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Abstract

We present, LOcation based COmmunication (LOCO), a
new channel for communication for robots that can act as a
fail-safe communication mechanism in contexts of radio fail-
ures, given a working localization system. With insights from
traditional wireless communication, we formulate a channel
model for the location based communication channel where
the transmitted data is modulated into a set of discrete loca-
tions of a robot. The receiving end employs a localization
module to estimate the positions of the robot and to demod-
ulate it into received symbols. We further identify the key
factors that control the capacity and error performance of this
channel: the symbol grid granularity, variance of the localiza-
tion noise, the frequency of the localization, and the speed of
the robot. In this paper, we also present a set of illustrative
examples for LOCO along with pertinent analysis via detailed
simulation and real-world data based emulation experiments.

1 Introduction

With the recent breakthroughs in hardware and software
developments, robotics and automation have become inte-
gral parts of our life. Over the last decade, robots have been
employed in a diverse application contexts such as to help
first-responders in firefighting, and search and rescue mis-
sions, to explore unknown terrains, and to form temporary
communication backbones [9, 14]. A key enabler in all these
applications is a reliable communication between the robot
and a control center. If the communication links fails, say, due
to radio damage, the whole purpose of the robot’s deployment
may be a lost cause. For example, imagine sending a rover to
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Mars to sense, collect and send information about Mars. If all
radios on the rover fails momentarily or permanently, the mis-
sion might turn into a lost cause. In such cases, it is pertinent
to have an alternate (preferably non-radio based) communica-
tion scheme as a fail-safe communication mechanism. One
potential choice is to use the motion of robot as a fail-safe
mode of communication as we often employ an off-board
localization technique such as camera based or RF based to
keep track of the robot. There exist many passive localization
schemes, such as camera based localization, bi-static radar
based localization, and passive RF based localization, where
the robot is not required to communicate with the localiza-
tion module using radio based communication. In Figure 1,
we present an illustration of the concept where Message 1
and Message 2 are conveyed in form of locations of the robot,
whereas Message 3 is conveyed by the movement of the robot.

Figure 1: An Illustration of Localization Based Communica-
tion

In this paper, we present the first ever (to our knowledge)
channel formulation of a LOcation based COmunication
(LOCO) system. To this end, we explore the existing well-
versed literature on communication channels and information
theory [12] to explore the applicability of traditional wireless
channel models to our context. We show that, most of the
well-known concepts of traditional wireless communication
channels such as source coding and source to symbol map-
ping can be molded to use in our proposed location based
communication channel. In this paper, we present a couple of
illustrations of such communication channel along with simu-
lation and emulation experiments based effective rate analysis
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with respect to the accuracy of the localization schemes used.
2 Problem Statement

We consider a setting where the entity (say, a robot) wishes
to communicate using its location alone. In particular, we
assume that robot is mobile and that the intended message
recipient (say, a remote control room) is able to estimate the
location of the robot accurately upto a certain precision. Con-
sequently, the robot wishes to exploit its mobility to communi-
cate important messages back to the control room. While not
intended to replace traditional communication systems, a pos-
sible application of this work is the possibility of maintaining
a communication link even if the traditional communication
system on the robot is rendered unusable in the wake of a
disastrous event. Of course, we still assume that the robot
is mobile and that the control room is able to estimate the
location of the robot, perhaps visually or through use of a
remote sensing procedure such as RADAR. For simplicity,
we consider only unidirectional communication wherein the
robot needs to convey messages to the control room.
2.1 Source Symbol Set

Traditional digital modulation schemes transmit digital
data by changing some property of a carrier signal such as
the amplitude, frequency, phase or a combination thereof. In
our setting, we ‘transmit’ digital data by varying the robot’s
position. Specifically, in this paper we shall restrict ourselves
to source symbols consisting of only locations. However, for
completeness we also include a brief discussion on the design
of source symbol sets that incorporate movement or change
in location as a symbol.
2.1.1 Location Based Symbol Sets

In this case, our source symbol set X consists of discrete
locations. As an example, consider a robot placed in a square
terrain as shown in Figure 1. A simple source symbol set con-
sists of discretized locations possibly distributed in a uniform
manner across the terrain. For example, in Figure 1, X con-
sists of 25 symbols obtained by imposing a 5⇥5 grid on the
square terrain. In this case sixteen locations can be thought of
as encoding a four bit message, with the remaining locations
possibly reserved for control messages.

