contributions as follows.
1. We use both theoretical and experimental results to

show that inaccurate CSI feedback is one root cause to hurt
MU-MIMO performance. This is the first work to target
on real-time CSI-quality assessment and fast improvement
which provides accurate CSI for IoT application to reduce
superfluous energy consumption and channel collision.

2. We propose a device moving speed estimation method
using only CSI, and develop an adaptive CSI feedback algo-
rithm according to the motion state which is relevant to co-
herence time. QUICK eliminates unnecessary CSI feedbacks
by replying a lightweight ACK frame to reuse historical CSI
within coherence time. The system throughput can be fur-
ther improved, and superfluous energy consumption caused
by unnecessary CSI feedback could be reduced.

3. We conduct extensive real-world experiments un-

der practical settings, with prototype implementation using
software-radio devices. Results show that QUICK signifi-
cantly improves the throughput of both uplink and downlink
of MU-MIMO.

2 Related Work
Multiple-User MIMO (MU-MIMO)[8] [17], exploiting

multiple antennas to send packets simultaneously to different
recipients in order to increase the throughput further. Both
the 802.11n and 802.11ac protocols use the technology of
Beam Forming (BF) [23] to improve the SNR by concentrat-
ing the transmitted energy on the target receiver. In addition,
channel state information (CSI) [25] [10] is introduced in
the MU-MIMO network to resist the effects of multipath ef-
fects and frequency selective fading, and accurately predict
the Packet Delivery Ratio (PDR) so as to select the best trans-
mission strategy. The CSI is usually fed back to the wireless
access point (AP) by the mobile device. The AP precodes
the user data according to the CSI to eliminate interference
between users. Therefore, timely and accurate CSI is very
essential for the wireless network. CSI feedback reduction
methods mainly fall into two categories: CSI feedback com-
pression or distributed user selection. Nowadays, different
compression methods are available to reduce the volume of
CSI matrix. The CSI-SF method [5] uses the CSI value of a
single data stream to predict the CSI value of multiple data
streams, thereby reducing the oversampling of the CSI. The
AFC method [29] adaptively selects the compression level
of the CSI based on the decrease of the SNR caused by the
compression of noise. However, such methods neither distin-
guish whether the mobile device is stationary or moving, nor
know whether it needs to feedback CSI in a certain commu-
nication, which cannot reduce the number of CSI feedbacks.
OPUS [28] reduces CSI overhead via AP’s iterative probing.
Signpost [33] achieves scalable MU-MIMO signaling with
zero CSI feedback. In addition, Gabriel [4] reuses CSI by
checking its validity period, which is obtained by F test of
two CSI.

As for the methods of device motion detection, there are
also two categories: Sensors based and physical layer infor-
mation of wireless infrastructures based methods. Some sen-
sors, such as accelerometers, GPS, gyroscopes, etc., used to
provide the relatively accurate motion information (motion
acceleration, rotation direction, physical location, etc.) of the
device [19]. Besides, existing wireless infrastructures enable
various kinds of IoT applications. For example, Smokey [31]
achieves a ubiquitous smoking detection with commercial
WiFi infrastructures, and Zheng et al.[32] elaborates on the
design and implementation of such system based on Chan-
nel State Information in WiFi. Some physical layer infor-
mation of the communication system can also be used to de-
tect the physical location or direction of motion of the device
[24, 26], which is applicable in 802.11ac without relying on
specific hardware. Shangguan et al. [20] propose the phase
profiling approach to relative localization of RFID tags by
exploiting the spatial temporal dynamics in tag phase pro-
files. CSI similarity can be used [14] to detect device motion
and environmental changes and reflects the profiling of the
fine-grained multipath between the client and the AP, based
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Figure 1. The impacts
of imperfect CSI in uplink
case

Figure 2. The impacts of
imperfect CSI in downlink
case

on the channel states of adjacent data packets. However, it
is difficult to distinguish the rotation of the device and the
direction of motion only by CSI similarity. RoFi [16] senses
the rotation of device using Power Delay Profile (PDP) sim-
ilarity and achieves rotation-aware CSI feedback.

3 Impact of CSI
Through experimental results, we will show that inaccu-

rate CSI estimation of a user will cause significant perfor-
mance downgrading of both downlink and uplink in MU-
MIMO. We make a conclusion that it is essential to ensure
that every user participating MU-MIMO provides an accu-
rate CSI estimation.

Figure 1 demonstrates the impacts of imperfect CSI on bit
error probability (BEP) in uplink case. We use 256-QAM
modulation and evaluate the BEP in different SNR cases
(10dB and 30dB). We can see that in high SNR case (30dB),
both the BEPs with and without CSI calibration (30dBw/C
and 30dBw/oC, we will detail the CSI calibration technique
in subsequent sections) would reach mean values of 0.0053
and 0.0058, respectively. The CSI calibration will improve
about 8% PER. However, in low SNR case (10dB), the im-
portance of CSI calibration becomes evident. We can see
the mean BEP without calibration would rise to 0.039 while
the one with CSI calibration would maintain 0.012. In other
words, the CSI calibration operation would make the BEP
drop to 1/3 of the original one.

