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Abstract
We present compiler-assisted automatic checkpoint

strategies to allow transiently-powered embedded sensing
devices efficiently save the system’s state onto non-volatile
memory before energy is exhausted. Our solution operates
at compile-time with no developer intervention based on the
control-flow graph (CFG) of a program, while adapting to
varying levels of remaining energy and all possible program
executions at run-time. In addition, the underlying design ra-
tionale allows the system to spare the energy-intensive prob-
ing of the energy buffer whenever possible.

1 Introduction
Advances in energy harvesting and wireless energy trans-

fer are redefining the scope and extent of the energy con-
straints in embedded sensing [4]. However, energy provi-
sioning from ambient harvesting or wireless transfer is gen-
erally erratic; therefore, devices need to cope with highly
variable, yet unpredictable energy supplies, and be prepared
to survive periods of energy unavailability.

One way to enable the operation of such transiently-
powered devices is to efficiently checkpoint the system’s
state on non-volatile memory [2, 7] whenever energy is about
to be exhaust too early. However, the more crucial aspect is
to know when and how to perform the checkpoint. Doing
it early would essentially correspond to a waste of energy
that could be usefully employed in further computations. In
contrast, excessively postponing a checkpoint may yield a
situation where insufficient energy is left to complete the op-
eration. Because of the unpredictable supply of energy and
the varying run-time execution of programs, striking an effi-
cient trade-off is challenging.

We present compiler-assisted automatic checkpoint
strategies to place calls to trigger functions. Trigger func-
tions are responsible for triggering of checkpointing mecha-

nism with-in the user code after checking some conditions.
Our solution looks at the control-flow graph (CFG) of a pro-
gram and places triggers according to different strategies de-
pending on the programming constructs. Based on available
energy as well as the worst-case estimation of the energy
required to reach the next trigger call, our solution decides
whether to perform the checkpoint before proceeding with
the execution. Also, it can dynamically adapt to varying lev-
els of remaining energy at run-time and allows the system
to spare energy-intensive probing of the energy buffer, for
example, through ADCs, whenever possible.
2 Approach

Calls to trigger functions placed in the code essentially
represent two types of overhead compared to the normal
computation. First overhead is the energy cost of checking
whether a checkpoint is necessary or not, which is normally
constant. Second overhead is the energy cost of the actual
checkpoint. This overhead depends on where in the pro-
gram the checkpoint occurs, making its energy cost typically
proportional to the size of the allocated memory when the
checkpoint takes place [2].

Our goal is to minimize these two overheads by i) min-
imizing the number of trigger calls that are uselessly exe-
cuted, ii) postponing the actual checkpoint to when the avail-
able energy is strictly sufficient to that end, and iii) minimiz-
ing checkpoint size. The first two needs are at odds with
each other. Postponing the checkpoint, in fact, requires to
frequently check how close is the execution to when no suf-
ficient energy is left to perform the checkpoint. However, the
energy cost of frequent trigger calls, especially if every such
call needs to probe the energy buffer through ADC calls, may
become prohibitive.

To handle this issue, we give the ability to trigger func-
tions to reason on whether the system can reach the next
trigger call or not. As a result, every trigger call can take
an informed decision on whether to checkpoint. Say Enext
is the energy to execute the required MCU cycles from the
Ti−1-th call to the Ti-th call, whereas ECKP(i) is the energy
required to checkpoint the system’s state against the size of
the allocated memory at the Ti-th call, as intuitively depicted
in Figure 1. A checkpoint at the Ti−1-th call is required if

Eremaining ≤ Enext +ECKP(i) (1)

where Eremaining is the energy left in the buffer when execut-
ing the Ti−1-th trigger call.
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Figure 1: Decision logic to take a checkpoint.

(a) Kalman filter. (b) AES.

Figure 2: Total resets necessary to complete a workload.

At run-time, we can obtain the value of Eremaining through
software-based techniques [5, 1] or dedicated hardware so-
lutions [6] with negligible overhead. The ability to reason
on whether the system can reach the next trigger call is one
of the key of traits of our approach, and a major source of
improvements compared to previous works.

To optimize the placement of trigger calls, we rely on
the CFGs of the program and compile-time information on
memory allocation patterns. Static code analysis techniques
exist that can return accurate information on the evolution of
the stack and, in many cases, of the heap as well [3]. We
split the CFG into sub-graphs and within each sub-graph, we
identify the block corresponding to the minimum size of al-
located memory, and place a trigger call right at the end of it.
This reduces the cost of checkpointing, as the amount of data
to copy over stable storage is minimal within a sub-graph.

Normally, CFGs show complex structures reflecting the
variety of available programming constructs, such as branch-
ing statements, loops, and function calls. This means there
may be multiple places in a sub-graph corresponding to the
minimum allocated memory, as a function of different ex-
ecution paths. Moreover, embedded devices often operate
in an interrupt-driven manner, that is, the execution through
a CFG may be arbitrarily preempted and temporarily re-
directed through the CFG of interrupt handlers. We develop
a set of trigger placement rules that, depending on the pro-
gram structure, dictate where to place the trigger call and
what to consider as the Enext energy to reach the next trigger
call. The complete set of rules is recursively applied until
an elementary block in the CFG is reached. The rules also
determine the conditions when probing the energy buffer for
the value of Eremaining is strictly needed, or Eremaining can be
inferred from compile-time information. The latter situation
allows the system to spare operations that may be energy-
expensive per se, such as probing ADCs.

3 Preliminary Evaluation
Our evaluation considers modern 32-bit MCUs, such as

the ARM Cortex M3 MCU aboard an ST Nucleo L152RE
board, and three increasingly complex benchmark codes
commonly employed in embedded applications: Kalman fil-
ter, finite impulse response (FIR) filter, and Advanced En-
cryption Standard (AES). We sweep the possible executions
of programs against varying size of the underlying energy
buffers to measure the performance of our solution in terms
of a number of resets. This figure is inversely proportional to
the effectiveness of a given instrumentation strategy. Given
a fixed workload, the more the MCU needs to reboot, the
more the checkpointing operation is subtracting energy from
useful computations. Lower values are thus better.
Baselines. We consider the loop-latch and function-return
strategies of MementOS. The former places trigger calls at
the end of loop iterations; the latter places trigger calls at
function return points. In addition, we apply a brute-force
search on all possible executions of the code to identify an
oracle that, by predicting how the execution is going to un-
fold in the future, knows the last practical point in time when
to checkpoint. This is not feasible in reality; to make it
work in a concrete execution, one would theoretically need to
place a trigger call after every instruction in the code, yield-
ing an unbearable overhead.
Results. Figure 2 plots the results we obtain in the num-
ber of MCU resets for a fixed workload. As expected, big-
ger capacitor sizes generally correspond to fewer resets, in
that the individual executions can progress farther on a single
charge. Compared to either of the MementOS strategies, our
solution completes the fixed workload with 69% fewer resets
on average, with a peak improvement of 80% fewer resets.
Moreover, in most cases, the performance of our solution
rests very close to the oracle. Notably, for the Kalman filter
code, the performance is often almost the same, as the ora-
cle. This demonstrates that the rationale explained in Sec-
tion 2 strikes an effective trade-off between opposite needs,
ultimately performing similarly to an optimal solution that
is, however, unfeasible in practice. Overall, if we compare
Figure 2a, obtained using the Kalman filter code, with Fig-
ure 2b that depicts the performance of the AES implemen-
tation, one may note that the performance of our solution is
robust against diverse benchmark codes with different com-
plexity and structure, unlike existing approaches.
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