
Synchronous Transmissions Made Easy:
Design Your Network Stack with Baloo

Romain Jacob, Jonas Baechli, Reto Da Forno, Lothar Thiele
ETH Zurich

{rjacob, baechlij, rdaforno, thiele}@ethz.ch

Abstract
Synchronous Transmissions is a technology that com-

bines energy efficiency and reliability for low-power wire-
less multi-hop networks. But using this technology to design
network stacks is a complex task, in part due to the tight tim-
ing requirements on the execution of radio operations.

To facilitate the development of protocols based on Syn-
chronous Transmissions, we developed Baloo , a flexible net-
work stack design framework, which we present in this pa-
per. We show that Baloo is flexible enough to implement
a wide variety of network layer protocols, while introduc-
ing only limited memory and energy overhead. Most impor-
tantly Baloo makes Synchronous Transmissions accessible:
The software is open source and well documented. We be-
lieve that Baloo will be an important enabler for a whole
new class of Internet of Things applications leveraging the
reliability, efficiency, and flexibility of Synchronous Trans-
missions.
Categories and Subject Descriptors

C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols
General Terms

Design, Performance, Standardization
Keywords

Network protocol design, Network layer protocol, Mid-
dleware, Programming Interfaces

1 Introduction
Synchronous Transmissions (ST) is an increasingly used

wireless communication technology for low-power multi-
hop networks. Popularized by Glossy [23] in 2011, it has
been proven to be highly reliable and energy efficient, as
illustrated by the EWSN Dependability Competition [45],
where all wining solutions in the past three years were based
on ST [21, 31, 47].

A ST primitive refers to a protocol that efficiently realizes
broadcast (i.e., any-to-all communication) in bounded time,
usually relying on flooding. Flooding is a communication
strategy that realizes broadcast by having all receivers of a
packet retransmit this same packet to all their neighbours;
the packet is thus “flooded” through the whole network. ST
makes flooding energy and time efficient by letting multi-
ple wireless nodes transmit the packet synchronously, hence
the name of Synchronous Transmissions. The successful re-
ception of the packet can be achieved if the transmitters are
tightly synchronized, thanks to constructive interference and
the capture effect [52]. The synchronization requirements
vary from sub-µs to tens of µs, depending on the platform
and modulation scheme [52].

Such a broadcast primitive simplifies the design of net-
work layer protocols: The underlying multi-hop network can
be abstracted as a virtual single-hop network and thus be
scheduled like a shared bus [22].

Since Glossy [23], many flavours of ST have been pro-
posed to improve performance in terms of reliability, latency,
and energy consumption. To be more resilient to strong in-
terference, Robust Flooding [31] is a primitive that modifies
the RX-TX sequence from the original Glossy, whereas Red-
FixHop [20] uses hardware acknowledgements to minimize
the number of retransmissions required. Instead, some prim-
itives aim to minimize latency for specific traffic patterns.
For example, Chaos [30] lets all nodes modify the packet be-
ing flooded to quickly aggregate information (e.g., the max
value of all sensor readings) or efficiently perform all-to-all
data sharing to achieve distributed consensus [10]. Code-
cast [35] also targets many-to-many exchange for a larger
amount of data. Pando [17] is another primitive focused
on high throughput, which uses fountain code and packet
pipelining for efficient data dissemination. To save energy,
Syncast [36] tries to reduce the radio on time required com-
pared to Glossy. Another recent proposal is Less is More
(LiM) [53], a primitive that reduces energy consumptionInternational Conference on Embedded Wireless

Systems and Networks (EWSN) 2019
25–27 February, Beijing, China
© 2019 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-3-8

106

NET

LINK

PHY

Glossy

HW

Crystal

Drivers

Network
layer
protocol

ST primitive

N
e
tw

o
rk

 S
ta

ck

Figure 1. Crystal [27] is a typical example of network
stack based on ST. The implementation of the network layer
protocol (Crystal) couples the interface to the underlying ST
primitive (Glossy) and the protocol logic, i.e., how long are
the communication rounds, which radio channel is used, etc.

using learning to avoid unnecessary retransmissions during
flooding.

All these primitives share the same drawback: due to the
very tight synchronization requirements, successful ST re-
quires low-level control of timers and radio events. This de-
gree of accuracy is difficult to achieve as it requires a detailed
knowledge of the underlying hardware, low-level control of
the radio operations, and a very careful management of soft-
ware delays.

As a result, designing a network stack based on ST re-
mains a complex and time consuming task, for which only
few solutions have been proposed. One of the first was the
Low-power Wireless Bus (LWB) [22], which tries to flexi-
bly support all kinds of traffic patterns in a balanced trade-
off between latency and energy consumption. The same
group designed eLWB [48], a variation of LWB tailored to
event-based data collection. Sleeping Beauty [44] was later
proposed to minimize energy consumption for data collec-
tion scenarios with many redundant sensor nodes. Time-
Triggered-Wireless (TTW) [28] was designed to minimize
the end-to-end latency between communicating application
tasks. Finally, Crystal [27] has been proposed as a network
stack specialized for sporadic data collection. All these net-
work stacks solely rely on Glossy as ST primitive.

The implementation of the network layer protocol (LWB,
Sleeping Beauty and Crystal are openly available [1, 2, 6])
often couples the interface with Glossy (the underlying ST
primitive) and the protocol logic (i.e., when packets are
scheduled, which nodes are sending and receiving, what
the packets should contain, etc.). In principle however, the
same protocol logic could leverage the benefits from differ-
ent primitives. For example, an LWB network could start
using Robust Flooding [31] in case of high interference, then
later switch back to Glossy [23] for better time synchroniza-
tion. If the nodes should be reprogrammed, the software up-
date can be quickly disseminated using Pando [17]. Design-
ing a modular network stack supporting multiple ST primi-
tives adds a new level of complexity.

To facilitate the network stack design and let the same
network layer protocol use different ST primitives, it makes
sense to separate the concern of the timely execution of the
primitives from the implementation of the protocol logic.
One common approach to achieve such separation of con-

cerns is to use a middleware as part of the network stack.
Challenges. The idea of a middleware for Wireless Sensor
Networks (WSN) is not new, and the main challenge in such
an endeavour is well-known. As phrased by Mottola and
Picco [37], “striking a balance between flexibility and com-
plexity in providing access to low-level features is probably
one of the toughest, yet most important, problems in WSN
middleware”.

The design of a middleware for ST is particularly chal-
lenging. Indeed, meeting the tight timing requirements for
ST is directly conflicting with the concept of abstraction of
a middleware: How to guarantee that the network layer does
not hinder the timing accuracy for ST if it is itself unaware
of the execution of the primitives? This problem can be for-
mulated by the following challenges:

C1 The middleware must realize a well-defined interface
enabling runtime control from the network layer (which
implements the protocol logic) over the execution of the
underlying ST primitives.

C2 The middleware must enable the implementation of a
large variety of network layer protocols.

C3 The middleware must enable one network layer protocol
to use multiple ST primitives and switch between them
at runtime.

While at the same time:
C4 The middleware must guarantee to respect the time syn-

chronization requirements for ST (from sub-µs to tens
of µs [52]).