In downlink case, since precoding operation is processed
before communication, the situation is slightly better than
uplink case. Figure 2 demonstrates the impacts of imperfect
CSI on bit error probability (BEP) in downlink case. In order
to compare with uplink cases, we use the same modulation
and SNR configuration to evaluate the performance. Under
the same condition, the BEP in downlink cases is much bet-
ter than that in uplink cases. In high SNR case (30dB), both
the BEPs with and without CSI calibration would reach mean
values of 0.0006 and 0.0007, respectively. In low SNR case
(10dB), the importance of CSI calibration also becomes ev-
ident. We can see the mean BEP without calibration would
be 0.0131 while the one with CSI calibration would maintain
0.0034 . In other words, the CSI calibration operation would
make the BEP drop to 1/4 of the original one in downlink
case.

CSI reporting is time-consuming. Reporting a CSI vec-
tor by a user may take up to 180µs by sending a frame in
Fig. 3(a). We propose that a user may simply reply an ACK

Figure 3. CSI feedback overhead analysis

to indicate no change of the CSI, which only costs 4µs as
shown in Fig. 3(b). Hence our second goal in QUICK is to
eliminate unnecessary CSI reports to improve channel effi-
ciency.

4 QUICK Protocol Design
4.1 Work Flow of QUICK

QUICK is completely compatible with 802.11ac stan-
dard and existing distributed user selection mechanism (e.g.,
OPUS [28]), except that QUICK adds a fixed update oper-
ation on CSI Matrix List (CML). In QUICK, a CSI quality
assessment method is first proposed to determine whether
the current CSI is qualified for data transmission. Then, for
those users with inaccurate CSI, a CSI quality improvement
process is conducted. Finally, based on the accurate CSI,
a CSI feedback reduction method based on device moving
speed is proposed. Specifically, QUICK works as follows:

(i) First, the AP broadcasts the NUll Data Packet (NDP)
frame including VHT Long Training Field (VHT-LTF) for
MU-MIMO setup and measurement, same in 802.11ac.

(ii) Each user estimates the CSI according to received
VHT-LTF, puts the CSI values into a data packet and then
transmit the packet to AP. The data packet also includes
VHT-LTF which can be used to estimate the CSI again by
the AP. Therefore, AP has two sets of CSI values. One is ob-
tained from data field, the other is estimated from the VHT-
LTF in the preamble.

(iii) After receiving the CSI feedback, AP estimates the
BER according to the distribution of symbols in constellation
diagram to assess CSI quality.

(iv) The AP separates the CSI quality of users using a
threshold value β. Users with low-quality CSI will undergo
a CSI recovery process to improve the CSI accuracy.

(v) A user will only report its current CSI to the AP when
the channel coherence time of the last reused CSI is expired
or its motion state changes. Otherwise, the user only needs
to feedback lightweight ACK instead.
4.2 CSI-quality Assessment

We first introduce how the AP can assess the CSI-quality
of different users and select those with inaccurate CSI to
improve their accuracy. As is defined in many existing
works[23], CSI quality is the accuracy of CSI for AP to pre-
code/decode the data packets. In QUICK, for every user, we
calculate the variance of distances between symbol coordi-
nates and their corresponding symbol points in the constella-
tion diagram, and use these distances to infer the BER. The
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Figure 4. CSI Mapping in constellation diagram with
16QAM modulation

idea is shown in Fig. 4. The received symbol coordinates in
16QAM may be deviated from the actual symbol points such
as A1 to AN . If the distance is much larger and the symbol
point is outside of the decision boundary of A in the constel-
lation diagram, such as A j, this symbol will be recovered to
a wrong one such as B. Hence the probability of the sym-
bol points outside of the decision boundary among all test
cases can infer the channel qualify and CSI accuracy of the
user. In this way, we can estimate the CSI quality with two
universally admitted reasonable assumptions [23, 27]:

A1: The CSI is invariant for several successive packets
within a coherence time.

A2: The noise follows Gaussian distribution as mentioned
in Section 3, i.e., n∼ CN (0,σ2).

Note the decision boundary cannot be easily obtained, we
will calculate the decision boundary by first obtaining the
upper bound of the deviation of the Gaussian noise at a user.

Figure 5. CSI feedback mechanism in QUICK.
After AP broadcasting training frame to each user l, the

user l calculates its own CSI and replies to AP using collision
avoidance, as shown in Fig. 5. Based onA1, we know that
the replied data X is stable. Based on A2, we know AP can
obtain replied data with noise n

YS = HXl Xl +n (1)

where there are S AP antennas, i.e., YS = [y1, · · · yi, · · · ,yS],
and HXl is the CSI vector of Xl . In quality assessment pro-
cess, we should estimate the variance of noise n to decision
the boundary.

Utilizing the preambles of feedback signal, AP can cal-
culate the CSI Ĥ as users have done and restore the trans-
mitting signal X̂ according to 802.11ac standard. We can
estimate the variance of noise σ2, and the MU-MIMO SNR
||Ĥ||2F

σ2 where ||H||F denotes the Frobenius norm of matrix H
that includes the CSI vectors from all users. Define the scalar
δi,l = 2R (yiHXl)− (HXl)

H (HXl) where R (X) is the real
part of X and HH is the Hermitian matrix of H.