In general, a large symbol set will increase the number of
bits sent per symbol at the cost making the locations closer
to each other and hence harder to resolve. In general, the
design of X must take into account such constraints imposed
by the physical terrain in addition to those imposed by the
capabilities (or lack thereof) of the receiver. In particular, if
the receiver is capable of resolving small changes in the robot
location, then our design space for X is greatly increased.
We assume that the capabilities of both the robot and the
receiver are decided beforehand and known to each other.
More formally, we assume that the symbol set X is known to
each other.
2.1.2 Location and Movement Based Symbol Sets

Analogous to how differential modulation schemes such
as DPSK [11] take into account sequences of modulation
symbols, consider the case where we can communicate us-
ing changes of location instead of the location itself. In
the simplest case, X = {L,R,U,D} corresponding to the di-
rections (L)eft, (R)ight, (U)p and (D)own. In general, we

may use a combination of location and movements for sig-
nalling. In particular, we can greatly increase X by distin-
guishing between changes in direction at different locations.
This corresponds so indexing each direction by a location,
X = {Lrrr,Rrrr,Urrr,Drrr|rrr 2 S}, where we use S to denote the
space used by the robot to communicate with a receiver.

While considering location and movement based source
symbol sets, particular care needs to be taken in their design.
In particular, it may not be possible for the robot to move in all
directions at all locations. For instance, mobility is curtailed at
the edges of our space and the particulars of the terrain might
make it desirable to avoid certain directions in particular
locations. Moreover, care needs to be taken to ensure that it
is possible to use any combination of the source symbol set.
For instance, a naïve design of the source symbol set might
render some sequences of symbols unusable which amounts
to being unable to send certain messages.

For simplicity, in the remainder of the paper we shall re-
strict ourselves to the analysis of the LOCO system that uses
location based symbol sets exclusively.
2.2 Communication System

The communication channel formulation in LOCO model
remains same as standard wireless communication channel
model that includes source coding, channel coding, modu-
lation at the sender and demodulation, channel and source
decoding at the receiver [12]. The main difference of LOCO
compared to traditional wireless communication model is
in the modulation-demodulation process and the transmitted
symbol set. The symbol set in LOCO model is a set of loca-
tions of the communicating robot. For example, in Figure 1,
each of 25 grid points can act as a symbol of communica-
tion. The modulation and demodulation in LOCO involves
mapping a bit stream into a set of locations and mapping a
set of observed (by the localization module) locations into a
received bit stream, respectively.
2.3 Channel Capacity

Let X = {x1,x2, · · · ,xS} and Y = {y1,y2, · · · ,yT} be the
set of source and received symbols, respectively. Let p(y | x)
be the conditional probability mass functions (PMFs) corre-
sponding to the channel which we assume to be stationary,
and p(x) be the PMF of the source symbols. Let p(x,y) be
the joint PMF of the source symbols and received symbols.
The mutual information between the source symbols and the
received symbols can be represented in terms of the PMFs as

J(pX ;P) =
S

Â
i=1

T

Â
j=1

p(xi)pi j log2

0

BB@
pi j

S
Â

k=1
pk j p(xk)

1

CCA (1)

where pX = [p(x1), p(x2), · · · , p(xS)] represents the vector
containing the source PMF entries and P denotes the matrix
of transition probabilities where pi j = p(y j | xi) for 1  i  S
and 1  j  T . The channel capacity can be calculated as

C = max
pX

J(pX ;P). (2)

Note that the channel transition probabilities that we refer to
here correspond to the errors in the robot’s location estimation.
The transition probability p(y j | xi) corresponds to the case
when the robot sends a source symbol xi, but the localization
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system detects the symbol y j. Therefore, the channel transi-
tion probability matrix as well as the channel capacity in our
proposed communication channel depend on the localization
technique employed.