Contributions. We have addressed these challenges with
Baloo1, a flexible design framework for low-power network
stacks based on ST. Baloo provides a large set of features en-
abling performant protocol designs, while abstracting away
low-level hardware management such as interrupt handling
and radio core control. In summary:

• We propose Baloo , a flexible design framework for low-
power wireless network stacks based on ST (see Fig. 2).

• We present the design of a middleware layer that meets
the challenges C1 to C4. This middleware is the core
component of Baloo .

• We showcase the usability of Baloo by re-implementing
three well-known network stacks using ST: the Low-
power Wireless Bus (LWB) [22], Sleeping Beauty [44],
and Crystal [27].

• We illustrate the portability of Baloo by providing im-
plementations for two platforms – the CC430 SoC [25]
and the old but still heavily used TelosB mote [9].

• We demonstrate that Baloo induces only limited per-
formance overhead (memory usage, radio duty cycle)
compared to the original implementations.

This paper is not meant to detail all the inner mechanisms of
Baloo , but rather present the core concepts of the framework.
Baloo is open source and the complete technical documen-
tation is available online [4].

1Baloo provides the “bare necessities” for a ST network stack design.

107

Baloo

Middleware

ST1 ST2 ST3 ST4

HW1 HW2 HW3

Protocol A Protocol B Logic
only

Interaction
with radio
and HW

Synchronous
Transmission
Primitives

Figure 2. Baloo is a flexible design framework for net-
work stacks based on Synchronous Transmissions (ST).
It is based on a middleware layer that separates the con-
cern of timely execution of ST primitives from the im-
plementation of the protocol logic. Thanks to this addi-
tional layer of abstraction, Baloo flexibly supports multiple
ST primitives and significantly reduces the efforts required to
implement network layer protocols compared to traditional
stacks, like LWB [22] or Crystal [27].

In the rest of this paper, we first present the general con-
cepts of Baloo (Sec. 2), then discuss the design and imple-
mentation of the underlying middleware (Sec. 3). In Sec. 4,
we briefly describe the set of advanced features provided by
Baloo for designing network stacks, before the evaluation in
Sec. 5, where the usability and performance of our proposal
are discussed. Sec. 7 discusses requirements and limitations
of Baloo , followed by a section on our lessons learned from
this work (Sec. 8). We present some related works in Sec. 9
before drawing some conclusions and perspectives.

2 Overview of Baloo
This section presents an overview of the concepts of

Baloo . The implementation of these concepts using a mid-
dleware will be described in the next section (Sec. 3).

Baloo is a flexible framework designed to harness the po-
tential of the Synchronous Transmissions (ST) technology
and make it more accessible. Baloo uses Time Division Mul-
tiple Access (TDMA) rounds made of communication slots.
A ST primitive is executed in each slot. All necessarily con-
trol information is sent by a central node in the first slot of
each round. The core of Baloo is made of a middleware layer
(Fig. 2) that isolates the network layer (where the protocol
logic is implemented) from the lower layers (in particular
the management of the radio and timers).
Why Synchronous Transmissions? ST is a wireless com-
munication technique recognized to be reliable, fast, and en-
ergy efficient. ST primitives communicate using so-called
floods, which realize an any-to-all communication. Thus, ST
seamlessly supports multiple types of transmission patterns
(i.e., unicast, multicast, broadcast). As a result, ST enables
to abstract away the complexity of a multi-hop mesh into
a virtual single-hop network. Furthermore, some ST prim-
itives (e.g., Glossy [23] or Robust Flooding [31]) provide
tight bounds on the completion time of a flood, given the
payload size and network diameter.

This makes ST particularly suited for a time-triggered

communication scheme. Within one bounded time slot, one
can schedule a communication from one to any (set of)
node(s) in the network, which greatly simplifies the design
of a network layer protocol.

Baloo uses Glossy [23] as default ST primitive, but it
also supports other primitives, e.g., Chaos [30]. In principle,
Baloo is compatible with arbitrarily many other primitives
(see Sec. 3.5), thus addressing C3.
Round-based design. To maximize the benefits of ST,
Baloo organizes communication in TDMA rounds, with ded-
icated time slots assigned to specific nodes which are then
allowed to initiate a transmission in this slot. The first slot in
each round is assigned to a central node, called the host, to
send some control information (see below). This control slot
is then followed by arbitrarily many data slots. Nodes turn
their radio off between rounds to save energy.

While this framework may look restrictive and work
against achieving C2, such round-based design is in fact very
generic, and compatible with many (if not all) ST-based net-
work stacks proposed so far in the literature. The flexibility
and limitations of Baloo will be discussed in the evaluation
(Sec. 5 and 7).
Control information. In Baloo , the control packet, sent at
the beginning of each round, plays a key role. It is con-
structed such that if a node receives a control packet from
the host, this nodes knows exactly

• how to execute the current communication round, and

• when to wake up for the next round.
Thus, the control packet contains both schedule informa-

tion (e.g., the slot assignment for the round or the time inter-
val before the next round) and configuration parameters, like
the length of the slots or the number of retransmissions. The
control packet is broadcast using Glossy [23], which is also
used to synchronize the whole network.

Baloo is very flexible (C1); both schedule and configu-
ration can be updated at anytime by the host and the whole
network adapts to follow the instructions. This poses the
problem of a node not correctly decoding a control packet,
thus having possibly outdated control information.

Consequently, Baloo adopts the following fail-safe mech-
anism: a node does not participates in a communication
round unless it correctly decodes the control packet. This
guarantees that, even in case of packet losses, a node will
never disturb the execution of the rest of the network.
A middleware to provide the right level of abstraction.
The main challenge in the design of Baloo is the definition
of an interface that isolates the management of the radio (i.e.,
running the ST communication primitives) from the imple-
mentation of the protocol logic at the network layer. Baloo
realizes this interface using a middleware layer that is re-
sponsible for the following tasks:

• The middleware organizes the timers and controls the
radio operations (i.e., it executes the ST primitives).

• The middleware manages the communication round op-
erations according to the control information received
from the host.

108

Bootstrapping

Control
received

Running

Suspended

Control
received

Control
received

Control
missed

Control
missed

Control
missed

Figure 3. The middleware in Baloo implements a min-
imal state machine, sufficient to capture the desired be-
haviour of a node at physical layer. A node either executes
normally (Running), stays synchronized but does not partic-
ipate to the communication rounds (Suspended), or continu-
ously listens for an incoming control packet (Bootstrapping).

• The middleware executes callback functions, which are
used to interact with the application running above the
network layer (i.e., passing packet payload and imple-
menting the protocol logic).

The middleware is a fixed piece of software which can be
configured but neither accessed nor modified by the network
layer. The protocol logic (payload management, state keep-
ing, etc.) is implemented entirely within the callback func-
tions2. The middleware interface is illustrated in Fig. 4.

With this approach, all low-level programming complex-
ities are managed by the middleware and let the network de-
signer focus on the main task: design the protocol logic of
the network layer.
Wrapping-up. These concepts form the core of Baloo and
address the challenges of a flexible network stack design
(C1-C3). Additional concepts are required to ensure that the
timing requirements of ST are met (C4), which is the focus
of the next section.

3 Implementing the Concepts
The previous section described the general concepts of

Baloo , and discussed how they meet challenges C1-C3, pre-
sented in the Introduction. This section details how we im-
plemented these concepts to address C4 and complete the
design of Baloo .