Leveraging maximum likelihood method, we have

∂L(yi;σ2)

∂(σ2)
=− S

σ2 −
yH

i yi

σ4 −
∑

M
l=1

δi,l
σ4 exp

(
δi,l
σ2

)
∑

M
l=1 exp

(
δi,l
σ2

) = 0

where L(·) is the likelihood function.
Hence, if AP receives R symbols, we can estimate the

upper bound of noise σ2 as follows (see detail in [6]),

σ2 ≈ 1
RS

(
R

∑
i=1

yH
i yi−

R

∑
i=1

max(δi,l)

)
We illustrate the noise bound in Fig. 4. The blue circle

depicts the upper bound σ2. In general, with the increase
of sample size R, the upper bound of noise variance would
approach the ground truth, i.e., σ2 → σ2

+ from positive di-
rection. In contrast, if the R is small, σ2 would much bigger
than σ2.

If the distance between restored symbol X̂ and the corre-
sponding constellation point of X is less that than the deci-
sion boundary, the receiver can demodulate the symbol cor-
rectly, otherwise it would get a series of error bits. Based on
Equation (1), we can get that for l-th-user, we have

D
(

X̂l−Xl

)
= D

(
Yl

Hl
−Xl

)
= D

(
Nl

Hl

)
=

σ2
l

‖Hl‖2
F

where D
(

X̂l−Xl

)
is the distance of the received symbol to

the actual symbol point on the c-diagram and σ2
l is the vari-

ance of noise. That means the variance of distance is the
reciprocal of l-th user’s SNR ||Hl ||2F

σ2
l

.

With the distance variance, we can estimate the upper
bound of the BER. Denote the decision distance as dM (Note
that different modulation method has different decision dis-
tance). According to Chebyshev’s inequality, we can get

P(
∣∣∣X̂l−Xl

∣∣∣≥ dM)≤ D(X̂l−Xl)

d2
M

=
σ2

l

/
‖Hl‖2

F

d2
M

(2)

Since σ2
l < σ2

l , we can calculate the upper bound of

P(
∣∣∣X̂l−Xl

∣∣∣ ≥ dM) by substituting σ2
l calculated from the

maximum likelihood method.
QUICK sets a threshold β to decide whether it needs to

start the CSI recovery process for this user. The Equation (2)
infers that the probability of the misclassified symbol is up-

per bounded by
σ2

l

/
‖Hl‖2F
d2

M
under M-QAM modulation system.
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Hence, if
σ2

l

/
‖Hl‖2F
d2

M
< β, we can infer that the existing CSI is

still qualified for communication and there is no need to start
CSI recovery. Otherwise, QUICK should start the l-th user’s
CSI recovery process.

4.3 CSI-quality Improvement
For each user with inaccurate CSI, QUICK recovers its

CSI by improving the value of Signal Noise Ratio (SNR).
SNR can be estimated by Log Likelihood Ratio Calculation:

SNR =

(
Q−1 (Pe)

rM

)2

(3)

where Q−1(Pe) and rM are the inverse Q-function of bit error
probability Pe and the coefficient corresponding to the modu-
lation methods [13]. For the BPSK and QPSK modulations,
rM will be rBPSK =

√
2 and rQPSK = 1, respectively. From

the derivation of Equation (3) in [18], we can see that Pe is
the probability that error bits occur.

Since CSI estimation must be recovered within the coher-
ence time, its recovery must be quick. QUICK utilizes beam-
forming, a preferred technical method applied in 802.11ac, to
quickly enhance SNR to obtain accurate CSI from a user via
preferentially direct its energy toward the selected receiver.

After reporting each user’s CSI to AP, AP can obtain a
list of users who need CSI recovery using the threshold β.
Suppose the list includes T users Λ = {Λ1, · · · ,ΛT} and
σ2

Λ1
< σ2

Λ2
< · · ·< σ2

ΛT
. To guarantee accurate CSI by beam-

forming, for l-th user in Λ, the allocated power should be

bigger than σ2
l

βd2
M

to make the boundary crossing probability

less than β. Let P be the total power the AP can allocate

within a short period. If P < ∑
l∈Λ

σ2
l

βd2
M

, i.e., the power is in-

sufficient for all users that need CSI recovery, then we just
do not include a few users with worse channel qualify until

P≥ ∑
l∈Λ+

σ2
l

βd2
M

for the largest set Λ+.

Hence we can formalize this nonlinear optimization prob-
lem as follows

arg
∆pnew

l

max ∑
l∈Λ+

log

1+
∆pnew

l +
σ2

l
βd2

M

σ2
l


s.t.


∆pnew

l ≥ 0

∑
l∈Λ+

∆pnew
l ≤ P− ∑

l∈Λ+

σ2
l

βd2
M

where the objective function is to maximize the benefit of
allocating more power ∆pnew

l for each user l in addition to

the basic power σ2
l

βd2
M

.

This optimization problem can be solved by waterfilling
algorithm [30] and we can get the reallocated power

pnew
l =

(
µ

‖wl‖2 −1

)+

+
σ2

l

βd2
M

where (x)+ = max{x,0} and the weight wl and water level µ
is chosen to satisfy ‖wl‖2 = [HlHl

∗]l,l

∑
l∈Λ+

(
µ−‖wl‖2

)+
= P− ∑

l∈Λ+

σ2
l

βd2
M

where H∗l denotes the conjugate transpose of Hl . If Cp <
Cnew

p , that means the reallocated power can improve the total
capacity and QUICK can start CSI recovery process. Other-
wise, it is not suitable for MU-MIMO mode.