2.4 Modulation and Demodulation

Ideally, given the transition probabilities, p(y | x), the ca-
pacity achieving source symbol distributions can be deter-
mined. Let p

⇤ denote the optimal source distribution for a
given symbol set and a localization scheme. Now, in order to
achieve the maximum capacity, the coded bit-stream needs
to be mapped to the source symbols such that the effective
source symbol distribution is as close to the optimal source
symbol distribution as possible. Nonetheless, with analogy
from traditional communication channel, we do not focus
on the optimal bit-stream to symbol mapping. Instead, we
consider mapping schemes with equal probabilities for each
of the source symbols. For source coding we use standard
optimal prefix free source coding techniques like Huffman
coding [10] with simple parity based block coding as the
channel coding. The function of the modulator in this context
is to map the input coded bit-stream to a set of locations. We
assume that the robot is arbitrarily fast or the symbol time
is large enough for the robot to travel between any two loca-
tions, for simplicity. We intend to account for the movement
speed of the robot in our future works. The demodulator in
this context is the localization module that can be camera
based or RF based. The localization module estimates the
location of the robot periodically with a fixed period (say, T
seconds). Note that, we need to have at least one location
dedicated to null communication. Now, if the robot has noting
to transmit, it moves to the null communication location and
stays there. For example, a robot can simply move out of the
localization arena in order to pause or stop the location based
communication.

2.5 Location Based Signalling

As an illustration of the above idea, we consider the fol-
lowing simple example. Assume that our bot is confined to
a unit square S ⇢ R2 centered on the origin. We define the
symbol set Xn indexed by n 2 {2,3, . . .} as follows. Divide
each side of S in to n equal segments. This corresponds to
dividing the area of S in to n2 squares each with area 1

n2 . The
geometric center of the square corresponds to a symbol that
is used for communication. See Fig. 1 for an example where
n = 5. Henceforth we shall refer to n as the granularity of the
symbol set Xn. At the receiver side, this symbol needs to be
estimated in some manner. Assume that we have some obser-
vations, say a picture, RADAR signals or RSSI, that allows
us to estimate the location.

More formally, assume that we have a vector of observa-
tions ooo with the marginal distribution fOOO(ooo|RRR = rrr). A popular
method of deriving an estimate from this distribution is MLE.
The MLE estimate given by

r̂rr = argmax
rrr

fOOO(ooo|RRR = rrr). (3)

While we are certainly free to derive our estimate by other
means, unless otherwise specified, we shall use MLE in the
paper for ease of exposition.

Due to errors in estimation, the receiver estimate r̂rr typically
does not correspond exactly to rrr. Consequently, the receiver
obtains the decoded symbol yyy by computing the element in
Xn that is closest to r̂rr. In other words,

yyy = argmin
xxx2Xn

||r̂rr� xxx||2. (4)

To find the probability of error, we’ll first compute the prob-
ability of misclassifying a symbol. For some yyy 2 Xn, define
the set OOOyyy =

�
ooo : yyy = argminxxx2Xn ||r̂rr� xxx||2

 
. OOOyyy represents

the set of observations at the receiver that results in a de-
coded symbol yyy. This allows us to define the probability of
misclassification as,

P(yyy|RRR = xxx) =
Z

ooo2OOOyyy

fOOO(ooo|RRR = xxx)dooo (5)

where xxx 2 Xn. Thus for a given source symbol xxx, the probabil-
ity that xxx is decoded in error is given by,

Pse(xxx) = Â
yyy2Xn\{xxx}

P(yyy|RRR = xxx). (6)

The probability of error directly influences the throughput
of our channel by limiting the density of the symbols in S .
Denote the number of bit errors introduced by decoding a
transmitted symbol xxx as yyy by ne(xxx,yyy). Then the average bit
error introduced by the channel in a symbol xxx is given by

Pbe(xxx) = Â
yyy2Xn\{xxx}

ne(xxx,yyy)P(yyy|RRR = xxx) 2log2(n)Pse(xxx). (7)

3 Localization Techniques

In this section, we briefly discuss different methods of
localization that can be used in our localization driven com-
munication model.