3.1 Contiki-NG as Operating System
Baloo relies on the availability of ST primitives (e.g.,

Glossy [23], Chaos [30], etc.). Most openly available prim-
itives use Contiki [18] as the underlying operating system,
which made Contiki an obvious choice to implement Baloo .
We have ported these primitives to the latest version of the
OS: Contiki-NG [5] 3.

Contiki is a cooperative multi-threaded OS, tailored for
resource-constrained devices in the Internet of Things. The
middleware layer is implemented as the “master” pro-
tothread [19], where most of the program is executed. The
middleware implements the communication rounds, controls
the radio operations, and executes the callback functions
in which the network protocol logic is implemented (see
Sec. 3.3).

2The different callbacks are further described in Sec. 3.3.
3V4.2, released in November 2018

3.2 Minimal State Machine
For generality and simplicity, the middleware implements

only a minimal state machine. A node is either in Boot-
strapping, Suspended, or Running state. State transitions re-
sult from (un)successful receptions of control packets (see
Fig. 3). When bootstrapping, a node continuously listens for
a control packet. In the Suspended state, a node does not
participate in the round and will sleep until the next round.

As described in Sec. 2, a node may participate in a round
(i.e., be in the Running state) if and only if it correctly re-
ceives the control packet at the beginning of the round. The
default behaviour of Baloo is that a node suspends itself if
it misses a control packet, and goes back to Bootstrapping
if it misses two in a row. A node exits the Bootstrapping
state whenever it receives a control packet containing both
scheduling and configuration information, i.e., when a node
knows with certainty how it is expected to operate. If neces-
sary, the network layer protocol can extend this minimal state
machine using one of the callback functions (see Sec. 4.1).
3.3 Middleware Callback Functions

Baloo uses callback functions to implement the network
layer protocol logic. This is how the network layer interacts
with the middleware at runtime (C1). There are five differ-
ent callbacks, which have specific purposes and are executed
by the middleware at precise points in time, as illustrated in
Fig. 4.

on control slot post() is executed at the end of the control
slot. It is used to process the received control informa-
tion and prepare for the round.

on slot pre() is executed before each data slot. It is used to
pass the payload to send to the middleware, if any.

on slot post() is executed at the end of each data slot. It is
used to process the received payload, if any.

on round finished() is executed at the end of the round. It
is used to do more time consuming state management
or data processing.

on bootstrap timeout() is executed when a node fails to
bootstrap (i.e., it has listened for some time without re-
ceiving any control packet). This callback allows nodes
to go to sleep and retry bootstrapping later, in order to
save energy.

These callback functions are also used to implement more
advanced features of Baloo (e.g., skipping or repeating a
slot), which are briefly presented in Sec. 4.
3.4 Achieving Timeliness of Execution

The callback functions enable the flexible interaction be-
tween the network layer and the middleware, which is key
to address C1 and C2. However, this also inherently couples
the two software components, thus challenging the timely
execution of the middleware and compromising C4.

Indeed, the callbacks execute between communication
slots or between rounds (see Fig. 4), which must start syn-
chronously on all nodes to permit successful ST. The mid-
dleware could interrupt an overrunning callback to ensure
synchronicity, but that is not desirable. In general, an in-
terrupted callback would have to be considered as a failure

109

Schedule wake-up
for the next slot

Send/Receive
data packet

Schedule wake-up
for the next round

Send/Receive
data packet

Send/Receive
data packet

Control
slot

Data
slot 1

Data
slot 2

Data
slot n

Round
n+1Round n

Middleware

Store control
information for the

current round

Process
received
payload

Prepare
payload

Prepare control
information for
the next round

Longer
processing

All

Host
Prepare
payload

o
n
_r

o
u
n
d

_fi
n

is
h
e
d

()

o
n
_c

o
n
tr

o
l_

sl
o
t_

p
o
st

()

o
n
_s

lo
t_

p
o
st

()

o
n
_s

lo
t_

p
re

()

o
n
_s

lo
t_

p
o
st

()

o
n
_s

lo
t_

p
re

()

Network Layer Protocol

t

Process
received
payload

Schedule wake-up
for the first slot

Round
n-1

...

Figure 4. The protocol logic, i.e., the handling of application payloads and the definition of the desired control parame-
ters, is implemented in callback functions. These callbacks are triggered by the middleware before and after each slot
and at the end of a round. The middleware schedules the wake-up of the radio core and executes the ST primitives.

by the network layer; then successful ST at the lower layer
would not really matter anyway.

To mitigate this problem, the middleware monitors the
execution time of the callbacks. If a callback overruns and
the middleware cannot guarantee the timely execution of the
next slot, this slot is skipped (i.e., the node does not partici-
pate at all in this slot) and a notification event is sent to the
network layer.

With this approach, Baloo can guarantee to respect the
timing requirement for ST (C4) under the condition that the
callbacks have enough time to complete their execution.4 To
satisfy this condition, the available time between slots for the
execution of the callbacks is controlled by a dedicated con-
figuration parameter: the gap time. Since callbacks imple-
ment the network layer protocol logic, it can only be the re-
sponsibility of the network designer to set suitable gap times
such that C4 is met. Guidelines for setting such parameters
(and in general: how-to use Baloo) are part of the online
documentation [4].

3.5 Supporting Multiple ST Primitives
Compared to previously proposed low-power network

stacks, one key difference of Baloo is that it flexibly supports
multiple ST primitives (C3). This is difficult given the nature
of ST, which requires tight timing of radio events (from sub-
µs to tens of µs depending on the primitive [52]).

In practice, achieving such synchronization requires a di-
rect monitoring of hardware timers and a custom implemen-
tation of the associated Interrupt Service Routines (ISR) for
each ST primitive executed by the middleware in Baloo .
However, there cannot be multiple implementation of the
same ISR. Thus, supporting multiple ST primitives in the
same stack requires to extract the interrupt management from
the ST code, which becomes a shared software component
between different primitives.

Technically, we implemented this using a renaming trick.
Indeed, each ST primitive has its own ISR implementation

4This default strategy may lead to a starvation problem if a callback
“never” returns, e.g., if it relies on another software sitting at higher layers.
One advanced feature lets the middleware interrupt overrunning callbacks
(see Sec. 4.1).

for the radio timer, but Baloo never uses more than one ST
primitive at the same time (i.e., one per data slot). The mid-
dleware must only execute the instructions of the ISR from
the currently running primitive. Thus, we can encapsulate
the ISR of each primitive into a dedicated (i.e., unique) func-
tion and implement the radio timer ISR as a simple “switch”
function. A global variable keeps track of the currently run-
ning primitive; whenever the radio timer fires, the corre-
sponding primitive “ISR function” is executed.

The only difference with the original primitives’ imple-
mentation is an additional software delay between the radio
interrupt and the execution of the ISR’s instructions (the few
ticks of delay to execute the switch). This adds a negligi-
ble synchronization error due to differences in clock speed
across different nodes5.

Using this approach, Baloo currently supports two ST
primitives, Glossy [23] and Chaos [30], as well as a clas-
sical strobing communication primitive: one node transmits
its packet, multiple times, while all other nodes only listen.
Practically, there is no limitation on the number of primitives
that Baloo can support, apart from the available memory.

4 Advanced Features
In Sec. 2 and 3 we presented the general concepts of

Baloo and how we implemented them to meet challenges
C1-C4. To further extend the variety of network layer pro-
tocols that can be implemented using Baloo , we have en-
riched the framework with various features, most of which
have been used in previous protocols and proved themselves
useful. We briefly present these features in this section.