4.4 CSI Feedback Reduction Based on Device
Mobility

QUICK utilizes a CSI feedback reduction scheme based
on device mobility. First, QUICK uses physical layer infor-
mation to estimate the device moving speed. Then, the chan-
nel coherence time can be predicted according to the speed
range. Finally, QUICK sets the maximum user service time
by fairness control component and determines whether the
CSI needs to be updated.

4.4.1 Channel Coherence Time under Different De-
vice Moving Speed

Channel coherence time: CSI has a validity period, the
data packets within this time period can be decoded by the
same CSI without increasing the bit error rate, and we call
the validity period the channel coherence time. Therefore,
if the user performs multiple data transmissions within the
validity period of the CSI, it is unnecessary to report the CSI
to the AP before each transmission, and CSI needs to be up-
dated only when the CSI gets expired.

Device under different motion states has different chan-
nel coherence time. Within the channel coherence time, the
device does not need to feedback current CSI to AP, histori-
cal CSI could be reused and only an ACK could be sent in-
stead.Next we empirically show that device under different
moving speeds has different channel coherence time. Fig.
6 shows the channel coherence time for different moving
speeds in a practical indoor environment. The user in a sta-
tionary state has a relatively longer coherence time exceed-
ing 250ms. Even at a moving speed of 1m/s, the coherence
time is much larger than the maximum packet transmission
time specified by the 802.11ac protocol. Only users with
high mobile speeds need a faster CSI update frequency. It
can be seen that the MU-MIMO network requires the user
to include a large number of redundant operations in the be-
havior of feeding back CSI before each round of data trans-
mission, and this overhead can be reduced by reusing the
historical CSI and sending an ACK frame instead.

Note that Channel coherence time is determined both
by the device’s moving speed and environmental changes.
Therefore, the estimated coherence time by considering only
device moving speed only serves as a coarse-grained pre-
diction on the stability of the channel state, while the pos-
terior CSI quality assessment method will ultimately decide
whether the CSI is valid within the coherence time and needs
recovery.
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Figure 6. Channel coherence time under different device
moving speeds.

Figure 7. CSI amplitude variation.

4.4.2 Estimating Device Moving Speed Using Physi-
cal Layer Information

In this section, we first reveal the fact that standing wave
field exists in WiFi, and then elaborate on utilizing standing
wave field to detect device moving speed.

The discovery of WiFi standing wave field: During ex-
periments, by analyzing the channel state information CSI
in the WiFi signal received by the signal receiver during the
motion, it is found that the amplitude of the CSI shows a uni-
form stripe distribution. The original wave of the WiFi signal
is interfering with its reflected wave or scattered waveform
under the action of the indoor multipath effect, thereby gen-
erating a standing wave.

In order to quantify the influence of different dynamic be-
haviors of users on the signal, we designed the following ex-
perimental scene: In an empty room of about 30 square me-
ters, a paper box with a height of about 80 cm was placed,
where an AP is placed on the box, and there are no more
items in the room. The experimenter user holds the sig-
nal receiving device (Receiver), keeps the hand posture un-
changed, and advances at a constant speed in the direction of
the AP. Receiver receives the WiFi signal sent by the AP and
records it as the user moves. Among them, the AP always
sends the WiFi signal continuously; User pauses for a period
of time t1 after the start of the experiment, then moves lin-
early for a period of time t2, stops reaching after reaching a
certain position, and then stops for a period of time t3; the
Receiver keeps receiving the WiFi signal sent by the AP dur-
ing the entire time period of the User (t1+t2+t3), and does
not receive the signal before and after this time.

In order to analyze the detailed motion parameters of the
User from the received WiFi signal, we extract the CSI in

Figure 8. 3D CSI amplitude variation.

Figure 9. 3D CSI amplitude variation in another moving
direction .

the WiFi signal, which can reflect the attributes of the signal
during transmission. As can be seen from Fig. 7, receiver
received nearly 2× 104 WiFi packets as the User moves in
which the amplitude of the CSI in the previous 0.4× 104

WiFi packets is relatively stable, the amplitude values of
about 0.9×104 CSI showed significant fluctuations, and the
amplitude values of the last 0.7×104 CSI returned to a rela-
tively stable state, with a ratio of 4:9:7. Since the User keeps
moving at a constant speed during the motion, the ratio of the
number of received data packets is the same as the ratio of the
motion time. In the course of the experiment, t1:t2:t3=5:8:7,
this ratio is basically the same as the ratio of the number of
data packets in each period. Therefore, by analyzing this
data, it is possible to obtain the duration of the different mo-
tion states during the movement.

In order to further analyze the detailed features of the user
during the walking process reflected by the apparently fluc-
tuating CSI amplitude value, the above data is displayed in a
three-dimensional (3D) figure, as shown in Fig. 8. In the 3D
map, the amplitude of the CSI shows a streak-like fluctua-
tion, and the distribution of the fringes is relatively uniform.
From the 30 subcarriers corresponding to the abscissa, the
overall ripple exhibited by each subcarrier is very similar,
which is related to OFDM technology. In fact, the center
frequencies of the 30 subcarriers in the WiFi signal are rel-
atively close, and they are distributed around the center fre-
quency of the channel, so the overall ripples are very similar.

