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Abstract
We present FLYZONE, a practical testbed architecture to

experiment with airborne mobile applications. FLYZONE

provides developers with a high-level interface designed for
seamless transition from the testbed to real deployments. We
design a low-cost localization system for the testbed, and a
flexible architecture to aid scalability when operating with
multiple drones. We deploy our testbed in different set-
tings to study its performance. Preliminary results show only
7.8cm localization error as compared to a motion capture-
based systems that cost orders of magnitude more. Using
modest hardware, FLYZONE maintains up to eight drones si-
multaneously without impacting the stability of control.

1 Introduction
Aerial robot platforms represent a new breed of comput-

ing platforms with extreme potential. The cost to build such
platforms dropped significantly in recent years [5], which en-
ables a range of sophisticated applications unfeasible with
any other technology; for example, exploring nearly inac-
cessible areas [4] or 3D reconstruction [3, 9].

Experimenting with such application usually takes place
in the target settings [12], which is, however, difficult, costly
and time consuming. Bugs in software may, for example,
result in the loss of drone, or damage to objects and peo-
ple [13]. The continuously changing regulations on the use
of civil drones further complicate matters [6], making it dif-
ficult to understand what can or cannot be tested in the wild.

To tackle these challenges, developers need to experiment
in a real-world environment that can be practically deployed
in protected areas and yet with the necessary functionality
to emulate real-world executions. Such an environment is
currently lacking in the state of the art.

FLYZONE aims to fill this gap by providing a number of
key advantages: the testbed is not tied to a single drone plat-
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Figure 1. FLYZONE architecture.

form, enabling portability; FLYZONE fosters scalability as
it is capable to control multiple drones simultaneously with-
out loss in control stability; it is assembled from low-cost
off-the-shelf components.

2 Architechture
The design of FLYZONE is mainly intended for indoor

operation, and its architecture aims to enable portability be-
tween the testbed and real deployment with little to no mod-
ifications in the written application. To this end, we provide
a dedicated API which mimics actual drone programming
systems, such as DroneKit [1] or APM Planner [2].

Fig. 1 shows the testbed architecture. The drone con-
trol component provides an API, based on which developers
implement the application-specific functionality. Under the
hood, this component implements a simple PID controller
using drones’ location as an input. The component exists in
only one copy and is deployed on a dedicated machine we
call control station. Through a drone-specific API, the com-
ponent steers the deployed drones.

The low-level localisation component collects the raw
data necessary to localize the drone. For example, it can sim-
ply read height information from the ultrasonic sensor, ob-
tain frames from a bottom camera, or acquire signal strength
for radio-based localization. There might be multiple such
components deployed on a single drone. For example, one
may combine visual-based localization with height detec-
tion, and thus install one such component to gather video
feed, and another one to obtain height.

The low-level localization component must be installed
aboard the drone. However, it does not necessarily require
to be connected with the drone’s software stack as our lo-
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(a) FLYZONE (b) Deployed camera.

Figure 2. Deployment.

calization technique does not require such integration. The
component can run on a separate hardware, which allows to
move the functionality across different drone platforms as
long as these can physically carry such separate hardware, as
we describe in Sec. 3.

The high-level localisation component collects the data
from the low-level localisation components and performs
necessary processing needed to obtain the position of the
drone. The number of these components in the system is
proportional to the number of drones, as every such compo-
nent calculates the position of a single drone.

The decoupling between the low- and high-level compo-
nents further improves the portability, as the latter can run
either on the control station or aboard the drone. The latter
configuration help lower the processing load on the control
station if needed, further improving potential scalability.

3 Deployment
At the moment of writing FLYZONE is installed in our

laboratory in Politecnico di Milano, Italy and at University
of Virginia, US. Both installations are actively used to exper-
iment with aerial drone applications.

Localization in FLYZONE is based on our own visual tags,
deployed on the ground at known positions, as shown in
Fig. 2a. In our deployment, we use Parrot AR.Drone 2.0
equipped with a RaspberryPI V3 board and RaspiCam V2
for video capturing, as shown in Fig. 2b. The low-level local-
ization component runs on the RaspberryPI that is powered
by a separate battery. The added weight is only 105 grams.

The high-level localization component is fed with the
video stream from the low-level component as input, and
uses OpenCV [11] for the actual image processing. The con-
trol station takes the drone location and orientation coming
from the high-level component and steers the drone using
the ODC [10] Java SDK for the AR.Drone 2.0, according to
the outputs of a standard PID controller. The control station
we employ is equipped with an Intel Xeon E3 v1270 CPU,
and a low-end NVIDIA GPU that can off-load some of the
OpenCV processing from the main CPU. The current proto-
type operates 8 drones simultaneously. A concrete demon-
stration with 2 drones is visible at vid.me/QFCg.

The materials are entirely off-the-shelf, and their total
cost is a function of how many drones need to be simulta-
neously supported. The total cost of our deployment that
supports up to 8 drones is ≈ 2500 e, excluding the drones,
and is essentially comparable to a high-end laptop.

4 Preliminary Evaluation
We compare the performance of FLYZONE against an

industry-strength OptiTrack [8] motion capture system able
to provide errors down to microns, at orders of magnitude
higher costs. We do not investigate vertical accuracy; for

Figure 3. Localization performance of FLYZONE at 2 me-
ters. RMSE=7.8cm
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Figure 4. Computational performance of FLYZONE.

that, we use the ultrasound sensor exactly as the drones
would do in a real deployment.

Fig. 3 visually depicts the accuracy of localization in FLY-
ZONE against the OptiTrack system in a sample experiment,
where the drone flies a circle so that the front camera always
points to the center of the testbed. The measured RMSE is
only 7.8cm, which is better than the accuracy provided by
available UWB technology in a similar setting [7].

Conversely, we measure how many drones the testbed can
manage simultaneously whenever all high-level localization
components are deployed on the control station, while main-
taining a minimum requirement of 30 location updates per
second. We observed experimentally that the latter is neces-
sary for reliable PID control.

Fig. 4 demonstrates that the lower bound on location up-
dates is maintained with up to eight drones with the hardware
we use on the control station, described in Sec. 3. A high-end
GPU expressly supported by OpenCV may, nevertheless, im-
prove such a performance significantly [11].
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