4.1 Additional Functionalities
Detection of interference. Low-power wireless networks

often suffer from interference. Multiple strategies have
been proposed to escape and/or mitigate its effects.

Baloo allows to monitor the power level on the channel
being used during a slot. This information can be used
to detect potential interference and react accordingly.

5Assuming an absolute clock drift of 100ppm between two nodes (which
is pessimistic), the error introduced is ∼ 0.24 picosecond per tick of delay.

110

This feature is used e.g., in Crystal [27].

Advanced state machine. The middleware in Baloo imple-
ments a minimal but sufficient state machine composed
of three states (Running, Suspended, Bootstrapping;
see Sec. 3.2 and Fig. 3).

Baloo lets the network layer protocol implement a
more advanced state machine. The return value of the
on control slot post() callback is used to inform the
middleware of the desired behaviour for the node, i.e.,
whether it should be in the Running, Suspended, or
Bootstrapping state for the coming round.

This feature is used e.g., in LWB [22].

Starvation protection. Skipping slots due to overrunning
callbacks may lead to starvation problems. The mid-
dleware behaviour can be modified to interrupt these
overruns. If and when this occurs, the interrupted node
will suspend its operation for the coming slot (or the
complete round, in case the on control slot post() over-
runs).

4.2 Advanced Scheduling Functionality
Contention slots. In a contention slot, all nodes are allowed

to transmit their own packet; they “contend” for access
to the wireless medium. The successful reception of
one of the packets remains possible due to the capture
effect [52].

Contention slots are used in many protocols, including
LWB [22] and Crystal [27].

Per-slot configuration. By default, the same configuration
parameters are used for all slots in the same round.
Baloo lets the network layer specify some configura-
tion on a per-slot basis. These optional parameters are
sent by the host as part of the control packet.

Crystal [27] for example uses different number of re-
transmissions for data and acknowledgement packets
(the latter are retransmitted more often).

Static schedule and configuration. In many network layer
protocols, the scheduling policy is static: either the con-
trol information remains the same or it changes accord-
ing to some offline algorithm.

In such cases, Baloo can spare the overhead of sending
redundant information in the control packet, thus sav-
ing time and energy. All nodes are then responsible to
locally update their control information.

Static schedules are used e.g., in TTW [28] or Crystal
[27].

Skipping slots and rounds. It is sometimes useful that
some nodes do not participate in certain slots, or even
skip complete rounds, e.g., to save energy, or to improve
performance in very dense networks.

Baloo lets the network layer trigger slot skipping us-
ing the return value of the on slot pre() callback. To
skip an entire round, one can return Suspended in the
on control slot post() callback (see Sec. 4.1).

This feature is used e.g., in Sleeping Beauty [44].

Repeating slots or rounds. On the contrary, it may be use-
ful to repeat the execution of specific slots, or even en-
tire communication rounds (e.g., when the number of
slots required in a round is dynamic) or to retransmit
lost packets.

Baloo lets the network layer trigger slot and round re-
peat using the return value of the on slot post() call-
back.

• If the slot repeat flag is received, the middleware
re-executes the same slot.

• If the round repeat flag is received, the middleware
immediately restarts executing from the first slot
of the round.

This feature is used e.g., in Crystal [27].

4.3 Control of Radio Settings
Radio channel setting. Baloo lets the network designer se-

lect the radio frequency channel for each slot. This can
be useful to proactively or reactively hop between chan-
nels in case of interference.

This feature is used e.g., in Crystal [27].

Transmit power setting. Similarly, Baloo lets the network
designer set the desired transmit power, possibly chang-
ing between each communication slot.

5 Experimental Evaluation
We presented Baloo , a flexible design framework for low-

power network stacks based on ST; we now evaluate our pro-
posal. First, we look into qualitative aspects. We argue that
Baloo is indeed practical to use and validate the premise that
it makes it easy to design a network stack based on ST. We
then discuss quantitative aspects by looking at the perfor-
mance overhead of using Baloo compared to original imple-
mentations.

5.1 Qualitative Evaluation
The evaluation of software usability is a challenging task

that suffers from almost unavoidable bias. To support our
claim that Baloo is indeed easy to use, we used it ourselves to
perform one of the most time consuming task in experimen-
tal research: the re-implementation of someone else’s proto-
col. We re-implemented the protocol logic of three network
stacks: Crystal [27], Sleeping Beauty [44], and LWB [22].
We chose these protocols because:

• They are well-known solutions from the literature, con-
sidering different types of scenario.

• Together, they use most of the features offered by Baloo
(see Sec. 4).

• The authors’ source code is publicly available.
It is fair to say that the fact that we can use our own software
brings only little evidence of the usability of Baloo . Indeed,
its usability will be ultimately demonstrated if and when
other people start using it to implement their own protocols.
To facilitate this, the code of Baloo is openly available, in-
cluding demo applications, and is accompanied by a detailed

111

documentation of its features and how to use them [4]. Nat-
urally, our re-implementations of Crystal, Sleeping Beauty,
and LWB are also available [4]. We intend to push Baloo to
the public Contiki-NG repository [5], thus making it readily
available to a large set of users.

Another important qualitative aspect of Baloo is its porta-
bility. The underlying middleware has been designed to min-
imize the software parts that are platform-dependent, and
those have been isolated as much as possible. Essentially,
the platform-dependent part is limited to the hardware timer
interface and the radio drivers (further discussed in Sec. 7).
Baloo is readily available on two platforms, the CC430 SoC
[25] and the TelosB mote [9]. Thanks to the abstraction pro-
vided by the middleware, the network layer protocol imple-
mentations using Baloo are platform agnostic. The exact
same network layer software can be used to compile bina-
ries for any target platform supported by Baloo . We argue
that these elements, altogether, show the usability of Baloo .

5.2 Quantitative Evaluation
Abstraction and flexibility usually impact quantitative

performance metrics. In this section, we evaluate the per-
formance overhead of Baloo along four metrics: the packet
reception rate (PRR), the radio duty cycle (DC), the binary
size, and the number of lines of code.

We performed this evaluation using our three re-
implementations of Crystal [27], Sleeping Beauty [44], and
LWB [22]. It is important to clarify the objective of the ex-
periments we conducted: the goal is to evaluate the perfor-
mance overhead of using Baloo compared to native imple-
mentations; not to evaluate the actual protocol performances.
Experimental Setup. All our experiments were conducted
on Flocklab [32] as it is the only public testbed featuring both
CC430 SoC [25] and TelosB motes [9], the two platforms for
which Baloo is available. All tests ran for one hour on 26
nodes, leading to tens of thousand data packets exchanged
for each protocol. As much as possible, we designed the
experiments to match those from the original protocol papers
[22, 27, 44].
Crystal. We ran tests varying the number of source nodes U

that have a packet to transmit in each round. We used
U = {0,1,20}. All other parameters were set according
to the author’s paper (first row of Table 2 in [27]).

Sleeping Beauty. We ran tests varying the percentage of
nodes that that have a packet to transmit in each round.
We used 12.5%, 25%, and 50% of the available nodes.
All other parameters were set according to the author’s
paper [44].

LWB. We ran tests varying the inter-packet interval IPI of
the data stream registered by each node in the network.
We used IPI = {4s,30s} and the dynamic scheduler
aiming to minimize energy consumption.