During the above experiment, however, user always
moves along the line connected to the AP. When the direc-
tion of the linear motion is changed, that is, not along the
linear motion connected to the AP, the CSI amplitude value
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in the received WiFi signal is in another representation way,
as shown in Fig. 9. Comparing Fig. 8 with Fig. 9, we suspect
that the CSI in the WiFi signal has different performances in
different directions of motion: When moving in the linear di-
rection connected to the signal source, the obtained CSI has
a uniform fringe distribution; while in other linear directions,
the CSI stripe distribution is a little less obvious or even no
streaked.

Combined with the physical definition and generating
conditions of standing waves and the different directions of
linear motion made during the experiment, it is known that
since the original signal and the reflected signal transmitted
by the WiFi signal source interfere with each other, a fixed
standing wave field is formed on the signal transmission line,
which contributes to the above phenomenon.

Nature of WiFi standing wave field: The WiFi standing
wave is also a type of standing wave, except that the WiFi
standing wave is formed by the WiFi signal. Therefore, the
WiFi standing wave field combines the properties of both
standing wave and WiFi signal.

In the standing wave, the point with the largest amplitude
is called antinode, in which the amplitude is twice the am-
plitude of the original wave; the point with zero amplitude is
called node; the distance between adjacent antinodes is:

xk+1− xk = (k+1)
λ

2
− k

λ

2
=

λ

2
(4)

where xk+1 represents the (k+1)th antinode, while xk repre-
sents the kth antinode.Similarly, the distance between adja-
cent nodes is:

xk+1− xk = [2(k+1)+1]
λ

2
− (2k+1)

λ

2
=

λ

2
(5)

where xk+1 represents the (k + 1)th node, while xk repre-
sents the kth node. Moreover, according to the definition
of standing wave wavelength, i.e., the distance between adja-
cent antinodes (or nodes) is the wavelength of standing wave,
we can deduce that: The wavelength of the standing wave,
formed by the interference between the original wave and the
reflected wave of the WiFi signal, is half of the wavelength of
the original signal (λ). This is why the interval between CSI
stripes observed in the experiment is approximately equal.

The WiFi signals utilized in this article are based on the
802.11ac standard and can be selectively operated in the 2.4
GHz or 5 GHz band. When the 2.4 GHz band is selected,
the wavelength of the WiFi signal is about 6 cm, so the WiFi
standing wave wavelength at this time is about 3 cm. When
the 5GHz band is selected, the wavelength of the WiFi signal
is about 12 cm, so the WiFi standing wave wavelength is
about 6 cm at this time. Consequently, as long as the number
of standing wave periods in the received WiFi signal can be
counted, the moving distance of Receiver on the line can be
calculated, thus we can get moving speed.

Device speed estimation method: Some detailed stud-
ies of the device speed estimation based on WiFi signal have
indicated that the distance between two adjacent antinodes
(or nodes) towards any direction is half of the wavelength λ.
When a device is moving indoor with a speed υ, a periodi-

cally ripple with a frequency fc in CSI appears, i.e.,

fc = 2
υ

λ
(6)

This relationship above tells us that the moving speed υ

could be precisely estimated purely from CSI with the stand-
ing wave periods, i.e., Tc = 1/ fc. therefore, we can estimate
the moving speed υ just by:

υ =
λ× fc

2
(7)

Here we basically illustrate the principle of standing wave
field in WiFi. As for more detail, please refer to [12], a pas-
sive crowdsourcing CSI based indoor localization scheme in-
cluding how to detect device moving speed.
4.4.3 Fairness Control Component

Since AP prefers to do user scheduling among users
whose CSI is still usable in CML, the user with a longer
CSI lifecycle based on channel coherence time would ob-
tain a longer transmission time. Therefore, though the above
proposed method has reduce CSI feedback overhead before
data transmission as much as possible, the fairness for users
to contend the channel will lead to serious throughput im-
balance problems between different users. Especially, the
channel coherent time of the user in the stationary scenario
is much longer than that in the mobile scenario.

To solve this fairness problem, we set the maximum chan-
nel coherence time among all users in CML as a single time
slice. Then, to make a tradeoff between user throughput fair-
ness and network global throughput, every user would be
served in a continuous time of as close as possible to this
time slice for each scheduling, according to the formulation

Tl =

[
Tmax

Tc,l
+

1
2

]
×Tc,l

Where Tl is the maximum continuous service time available
to each user l, Tc,l is the channel coherence time of the user
at the current moment and Tmax is the maximum channel co-
herence time in CML.