Camera Based and Laser Range Finder Based: The
most common architectures for localization are based on Vi-
sion and Laser Range Finder systems. In this class of local-
ization, an object can be localized with respect to the cam-
era’s field of vision with millimeter level accuracy. To this
extent, researchers have proposed a class of efficient sam-
pling and filtering algorithms for vision based localization
and tracking such as the Kalman filtering and the particle
filtering [4, 13, 4, 7]. Simultaneous localization and map-
ping [15] architectures in robotics are also very common in
this context. On the other hand, there exists a class of range
finder based systems that can measure the distance to a ob-
ject with millimeter level accuracy, given the object is in the
line of sight. The works of Lindström and Eklundh [6], and
Kleinehagenbrock et al. [5] are mentionable in this context.

RF Based Localization In addition to camera-based sys-
tems, we also consider RF-based systems in this paper, be-
cause they do not require visibility or direct line of sight. As
a popular alternative to the camera/range finder based local-
ization, there exists a large body of works [3] that exploits
different properties of RF signal for localization. The most
common techniques in this context employ three or more
reference nodes to triangulate a RF emitting object with cen-
timeter level accuracy (illustrated in Figure 2a). There are
also techniques that employ time of arrival (TOA) or time
difference of arrival (TDOA) signals to localize the target [2].
However, in such contexts, the object being located requires to
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(a) (b)

Figure 2: (a) Active RF Localization Illustration (b) Passive
RF based Localization Illustration

have an active RF transmitter, thus voids our purpose of local-
ization driven communication. Nonetheless, we aren’t ruling
out this type of localization completely. There might be situa-
tions, where the robot is equipped with an active radio and a
low power radio beacon without complicated communication
capabilities. The robot can also have passive RF devices that
can reflect the RF beacons from the reference nodes. In such
cases, our formulation is valid as well.

Another related class of RF based localization applies
Bistatic Radar type system for localization. In such techniques
there is one RF transmitter and a RF receiver separated by a
known distance (say, d1), The robot is made of some mate-
rial that can reflect RF signals. In such cases, the receiver Rx
receives two signal from the Transmitter (T x) : one for the
direct path and another for the reflected path from the robot
(as illustrated in Figure 2). Next, we can employ a directional
antenna to separate such multi-path signal components and
determine their directions of arrival . Next, we can estimate
the distance (d2+d3) based on the reflected signal and use the
angle q and the known distance d1 to estimate the location of
the robot. One simple case will be when both the T x and Rx
are located at the same point and the robot just bounces back
the signal. Then we will get only one signal and the estimated
distance will be twice the actual distance to the robot.

4 Pieces of the Puzzle

Assume that a specific arena is assigned to the robot for
communication. Given the arena parameters, the constraints
on the robot’s movements and the frequency and the tech-
nique employed for localization, various parameters for the
communication system need to be decided. In this section we
discuss the impact of different parameters on the communica-
tion ability of the robot.

1. Grid Granularity: Given the arena, it needs to be quan-
tized into zones or regions. Robot’s presence in a zone
corresponds to a particular symbol being communicated.
Finer the granularity more is the number of symbols
available for transmission, which means higher is the
number of bits mapped to each symbol. Ideally we would
want the granularity to be as fine as possible in order to
improve the communication bit-rate.

2. Noise Variance: The noise corresponds to errors in esti-
mating the robot’s location. The localization errors can

cause the robot’s location to be inferred incorrectly and
lead to the receiver mistaking it as some different sym-
bol. Depending on the localization technique used and
the errors in its location estimates, the grid granularity
needs to be decided which determines the size of the
symbol set and the total number of bits that are mapped
to each symbol. The noise, therefore, plays a major role
in determining the effective bit-rate of the system.

3. Localization Frequency: The symbol rate also depends
on the rate of localization of the robot. Faster the local-
ization, higher are the symbol and the bit rates.

4. Mobility of the Robot: Another important factor that
affects the communication is the speed of the robot. De-
pending on whether the relative movements or the actual
positions are mapped to the symbols, the robot needs
to move from one location to another within one sym-
bol duration. Slower the movements of the robot, lower
will be the symbol rate. This shows that the hardware
constraints also affect the communication rate.

In our system simulation, however, we assume that the
robot can move from one symbol location to another symbol
location with the symbol duration. Incorporating the mobility
constraints is left as a future work.
5 Proof of Concept

In this section, we demonstrate our idea through concrete
examples. We analyze a Gaussian noise model and provide
simulations as well as real-world data based emulation perfor-
mance of LOCO using the RSSI-based localization scheme.