In each case, we compared: (i) the results reported in
the original papers, (ii) the results we obtained by running
the publicly available code, and (iii) our re-implementations
using Baloo on both the TelosB motes and (iv) the CC430
SoC. All results are summarized in Tables 1 to 4. Before dis-
cussing each metrics in details, some comments are useful.

• Although the original code of Sleeping Beauty is openly
available [1], we failed to run the protocol successfully.
More precisely, the observed behaviour was quite dif-
ferent from the paper description and led to inexplica-
bly poor results. It did not seem fair to present these as a
truthful measure of the protocol performance. Thus, we
do not report any results for the native code for Sleeping
Beauty.

• The original Sleeping Beauty paper does not report ex-
act values for PRR and duty cycle. The values from
Table 1 and 2 were read from Fig. 9 in [44].

• The original LWB paper presents results from an im-
plementation on TelosB, but the available code from
the authors is for the CC430 SoC [2]. Thus, we com-
pare our re-implementations with the native code, but
not with the original paper results.

Packet Reception Rate (PRR). We consider the end-to-end
PRR: the percentage of the packets generated by the applica-
tion at the source nodes that have reached their intended des-
tination. We count a packet as lost only if none of its trans-
missions has been successfully received at the destination.
In Crystal [27] for example, data packets may be lost and
successfully received later; that does not impact the PRR.

We do not expect any overhead in term of reliability from
using Baloo , as this metric essentially depends on the under-
lying ST primitive and the network layer protocol logic; two
elements not modified by the framework. This metric mostly
verifies that our re-implementations “work”. The results in
Table 1 indeed show similiar PRR for all implementations,
with one notable exception.

Baloo on CC430 for Crystal with U = 20 performs
poorly. After closer investigation, it appears that the suc-
cess rate of the capture effect on the CC430 SoC is much
lower than on the TelosB (presumably due to the different
modulation schemes used by the radio: 2-FSK and O-QPSK
respectively). When U = 20, it is highly probable that all
the one-hop neighbours of the sink are selected source nodes
that generate a packet in a round (20 out of 25 nodes avail-
able on Flocklab). As Crystal transmits all its data packets
using contention slots6, the sink only rarely receives packets
in these rounds, thus resulting in poor PRR.
Radio Duty Cycle (DC). The radio duty cycle (DC) is ex-
pected to reveal more of the actual overhead induced by
Baloo . Our results are summarized in Table 2.

The case of LWB matches our expectations: the DC are
comparable, with a slight increase for Baloo (5 to 15% more
compared to the native code). This is mainly due to the cost
of sending more information in the control packet.

The case of Crystal is interesting. We tried to reproduce
some experiments from the original paper, and our results
on the same platform (TelosB) show significantly higher DC
both for the native code and our re-implementation (from
50% to 100% increase) whereas on the CC430 SoC, results
are more comparable. It turns out that in our experiments
on TelosB, Crystal consistently detects possible interference
and (often needlessly) prolongs the communication rounds,

6Successful contention slots rely on capture effect, see Sec. 4

112

Table 1. End-to-end packet reception rate (PRR), expressed in percentage (%)
Crystal Sleeping Beauty LWB

U = 0 U = 1 U = 20 12.5% 25% 50% IPI = 30s IPI = 4s
Original paper na 100 100 ≈ 99 ≈ 99 ≈ 99 na na
Native code na 100 100 x x x 99.79 99.56
Baloo on TelosB na 100 100 99.43 99.75 99.04 100 99.92
Baloo on CC430 na 100 81.36 99.48 97.39 98.72 99.81 99.85

Table 2. Average radio duty cycle (DC) across all nodes but the data sink, expressed in percentages (%) 7

Crystal Sleeping Beauty LWB
U = 0 U = 1 U = 20 12.5% 25% 50% IPI = 30s IPI = 4s

Original paper 0.367 0.487 2.89 ≈ 0.2 ≈ 0.3 ≈ 0.7 na na
Native code 0.844 0.959 2.833 x x x 0.79 5.715
Baloo on TelosB 1.013 1.244 3.937 0.082 0.115 0.283 0.976 6.646
Baloo on CC430 0.355 0.494 2.64 0.07 0.106 0.27 0.914 6.007

Table 3. Estimate of the binary size of the network layer
protocol code, expressed in kB

Sleeping
Crystal Beauty LWB

Native code 16.87 17.47 19.11
Baloo on TelosB 16.36 20.71 19.7
Baloo on CC430 16.38 19.3 19.18

thus increasing the DC. Assuming that the noise detection
settings were correctly reported in the original paper [27]
(threshold of −60dBm in Sec. 6) this would indicate that
the wireless environment is significantly different on Flock-
lab and on the private testbed used by the Crystal’s authors.
Interestingly, the original paper results are comparable to our
CC430 SoC re-implementation. This could be explained by
the fact that this radio uses the sub-GHz band, where inter-
ference is less present than on the 2.4GHz band.

The results for Sleeping Beauty are more surprising.
In spite of the overhead induced by Baloo , our re-
implementation achieves about 2.5x reduction in DC. It is
unclear what can be the source of such difference. As we
based our re-implementation only on the original paper de-
scription [44], one possible explanation is that we might lack
some of the original protocol features, that would induce
more radio on time. However, the good results we obtain
with our re-implementation would question the usefulness
of such features. This remains an open question.
Binary size. The binary file size is another metric where we
expect Baloo to induce some overhead, as the middleware
introduces additional files, types and features that are not al-
ways necessary for all protocols.

Since the protocol implementations we looked at are
based on different versions of the Contiki OS, we tried to
evaluate the actual size of the network layer protocol only
by deducing the memory required for the OS. The OS mem-
ory requirements were obtained by looking at the size of a

7For Sleeping Beauty, reported values exclude the bootstrapping phase.

Table 4. Estimate of the number of lines of code in the
implementation of the network layer protocol

Sleeping
Crystal Beauty LWB

Native code 931 751 1881
Baloo 539 797 1029
Baloo/Native 0.58 1.06 0.55

minimal “hello-world” application. Table 3 reports the dif-
ference between the total and “hello-world” binary sizes, a
rough estimate of the memory required by the network layer
protocol implementation8.

Actually, the memory size of our re-implementations is
comparable to that of the native codes. This is due to the
configurable nature of the framework. Many features are
available, but the protocol designer flexibly selects which are
required, thus limiting the size of the compiled code. Fur-
thermore, the structure imposed by the framework may lead
to a more concise implementation, as discussed next.
Lines of Code. The last metric we considered is the num-
ber of lines of code that is part of the network layer protocol
(i.e., for the Baloo re-implementations, only the callbacks
and custom functions; not the middleware code). This is ar-
guably a rough metric, for at least two reasons: (i) none of
the implementations aimed to minimise its code size; (ii) in
the original implementations, it is not easy to isolate the code
implementing the protocol logic from the interface with the
lower layers (precisely, this is one of the differences with
Baloo). Still, the number of lines of code provides some in-
sights on the potential benefits of Baloo in terms of usability.

The results in Table 4 show that using Baloo can sig-
nificantly reduce the amount of code required to implement
some network layer protocol logic (up to 45% reduction for

8More advanced metrics could be used, e.g., summing the size of rele-
vant functions in the object file. We chose to used a very simple approach
because our goal is only to give an estimate of the impact of Baloo on the
memory requirements.