In addition, in order to ensure that users in the MU-MIMO
network can be switched and scheduled frequently, the max-
imum single time slice Tmax is set as 30 ms in this paper,
which is also the average channel coherence time under the
mobile scenario. Such service conditions will not affect the
experience of users to use the Internet because every users
will be scheduled efficiently.
5 Implementation and Evaluation

We conduct experiments using a QUICK prototype im-
plemented by us and evaluate its performance.
5.1 Experimental Setup

We have implemented QUICK on USRP-N210 and
USRP-X310 radio platforms with corresponding UHD soft-
ware packages. An AP with multiple antennas is built
with one USRP-X310 plus multiple SBX daughterboards.
Each concurrent user is a USRP-N210 equipped with a SBX
daughterboard, providing 40 MHz bandwidth. To allow mul-
tiple users to transmit concurrently, we connect the USRP-
N210 devices to a laptop and control their transmissions by
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(a) Without data retrx (b) With data retrx
Figure 10. BER in downlink MU-MIMO

(a) Without data retrx (b) With data retrx
Figure 11. BER in uplink MU-MIMO

an instruction script. A similar instruction script is also in-
stalled in the two SBX daughterboards of USRP-X310.

For precise time synchronization, an external clock model
USRP CLOCK DISTRIBUTION 782979-01 is adopted as a
common clock source to connect the AP and users.

The entire system is compatible to the IEEE 802.11ac pro-
tocol standard and standard OFDM specifications, such as
the modulations (16-QAM, 64-QAM, 256-QAM) and code
rates. Hence, QUICK can be implemented on COTS NICs
without hardware modification. For the user, it’s supported
by the NICs that the device could calculate the CSI upon re-
ceiving NDP from AP, and place the CSI into data field of a
frame and feed the frame back to the AP. For the AP, con-
stellation diagram is supported for NICs to decode received
symbols. Given essential information, we could implement
QUICK on the COTS NICs through programming its net-
work card driver. Specifically, we simulate the different SNR
conditions by tuning the transmission power within the range
of [5dBm, 20dBm].

QUICK implements OFDM modulation, packet detec-
tion, channel estimation and symbol demodulation. Our CSI
validation mechanism is added into channel estimation mod-
ule. We use LabVIEW to achieve OFDM and the channel
estimation.
5.2 BER Improvement under Low SNR

We first show if the BER can be improved using QUICK
when a client is in bad situation and the SNR is low. This
evaluates if the CSI can be recovered by QUICK. We allow
two users C1 and C2 communicating with an AP with two
antennas. We set SNR on C1 and C2 to be 10dB and 5dB, re-
spectively. Neither of them are perfect but C2 is even worse.
We illustrate and compare the BER with/without QUICK.
For each test, we transmit 400 bits, and calculate the BER at
each channel. We repeat our experiments 100 times for each
scenario.

Fig. 10 illustrates the BER in downlink MU-MIMO.
Fig. 10(a) depicts the cumulative distribution of BER with-
out data retransmission. The mark Q means to use QUICK.
We can see the BER of C1, the user with “OK” SNR (10
dB), is almost identical before and after QUICK, because
there is no CSI recovery process for this user. Meanwhile,
the user C2 with weak SNR can significantly reduce its BER
by around 40% due to CSI calibration. Fig. 10(b) shows the
BER improvement with data retransmission. Q and R denote
CSI recovery and data retransmission, respectively. Simi-
larly, there is no significant improvement on C1 because re-

transmission is not necessary. We can see that the curve C2R
is only slightly better than the curve of C2 and worse than
that of C2Q in Fig. 10(a), meaning retransmission does not
help to improve BER a lot. The combined solution C2QR
performs significantly better by utilizing both CSI recovery
and data retransmission: the average BER of C2QR is only
5% and about 1/3 of that of C2R.

Fig. 11 shows the uplink BER under the same setup of
Fig. 10. In Fig. 11(a), we can observe that both C1 and C2
experience BER reduction using QUICK. It is because the
inaccurate CSI from C2 hurts the performance of C1. By im-
proving the CSI accuracy of C2, both C1 and C2’s BER can
reduce. As shown in Fig. 11(b), we find that simply apply-
ing retransmission does not help to reduce BER. However by
combining QUICK and retransmission, the BER of both C1
and C2 can be improved to a very low level, by around 50%
reduction.
5.3 Throughput Gain Using QUICK

Power reallocation is a crucial part of CSI calibration per-
formance, thus we evaluated the effectiveness of CSI cali-
bration instead, which is measured by the throughput gain of
network in this section. We investigate the throughput gain
of CSI recovery using QUICK in indoor environments and
compare it with a state-of-the-art approach Smart[13].

Smart is a retransmission and rate adaptation method. It
supports partial retransmissions before the FEC decoding
and enables a combining-aware rate adaptation.

We generate a trace of packets, and then transmit the
packets via the USRP platforms. In the experiments, we do
not consider the channel contention since we mainly focus on
improving CSI estimation and the entire network throughput.
The number of users is equal to the number of the AP’s an-
tennas, which helps to avoid the collision caused by hidden
terminals. Before concurrent transmission, each user esti-
mates the CSI between the AP and itself by leveraging the
training sequence transmitted from the AP.

We evaluate our QUICK protocol and Smart in both
downlink and uplink for high and low SNR scenarios. We
use two frame sizes, i.e., 1000 bytes and 4000 bytes, to sim-
ulate both the short and long packet transmission in practice,
denoted as “S” and “L” in Fig. 12.