For each evaluation setting below, assume that we assign
equal number of bits to each location. For a granularity of
n, this would mean that each location represents log(n2) bits.
We use a single parity bit per location for channel coding
that allows us to detect all odd number of bit errors. The
performance of the communication channel is measured using
the effective number of bits communicated by each symbol
(Ns), which is directly related to the symbol error rate as given
by the following equation:

Ns = (log(n2)�1)E [(1�Pse(xxx))] . (8)

The effective number of bits that is successfully communi-
cated per location is plotted as a function of the granularity
for different noise variances.
5.1 Gaussian Noise Model

There are multiple sources which can cause errors in the
localization of the robot, like errors in the actual movement
of the robot and noise in the measurements of the devices
used in the localization. The errors could also be introduced
due to the channel fading, if passive RF based schemes are
used. Since it is not always possible to model all these factors,
we can use a simplified noise model like the Gaussian noise
model. In fact, as the number of sources of error increases, this
model gets better and better due to the central limit theorem.

Let us assume that our location estimate is corrupted by
Gaussian noise, of known variance, independently in each
dimension. More formally, assume that if the robot is located
at xxx = (x1,x2) 2 Xn, then the receiver obtains the estimate
xxx0 = (x01,x

0
2) where
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x0i = xi + ei 8i 2 {1,2}, (9)

and e1, e2 are i.i.d normal N (0,s2
g). Then the probabil-

ity that the receiver estimates the position of the robot as
yyy = (y1,y2) 2 Xn is given by

P(yyy|RRR = xxx) = P
�
x01 2 [y1 � ls,y1 + ls] ,x02 2 [y2 � ls,y2 + ls]

�
,

where ls = 1
2n . This may be represented in matrix form as

pi j =

✓
Q
✓

x j1 � xi1 � ls
sg

◆
�Q

✓
x j1 � xi1 + ls

sg

◆◆
⇥

✓
Q
✓

x j2 � xi2 � ls
sg

◆
�Q

✓
x j2 � xi2 + ls

sg

◆◆
,

where the Q-function returns the tail probability of the stan-
dard normal distribution and i, j 2 {1 . . .n2}. So, if the noise
variance s2

g is known, the capacity Eqn. 2 can be used to
determine the capacity and the optimal source distribution.

To evaluate this model, we consider a 20m⇥20m arena,
quantize it into n⇥n symbol zones and assign equal number
of bits to each symbol. The area outside our arena is regarded
as an extra symbol which represents the failure to localize
the robot within the grid. This symbol does not convey any
information about the location of the robot inside the grid.
In Figure 3, we plot the variation in Ns obtained analytically
from Eqn. 8. As seen in the figure, high granularity doesn’t
necessarily lead to improvements in Ns due to constraints
imposed by the noise variance.

Figure 3: Performance of LOCO Using Parity Bit Channel
Coding under Gaussian Noise Model

5.2 RSSI Based Passive Localization

In this section, we present an illustration of the LOCO
channel where the localization system employs passive RF
based localization algorithm. Let us have m stations with
known locations outside the localization arena, S, that func-
tion in league to estimate the robot’s location. Each station
estimates the location of the robot by bouncing beacon signals
off the robot surface and measuring the RSSI of the reflected
signal. For simplicity, assume that the incident signal is re-
flected back along the incident path without any extra atten-
uation due to the reflecting material. Assuming log-normal
fading [1], we have

Pi
r|dBm = Pi

t |dBm +K|dB �10h log10


2di

d0

�
+Wi|dB (10)

where Pi
r and Pi

t denote the received and transmitted powers,
respectively, for the i-th station, di represents the distance of
the robot from the i-th station, K is the path loss at the refer-
ence distance d0 and Wi is a zero mean log-normal random
variable representing the noise with variance s2

r . Using (10)
we can estimate the distance of the robot from each station
and with m � 3 stations, we can estimate its precise location
within limits imposed by the noise (discussed in Section 3) as
illustrated in Figure 2a.