113

LWB). More importantly, the protocol implementations in
Baloo do not contain any timer setting or register accesses,
as these are handled directly by the middleware.
Summary. Ultimately, our quantitative evaluation shows
through a few examples that implementations using Baloo
perform well and that the framework induces only limited (if
any) overhead in terms of radio duty cycle and binary size.

To encourage ongoing efforts towards more transparency
and repeatability in our field [13], we make all the data col-
lected during our experiments publicly available [4], together
with the post-processing artefacts we used to produce the re-
sults presented in this paper.

6 Putting Baloo to the Test
We are now using Baloo for our own research projects,

starting with the 2019 EWSN Dependability Competition
[7]. In this year’s scenarios, each solution should perform
well across a wide range of input parameters (e.g., data rates
or payload sizes), which demands the network stack to be
adaptive. The flexibility of Baloo is very useful. By design,
the middleware takes care of adjusting the timing of opera-
tions (i.e., when the ST primitives should be executed) based
on the application parameters (e.g., the payload size). Fur-
thermore, one can leverage the availability of different prim-
itives. For example, after a data packet has been sent using
Glossy [23], one can efficiently collect acknowledgements
from all destinations using Chaos [30].

We use the competition as an opportunity to practically
evaluate the usability of Baloo: our competition solutions
are developed by master students who did not have any prior
knowledge of Baloo , nor ST. It will be interesting to see
how well their solutions perform compared to “traditional”
network stacks designed by experienced teams.

7 Requirements and Limitations
We argued that Baloo is a usable, flexible, and performant

design framework (Sec. 5). To complete the description, we
now detail the hardware and software requirements and dis-
cuss the portability and limitations of the framework.

7.1 Requirements
Hardware requirements. The only strict hardware require-
ment of Baloo is one dedicated Capture Compare Regis-
ter (as required by any time-triggered protocol). The actual
timer frequency is not important; a standard 32kHz clock is
already fast enough. This timer is used to schedule the com-
munication slots, wake-up times, and callback executions.

Both supported platforms feature an MSP430 CPU, but
this is not a constraint. An ARM core like the ones embed-
ded on the nRF52840 [46] or the OpenMoteB [39] platforms
would work as well. It would eventually be even more flexi-
ble, thanks to interrupt priorities.
Software requirements. Baloo requires a software-
extended timer implementation to enable the scheduling of
firing epochs further than one roll-over of the timer. This
is (surprisingly) not part of Contiki by default, but that is a
rather minor extension. Some features of Baloo rely on ra-
dio functions (e.g., the noise detection); these features are
obviously platform-dependent. The rest of the platform-

dependent software in Baloo is a mapping between ST prim-
itive functions and generic macros used by the middleware.
7.2 Portability

Baloo itself has limited hardware and software require-
ments (Sec. 7.1). The main constraint comes from the avail-
ability of ST primitives, which are notoriously difficult to im-
plement; but this is independent of the framework. Assum-
ing ST primitives are available, the requirements and efforts
to port Baloo to a new platform are very low. A guide on
“how-to-port” Baloo is included in the documentation [4].
7.3 Limitations

Baloo is a framework that facilitates the design of ST-
based network stacks by providing some level of abstraction.
We showed in Sec. 5 that this abstraction has only a moder-
ate impact on performance. However, abstraction also lim-
its the design freedom, and this also applies to Baloo . We
honestly tried to think of sensible design concepts that are
incompatible with the framework, while they would be tech-
nically possible to implement:

• Baloo does not support multiple hosts (e.g., for redun-
dancy purposes).

• Baloo cannot start primitives at different times on dif-
ferent nodes (e.g., to save energy).

• Baloo cannot execute different ST primitives on differ-
ent nodes during the same data slots.

This is a rather short list.
We presented in Sec. 4 a set of features that enrich the

possibilities offered by Baloo . The feature set may not be
complete, but it already offers a lot of options; and it can
be extended in the future, if necessary. To the best of our
knowledge, to date in the literature there does not exist a
ST-based network layer protocol that is incompatible with
Baloo . This is simply because what Baloo cannot do is either
hard to do in general (e.g., supporting redundant hosts) or are
complex optimizations with uncertain benefits (e.g., starting
primitives with time offsets).

8 Discussion
During this work, we have learned a few lessons that

might be worth sharing.
Re-implementing protocols. Re-implementing a complete

protocol (solely) based on the description from a re-
search paper is very difficult, if not impossible. Many
implementation details and design choices are omitted,
for good reasons: research papers rather focus on novel
concepts and ideas. Without a detailed technical docu-
mentation, a large part of the engineering is lost, and it
becomes very hard to fairly compare two implementa-
tions of the same protocol.

Running protocols. Publishing code does not mean it is
(re)usable. Our experience with Sleeping Beauty has
been a perfect example of that: even with the code
freely available and quite some experience with testbed
experiments, we were not able to successfully run the
protocol on Flocklab. More generally usefulness of
publishing code is greatly reduced (if not voided) with-
out proper instructions and documentation.

114

The point here is not to say that every research work must
openly release code together with an extensive documenta-
tion. However, if one claims his or her research is provid-
ing practical solutions to concrete problems, these solutions
should be made available. When such a solution is a piece of
software (e.g., a network stack for low-power wireless), the
(re)usability of the software is (at least) as important as the
research paper presenting the underlying concepts.

The availability and reusability of research artefacts is an
increasingly important topic. Scientific societies start to in-
centivize reusable research; the ACM introduced in 2018 a
badging system [8] which starts being used in leading con-
ferences like CoNEXT 2018 [3]. We believe this is really im-
portant to keep in mind: if we want to see our research being
used and impactful beyond academia, we must strive to make
it more accessible. This is why Baloo is open source and ac-
companied with an extensive documentation of the code and
how to use it [4].

9 Related Work
As mentioned in the introduction, the idea of middleware

for Wireless Sensor Networks (WSN) has been around for
more than a decade [14, 37, 43, 51]. These papers generally
agree on the needs and challenges for WSN middlewares.
Yet, there have been relatively few proposals to address these
challenges. Recent surveys [38, 42] provide an overview of
the middleware literature in the wider context of the Inter-
net of Things, which covers all layers from local devices to
cloud services. [37] reviewed the literature focusing more on
WSN: proposals include for example Impala [33] which ex-
plicitly address the problem of fault tolerance in mobile net-
works. Programming abstractions like TinyDB [34], RUNES
[15], or TinyLIME [16] have also been proposed. However,
in these works, the level of abstraction is either higher or
lower than the network layer.

In the past two decades, countless wireless MAC proto-
cols have been proposed (see e.g., [12, 50] for recent sur-
veys). [26] surveyed and classified Wireless MAC protocols
according to their programmability scope (what elements of
the MAC layer are programmable) and level (the granularity
at which the protocol logic can be programmed). The authors
classify protocols as either monolithic, parametric or modu-
lar. In the context of IEEE 802.15.4 networks, modular pro-
tocols include e.g., the MAC Layer Architecture (MLA) [29]
and λ-MAC [41]. In contrast, Baloo would be classified
as parametric, as it allows “parameter tuning through inter-
faces”. Using Synchronous Transmissions (ST) interestingly
changes the way network stacks can or should be designed.
So far, only few network stacks using ST have been pro-
posed [22,27,28,44,48,49], and almost no research has been
conducted to propose a flexible design framework (e.g., com-
parable to MLA [29]) but tailored to ST.