Downlink scenario: Fig. 12(a) plots the cumulative dis-
tribution of the throughput in high SNR scenario for down-
link using 1000-byte and 4000-byte packets. From the re-
sults, we see that QUICK brings evident better performance
due to correct CSI estimations. In particular, the average
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(a) High SNR in downlink (b) Low SNR in downlink (c) High SNR in uplink (d) Low SNR in uplink
Figure 12. The throughput estimation with different SNR in MU-MIMO

throughput gain of QUICK is about 90% compared to Smart
with 1000-byte and 4000-byte packets. It is because that the
CSI errors are not corrected in Smart, which raises a signif-
icant portion of failures in the precoding process. Unfortu-
nately, the data retransmission mechanisms, used by Smart,
cannot address these CSI errors well.

It is worth noting that QUICK performs better with a
longer frame size. This is because a longer frame has a rel-
atively smaller portion of preamble from the perspective of
the entire packet. After performing QUICK, the BER corre-
sponding to the parts of data in the packets is significantly
reduced, which means longer packets can contain more cor-
rect bits than shorter packets with a same packet transmission
rate.

In contrast, Smart has the similar throughput using 1000-
byte and 4000-byte frames. Longer packet cannot increase
throughput performance. Although long data packet can re-
duce the preamble proportion, the user cannot received the
packet in downlink beamforming when the CSI is inaccu-
rate.

In Fig. 12(b), we compare QUICK and Smart in low SNR
scenario for downlink. QUICK still achieves much better
performance. Specifically, QUICK increases the through-
put gain by 100% compared to Smart. The throughput of
QUICK and Smart becomes poor when using 4000-byte
frames. The intuition behind is that a longer frame has a
higher probability to experience bit transmission error with
low SNR, which definitely increases BER and causing more
rounds of data transmission.

Uplink scenario: Fig. 12(c) shows the cumulative dis-
tribution of throughput for QUICK and Smart in the high
SNR scenario for uplink. QUICK still achieves 50% more
throughput compared to Smart due to CSI estimation cor-
rection. Due to mutual interference of concurrent users,
shorter data packets have more opportunities to be decoded
correctly. The 1000-byte frame transmission has better per-
formance than 4000-byte frame transmission.

In Fig. 12(d), we evaluate the performance in the low SNR
scenario for uplink. As long as there is one user that provides
low-quality CSI estimation, all concurrent transmitted data
from other users may be decoded incorrectly, even if data
retransmission is used. Smart has extremely poor throughput
(mostly <10Mbps) in uplink MU-MIMO, when SNR is low.
The improvement of using QUICK is hence significant: the
throughput of QUICK is nearly three times of that of Smart
in average.

(a) Without QUICK (b) With QUICK
Figure 13. QUICK improvement for concurrent users

From the above, we can believe that the throughput gains
of network using QUICK are better than Smart both in down-
link and uplink, i.e., our proposed CSI calibration method is
so significantly efficient that much unnecessary energy con-
sumption and channel collision would be avoided in advance.

5.4 Interactions among Concurrent Users
Uplink MU-MIMO is extremely vulnerable to inaccurate

CSI because inaccurate CSI from one user’s transmission
could corrupt those of other concurrent users. We conduct
experiments to demonstrate how QUICK resolves this prob-
lem.

We let a client user, A, keep getting inaccurate CSI esti-
mation. We set different values of SNR for A and another
concurrent client user B. There are three possible cases: a)
A transmits in high power (20dBm) and B transmits in low
power (5dBm) (hence the SNR of A is high and that of B
is low), b) both of A and B are transmitting in high power
(15dBm), and c) A transmits in low power (5dBm) and B
transmits in high power (20dBm) (hence the SNR of A is
low and that of B is high).

The decoding accuracy of concurrent users without us-
ing QUICK is shown in Fig. 13(a). The experimental results
show that when A transmits in 20dBm and B transmits in
5dBm, the decoding accuracy of A’s signal is around 90%
and the decoding accuracy of B’s signal is very low < 50%.
When they both transmit in 15dBm, the decoding accuracy
for both signals are low (around 50%). When A transmits
in 5dBm and B transmits in 20dBm, decoding B’s signal be-
comes better because A’s influence is small.

Fig. 13(b) shows the decoding accuracy by using QUICK.
QUICK can efficiently eliminate interactive interference
among concurrent users. By recovering the CSI, AP will
always have high decoding accuracy for the users with high
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(a) Uplink MU-MIMO (b) Downlink MU-MIMO
Figure 14. The count of CSI feedback for continuous 100
rounds of transmission in QUICK.

SNR. In addition, AP also has improved decoding accuracy
for the users with low SNR. QUICK provides a significant
performance improvement from existing MU-MIMO trans-
missions.
5.5 CSI Feedback Reduction

In this section, we evaluated the effectiveness of reusing
CSI within coherence time, which is based on estimated de-
vice moving speed. To illustrate this point, we first verify the
performance of QUICK in reducing CSI feedback overhead.
Fig. 14 (a) and (b) show the average number of CSI feed-
back times for continuous 100 rounds of uplink and down-
link transmission in QUICK, respectively. Fig. 14 (a) shows
that the average number of CSI feedback times in uplink in-
creases with the growth of the number of users and AP’s an-
tennas. Obviously, feedback overhead can be significantly
reduced by leveraging CSI reuse, as they only need less than
5 times of feedback for 100 rounds. When number of users
reaches 20, the CSI feedback times is as close as the num-
ber of AP’s antennas. Fig. 14 (b) shows that the average
number of CSI feedback times in downlink is even smaller.
It slightly increases while the number of AP’s antenna in-
creases. That means QUICK has a great performance in re-
ducing CSI feedback for both uplink and downlink transmis-
sion, i.e., our proposed method to reuse CSI within coher-
ence time, which is based on estimated device moving speed,
turns out to be promising.