Figure 4: Channel Performance for RSSI Based Location
Signaling Using Parity Bit Channel Coding

To analyze the properties as well as performances of this
channel, we perform a set of simulation experiments. For this
set of experiments, we consider a square shaped localization
arena of size 20m⇥20m. The localization area is subdivided
into a n⇥ n equal size grids while the center of each grid
represents a distinct symbol in the LOCO model. For each
location of the robot, the RSSI values are collected using four
stations (m = 4) located at a distance of 1.41m diagonally
away from each of the four corners of the localization space
S. The transmitting powers (Pt ) are 7dBm where the path loss
at the reference distance d0 = 1m is �42dBm. These values
are chosen based on our insights from real world experiments,
briefly presented in Section 5.3. The path loss exponent, h,
is taken to be 2.2 (which is the traditional value of path loss
exponent for outdoor environments). With this setup, we com-
pare the channel performance in terms of effective bits per
symbol (refer to Eqn. 8) for varying the grid granularity i.e.,
n, with two different values of noise variance (s2

r = {5,10}).
The evaluation results are presented in Figure 4. Figure 4 indi-
cates that for a given noise variance there exists a threshold of
granularity beyond which a denser constellation hinders per-
formance due to the noise. Based on our preliminary analysis,
the actual value of this optimal granularity changes with the
noise variance, bits per symbol, and the source/channel cod-
ing schemes. A detailed theoretical analysis of such optimal
configuration is left as a future work. Figure 4 also indicates
that doubling the noise variance, s2

r , results in a significant
reduction (⇡ 30%) reduction in the maximum effective bits
per symbol.
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Figure 5: Robot Used For Data Collection

Figure 6: Channel Performance for RSSI Based Location
Signaling Using Parity Bit Channel Coding and Real Mea-
surements

5.3 RSSI Based Localization Emulation

In the previous section, we presented a simulation based
analysis of a passive RF localization schemes. However, most
common architecture in RF localization are based on active
radio transmission from the robot. To explore another part of
the RF based localization spectrum, in this section, we present
an example of LOCO channel where we assume that the robot
has a beacon module dedicated to localization only. Now, the
channel formulation will be mostly same as the formulation
in Section 5.2 with the Eqn. 10 modified as

Pi
r|dBm = Pi

t |dBm +K|dB �10h log10


di

d0

�
+Wi|dB (11)

To analyze the performance, we perform a set of emulations
that incorporate RSSI traces collected from an indoor environ-
ment. We used a a generic robot, illustrated in Figure 5 with an
OpenMote [8] placed on top of it and a standalone OpenMote
for the data collection purpose. We statically place the devices
at d 2 D = {0.5m,1m,1.5m,2m,2.5m,3m,4m,5m,6m} dis-
tance apart to collect 1000 sets of RSSI samples in an in-
door environment. To estimate the RSSI for a random dis-
tance d 2 R+, first, we find the distance dnear 2 D such that
dnear = argmindi2D |di � d|. Next, we randomly select one
sample, say rs, from the set of 1000 samples for dnear to inter-
polate the RSSI as follows.

re|dBm = rs|dBm �10⇥h⇥ log10(d/dnear)+W |dB (12)

where re is the interpolated RSSI value for configuration C .
The measured value of the path loss exponent is this con-

text is 1.8076. Note that, we add an extra noise of variance
s2

r = 2, on top of the noisy samples (with s2
r ⇡ 5). We use

this RSSI interpolation method to generate the RSSI values
observed by each of the stations, for each possible location of
the robot. For this set of experiments, we consider a 6m⇥6m
localization arena. The grid formulation as well as the access
point placements are kept same as discussed in Section 5.2.
With this setup, we compare the channel performance in terms
of effective bits per symbol (refer to Eqn. 8) for varying the
grid granularity (n). The evaluation results, illustrated in Fig-
ure 6, shows similar results as in Section 5.2, i.e., there exists
a threshold of granularity beyond which a denser constellation
hinders performance due to the noise.
6 Conclusion

In this paper, we proposed a novel communication scheme,
LOCO, for robots to communicate with a remote control sta-
tion. We investigated its feasibility using existing localization
schemes, and demonstrated the channel performance based
on simulation and emulation experiments with real world
data. While this work provides a proof of concept, further
investigations are required, firstly, to characterize the channel
performance under general settings, for instance by including
the movement patterns and constraints imposed by terrains
into our communication model; secondly, to perform a set
of real-world experiments to analyze the effect of the robots
movement constraints such as speed on the throughput.
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