One notable exception is A2 [10]. The approach of this
work is very similar to ours; the authors try to facilitate
the design of ST-based communication using a middleware
component, which they called Synchrotron. A2 is not a net-
work stack, it is a generic ST primitive. Baloo and A2 actu-
ally complement each other perfectly. Baloo facilitates the
design of network layer protocols, but it requires to have ST

primitives (e.g., Glossy [23] or Chaos [30]) available, which
are typically hard to implement. In turn, A2 facilitates the de-
sign of such ST primitives. The support of A2 within Baloo
is a natural next step towards a fully flexible and configurable
network stack based on ST.

10 Conclusions
In this paper, we presented Baloo , a flexible design frame-

work for low-power wireless network stacks based on ST.
We illustrated its usability by re-implementing three well-
known network stacks: the Low-power Wireless Bus (LWB)
[22], Sleeping Beauty [44], and Crystal [27], and we showed
that using Baloo induces only limited performance overhead
in terms of radio duty cycle and memory usage. The code of
Baloo is openly available and is accompanied by a detailed
documentation of its features and how to use them [4]. Our
re-implementations of Crystal, Sleeping Beauty, and LWB
are also available [4]. We intend to push Baloo to the public
Contiki-NG repository [5] in the near future. We argue that
Baloo is a versatile and usable framework with limited over-
head, hence effectively facilitating the design of performant
ST-based network stacks. We believe it will be an important
enabler for the development of future real-world applications
leveraging state-of-the-art ST technology.

The usability of Baloo would be further increased by
adding support for simulation in Cooja [40]. This is one of
our priorities. Furthermore, an implementation of Glossy for
the CC2538 SoC is available [24]. It would be interesting
to port Baloo to this radio chip, which equips newer motes
like the OpenMoteB [39]. As mentioned in the Related Work
section, including A2 [10] in the list of supported primitives
would be a natural next step. In parallel to the development
of Baloo , another team developed a ST primitive for Blue-
tooth 5 [11]. This could extends the usability of Baloo (and
thereby LWB, Crystal, etc.) to Bluetooth technology.

As a side benefit, Baloo provides interesting perspec-
tives for benchmarking protocols. For a given platform, pro-
tocol concepts can be compared more easily (as they are
quick to implement), and more accurately (as they rely on
the same implementation of the underlying ST primitives).
Conversely, one can evaluate the impact of different plat-
forms on the performances of a given network layer pro-
tocol. Benchmarking low-power communication protocols
has recently gained some momentum in the community [13];
Baloo comes in timely and can be an interesting tool to fa-
cilitate benchmarking of solutions based on ST.

11 References
[1] Sleeping Beauty. https://github.com/csarkar/sleeping-beauty, Aug.

2016.
[2] Low-Power Wireless Bus (LWB). https://github.com/ETHZ-

TEC/LWB, Sept. 2017.
[3] ACM CoNEXT 2018. https://conferences2.sigcomm.org/co-

next/2018/#!/program, Oct. 2018.
[4] Baloo. http://www.romainjacob.net/research/baloo/, Dec. 2018.
[5] Contiki-NG. http://contiki-ng.org/, Nov. 2018.
[6] Crystal. https://github.com/d3s-trento/crystal, July 2018.
[7] EWSN 2019 Dependability Competition.

http://ewsn2019.thss.tsinghua.edu.cn/competition-scenario.html,
Feb. 2019.

115

[8] ACM. Artifact Review and Badging.
https://www.acm.org/publications/policies/artifact-review-badging,
Apr. 2018.

[9] Advanticsys. MTM-CM5000-MSP 802.15.4 TelosB mote Module.
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html.

[10] B. Al Nahas, S. Duquennoy, and O. Landsiedel. Network-wide Con-
sensus Utilizing the Capture Effect in Low-power Wireless Networks.
In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems, SenSys ’17, pages 1:1–1:14, New York, NY, USA,
2017. ACM.

[11] B. Al Nahas, S. Duquennoy, and O. Landsiedel. Concurent Transmi-
sions for Multi-hop Bluetooth 5. In Proceedings of the 2019 Interna-
tional Conference on Embedded Wireless Systems and Networks, To
appear.

[12] P. Bartolomeu, M. Alam, J. Ferreira, and J. Fonseca. Survey on low
power real-time wireless MAC protocols. Journal of Network and
Computer Applications, 75:293–316, Nov. 2016.

[13] C. A. Boano, S. Duquennoy, A. Förster, O. Gnawali, R. Jacob, H.-S.
Kim, O. Landsiedel, R. Marfievici, L. Mottola, G. P. Picco, X. Vi-
lajosana, T. Watteyne, and M. Zimmerling. IoTBench: Towards a
Benchmark for Low-power Wireless Networking. In 1st Workshop
on Benchmarking Cyber-Physical Networks and Systems (CPSBench
2018), page 6, Apr. 2018.

[14] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas. 50 ways to build
your application: A survey of middleware and systems for Wireless
Sensor Networks. In 2007 IEEE Conference on Emerging Technolo-
gies and Factory Automation (EFTA 2007), pages 466–473, Sept.
2007.

[15] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis. The
RUNES middleware: A reconfigurable component-based approach to
networked embedded systems. In 2005 IEEE 16th International Sym-
posium on Personal, Indoor and Mobile Radio Communications, vol-
ume 2, pages 806–810 Vol. 2, Sept. 2005.

[16] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Program-
ming Wireless Sensor Networks with the TeenyLime Middleware. In
R. Cerqueira and R. H. Campbell, editors, Middleware 2007, Lecture
Notes in Computer Science, pages 429–449. Springer Berlin Heidel-
berg, 2007.

[17] W. Du, J. C. Liando, H. Zhang, and M. Li. When Pipelines Meet
Fountain: Fast Data Dissemination in Wireless Sensor Networks. In
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’15, pages 365–378, New York, NY, USA,
2015. ACM.

[18] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In 29th Annual
IEEE International Conference on Local Computer Networks, pages
455–462, Nov. 2004.

[19] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simpli-
fying Event-driven Programming of Memory-constrained Embedded
Systems. In Proceedings of the 4th International Conference on Em-
bedded Networked Sensor Systems, SenSys ’06, pages 29–42, New
York, NY, USA, 2006. ACM.

[20] A. Escobar, F. J. Cruz, J. Garcia-Jimenez, J. Klaue, and A. Corona.
RedFixHop with channel hopping: Reliable ultra-low-latency network
flooding. In 2016 Conference on Design of Circuits and Integrated
Systems (DCIS), pages 1–4, Nov. 2016.

[21] A. Escobar, F. Moreno, A. J. Cabrera, J. Garcia-Jimenez, F. J. Cruz,
U. Ruiz, J. Klaue, A. Corona, D. Tati, and T. Meyerhoff. Competition:
BigBangBus. In Proceedings of the 2018 International Conference on
Embedded Wireless Systems and Networks, EWSN ’18, pages 213–
214, USA, 2018. Junction Publishing.

[22] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power
Wireless Bus. In Proceedings of the 10th ACM Conference on Em-
bedded Network Sensor Systems, SenSys ’12, pages 1–14, New York,
NY, USA, 2012. ACM.