Figure 15. Throughput gain comes from CSI reusing.

Fig. 15(a) illustrates the channel coherence time of six
concurrent users. We also examine the network through-
put in Fig. 15(b). QUICK achieves 59.5% throughput gain
over standard 802.11ac in a MU-MIMO network with a 4-
antenna AP and eight users. We also observe that QUICK’s
throughput raises with the growing of AP’s antennas. On
the contrary, it decreases negligible while user population in-

creases. The results show that with the CSI reduction mecha-
nism, increasing the number of users will not hurt the overall
throughput in MU-MIMO.

5.6 Compare Throughput under Accurate
CSI

In this micro-benchmark, we compare the throughput of
different MU-MIMO systems, and plot the results in Fig.
16(a)-(d). Note that in this set of experiments all CSI reports
are accurate. It is because the existing methods do not con-
sider CSI accuracy. If we allow inaccurate CSI reports, the
throughput of QUICK is much higher and existing methods
are not comparable.

For downlink MU-MIMO shown in Fig. 16(a) and (b) ,
Standard 802.11ac, OPUS and Signpost have almost identi-
cal throughput. Since there is no need of user selection, only
concurrent users need to report their CSI. QUICK achieves
the highest throughput among all schemes. The performance
of QUICK in static scenario is better than it in mobile sce-
nario due to longer coherence time. For uplink MU-MIMO
shown in Fig. 16(c) and (d), OPUS [28], Signpost [33] and
QUICK have too much higher throughput than 802.11ac. In
order to select the orthogonal users, AP needs all the users to
report their CSI in 802.11ac. OPUS, Signpost and QUICK
achieve a distributed user selection which only need concur-
rent users to report their CSI.

5.7 Compare CSI Feedback Overhead
For CSI feedback overhead comparison, we compare

QUICK with standard 802.11ac, OPUS and Signpost. Fig.
17(a) illustrates the CSI feedback overhead under differ-
ent user population. We conduct these experiments with 4-
antenna AP. While the overhead in standard 802.11ac and
OPUS increases with the increase of total user number, the
overhead in Signpost [33] and QUICK is almost constant.
In a topology with 20 users, it achieves 6.3× , 7.9× and
1.3× overhead decrease over 802.11ac, OPUS and Sign-
post, respectively. Obviously, QUICK outperforms all other
schemes. We run a benchmark scheme with 20 users to val-
idate the effect of the number of AP’s antenna on overhead,
and plot the result in Fig. 17(b). It is clearly that the over-
head increases when the number of AP’s antenna grows in
all these four MU-MIMO systems. However, the growth rate
in QUICK is still in a tolerable range, and QUICK can be
scalable.

5.8 Throughput Fairness
In this micro-benchmark, we evaluate the fairness con-

trol component of QUICK. We run 400 rounds of downlink
transmissions for each network with identical transmitting
power. In Fig. 18(a), we present the throughput proportion
of each user. It is remarkable that the throughput variances of
both 802.11ac protocol and QUICK with fairness control are
much less than QUICK without fairness control, as shown in
both 18(a) and (b). That means the fairness control mecha-
nism we proposed works effectively. Furthermore, as shown
in 18(b), both QUICK with/without fairness control, can im-
prove per-user throughput significantly (about 15Mbps) due
to CSI feedback overhead saving. Meanwhile, fairness con-
trol mechanism causes almost no throughput loss compared
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(a) Mobile in downlink (b) Static in downlink (c) Mobile in uplink (d) Static in uplink
Figure 16. The throughput comparison under accurate CSI

Figure 17. CSI feedback overhead analysis.

Figure 18. Effectiveness of fairness control mechanism.

to QUICK without fairness control (i.e., selecting users ac-
cording to the orthogonality among all users). That is be-
cause that: (i) The fairness control does not incur MAC-layer
overhead. (ii) The CML-based user scheduling can also en-
sure the selected users to be orthogonal.

6 Conclusion
Our work demonstrates that the inaccurate and unnec-

essary CSI feedback from concurrent users will lower the
throughput in MU-MIMO network. Due to the invalid data
transmission and high additional overhead, much consequen-
tial superfluous energy consumption and potential channel
collision will largely increase the burden of battery limited
EWS, which narrow its applications in IoT scenario. Hence,
we propose QUICK to improve CSI accuracy and reduce
unnecessary CSI feedback for MU-MIMO WLANs. We
design an enhanced channel estimation mechanism to cal-
ibrate the incorrect CSI measurement and a method to de-
termine whether a CSI report is necessary, which signifi-
cantly improve channel throughput. We implement the pro-
totype QUICK over software-radio devices. Extensive ex-
periment results show that QUICK can substantially improve
the throughput for MU-MIMO networks.
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