[23] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In Proceedings of the
10th ACM/IEEE International Conference on Information Processing
in Sensor Networks, pages 73–84, Apr. 2011.

[24] K. Hewage. Low-power Wireless Bus (LWB) for TI’s CC2538 Soc for
Contiki OS.: Kasunch/lwb-cc2538. https://github.com/kasunch/lwb-

cc2538, July 2018.
[25] T. Instruments. CC430F6137 16-Bit Ultra-Low-Power MCU.

http://www.ti.com/product/CC430F6137.
[26] P. H. Isolani, M. Claeys, C. Donato, L. Z. Granville, and S. Latré. A

Survey on the Programmability of Wireless MAC Protocols. IEEE
Communications Surveys Tutorials, pages 1–1, 2018.

[27] T. Istomin, M. Trobinger, A. L. Murphy, and G. P. Picco. Interference-
resilient Ultra-low Power Aperiodic Data Collection. In Proceedings
of the 17th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, IPSN ’18, pages 84–95, Piscataway, NJ,
USA, 2018. IEEE Press.

[28] R. Jacob, L. Zhang, M. Zimmerling, J. Beutel, S. Chakraborty, and
L. Thiele. TTW: A Time-Triggered-Wireless Design for CPS [Ex-
tended version]. arXiv:1711.05581 [cs], Nov. 2017.

[29] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A Component-based
Architecture for Power-efficient Media Access Control in Wireless
Sensor Networks. In Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems, SenSys ’07, pages 59–72,
New York, NY, USA, 2007. ACM.

[30] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and
Efficient All-to-all Data Sharing and In-network Processing at Scale.
In Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’13, pages 1:1–1:14, New York, NY, USA,
2013. ACM.

[31] R. Lim, R. Da Forno, F. Sutton, and L. Thiele. Competition: Ro-
bust Flooding Using Back-to-Back Synchronous Transmissions with
Channel-Hopping. In Proceedings of the 2017 International Confer-
ence on Embedded Wireless Systems and Networks, EWSN ’17, pages
270–271, USA, 2017. Junction Publishing.

[32] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beu-
tel. FlockLab: A Testbed for Distributed, Synchronized Tracing and
Profiling of Wireless Embedded Systems. In Proceedings of the 12th
International Conference on Information Processing in Sensor Net-
works, IPSN ’13, pages 153–166, New York, NY, USA, 2013. ACM.

[33] T. Liu and M. Martonosi. Impala: A Middleware System for Man-
aging Autonomic, Parallel Sensor Systems. In Proceedings of the
Ninth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’03, pages 107–118, New York, NY, USA,
2003. ACM.

[34] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: An Acquisitional Query Processing System for Sensor Net-
works. ACM Trans. Database Syst., 30(1):122–173, Mar. 2005.

[35] M. Mohammad and M. C. Chan. Codecast: Supporting Data Driven
In-network Processing for Low-power Wireless Sensor Networks. In
Proceedings of the 17th ACM/IEEE International Conference on In-
formation Processing in Sensor Networks, IPSN ’18, pages 72–83,
Piscataway, NJ, USA, 2018. IEEE Press.

[36] M. Mohammad, M. Doddavenkatappa, and M. C. Chan. Improv-
ing Performance of Synchronous Transmission-Based Protocols Us-
ing Capture Effect over Multichannels. ACM Trans. Sen. Netw.,
13(2):10:1–10:26, Apr. 2017.

[37] L. Mottola and G. P. Picco. Middleware for wireless sensor networks:
An outlook. Journal of Internet Services and Applications, 3(1):31–
39, May 2012.

[38] M. Onderwater. An overview of centralised middleware components
for sensor networks. International Journal of Ad Hoc and Ubiquitous
Computing, 21(3):180–193, Jan. 2016.

[39] OpenMote. OpenMote B. http://www.openmote.com/product/openmote-
b-single/.

[40] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
Level Sensor Network Simulation with COOJA. In Proceedings. 2006
31st IEEE Conference on Local Computer Networks, pages 641–648,
Nov. 2006.

[41] T. Parker, G. Halkes, M. Bezemer, and K. Langendoen. The
λMAC Framework: Redefining MAC Protocols for Wire-
less Sensor Networks. Wirel. Netw., 16(7):2013–2029, Oct. 2010.

[42] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. Mid-
dleware for Internet of Things: A Survey. IEEE Internet of Things
Journal, 3(1):70–95, Feb. 2016.

[43] K. Römer. Programming paradigms and middleware for sensor net-
works. GI/ITG Workshop on Sensor Networks, pages 49–54, 2004.

116

[44] C. Sarkar, R. V. Prasad, R. T. Rajan, and K. Langendoen. Sleeping
Beauty: Efficient Communication for Node Scheduling. In 2016 IEEE
13th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), pages 56–64, Oct. 2016.

[45] M. Schuß, C. A. Boano, M. Weber, and K. Römer. A Competition to
Push the Dependability of Low-Power Wireless Protocols to the Edge.
In Proceedings of the 2017 International Conference on Embedded
Wireless Systems and Networks, EWSN ’17, pages 54–65, USA, 2017.
Junction Publishing.

[46] N. Semiconductors. nRF52840.
https://www.nordicsemi.com/Products/Low-power-short-range-
wireless/nRF52840.

[47] P. Sommer and Y.-A. Pignolet. Competition: Dependable Network
Flooding Using Glossy with Channel-Hopping. In Proceedings of the
2016 International Conference on Embedded Wireless Systems and
Networks, EWSN ’16, pages 303–303, USA, 2016. Junction Publish-
ing.

[48] F. Sutton, R. Da Forno, D. Gschwend, T. Gsell, R. Lim, J. Beutel, and
L. Thiele. The Design of a Responsive and Energy-efficient Event-
triggered Wireless Sensing System. In Proceedings of the 2017 In-
ternational Conference on Embedded Wireless Systems and Networks,

EWSN ’17, pages 144–155, USA, 2017. Junction Publishing.
[49] M. Suzuki, Y. Yamashita, and H. Morikawa. Low-Power, End-to-

End Reliable Collection Using Glossy for Wireless Sensor Networks.
In 2013 IEEE 77th Vehicular Technology Conference (VTC Spring),
pages 1–5, June 2013.

[50] R. Teles Hermeto, A. Gallais, and F. Theoleyre. Scheduling for
IEEE802.15.4-TSCH and slow channel hopping MAC in low power
industrial wireless networks: A survey. Computer Communications,
114:84–105, Dec. 2017.

[51] M.-M. Wang, J.-N. Cao, J. Li, and S. K. Dasi. Middleware for Wire-
less Sensor Networks: A Survey. Journal of Computer Science and
Technology, 23(3):305–326, May 2008.

[52] D. Yuan and M. Hollick. Let’s talk together: Understanding concur-
rent transmission in wireless sensor networks. In 38th Annual IEEE
Conference on Local Computer Networks, pages 219–227, Oct. 2013.

[53] P. Zhang, A. Y. Gao, and O. Theel. Less is More: Learning More with
Concurrent Transmissions for Energy-Efficient Flooding. In Proceed-
ings of the 14th EAI International Conference on Mobile and Ubiq-
uitous Systems: Computing, Networking and Services, MobiQuitous
2017, pages 323–332, New York, NY, USA, 2017. ACM.

117

