
WaCo: A Wake-Up Radio COOJA Extension for Simulating Ultra
Low Power Radios

Rajeev Piyare1,2, Timofei Istomin2, Amy L. Murphy1,
1 Bruno Kessler Foundation, Italy {piyare, murphy}@fbk.eu

2 University of Trento, Italy timofei.istomin@unitn.it

Abstract
Radio communication remains the primary battery con-

suming activity in wireless systems. Advances in MAC pro-
tocols have enabled significant lifetime improvements, but in
systems with low data rate, idle listening, and other commu-
nication artifacts can begin to dominate costs. One proposal
to combat this is the addition of a second, extremely low
power radio component that is always-on. As a consequence
of the extremely low power, such radios are incapable of de-
coding general data, and thus are often delegated the task of
listening for a trigger, leading to the terminology wake-up
radio, as this extremely low power radio is used to wake up
a higher power radio, which is then used for data communi-
cation. While wake-up technology has been steadily evolv-
ing over the last decade in the hardware arena, few protocols
have been developed to exploit it. In this work, we present
WaCo, our wake-up radio COOJA extension that allows ex-
ploration of the capabilities of the wake-up radio from the
desktop environment. We also use our extended simulator to
concretely show the potential benefits of the wake-up radio
hardware with two, standard data collection protocols. Our
results simultaneously confirm that wake-up technology has
tremendous potential and that our simulator extension pro-
vides an effective mechanism for such exploration.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and

Modeling, Model Validation and Analysis; D.2.5 [Software
Engineering]: Metrics—complexity measures, performance
measures
General Terms

Design, Simulation, Performance, Reliability

Keywords
Wake-up Radios, Energy Efficiency, Wireless Sensor Net-

works, Contiki Collect, RPL, Data Collection

1 Introduction
Extending the battery life of sensor nodes has been one of

the primary research focuses since the introduction of wire-
less sensor networks (WSNs) and its integration with the In-
ternet of Things (IoT) paradigm.

Most approaches to energy savings focus on the soft-
ware side, addressing expensive communication activities.
For example, work at the MAC layer [6] trades off energy
consumption, latency, throughput and fairness. While ra-
dio duty cycling significantly decreases consumption, sev-
eral shortcomings remain such as idle listening, overhearing
and costly continuous retransmissions at the sender.

Recently, a new hardware technology promises to directly
combat these problems [9] by offering an ultra low-power
radio, with consumption three orders of magnitude less than
the typical low power radios used in WSNs. To offer an ex-
ample, the radio we consider here consumes 1.94 μW for lis-
tening, in contrast to the CC2420’s 56.4 mW . To reach such
low numbers, these novel radios have very limited capabil-
ities. For example, most prototypes are unable to transmit
arbitrary data, and are instead used to exchange a simple sig-
nal, which is used to trigger the primary radio, thus the ter-
minology wake-up radio (WuR), indicating that the receipt
of a signal on the ultra-low power radio is used to wake-up a
primary radio for regular data exchange.

WuRs are quite promising to extend lifetime, yet the tech-
nology remains in its relative infancy. While several proto-
types exist in the laboratory environment, it remains difficult
to experiment with these devices. Further, the exact poten-
tial of this technology on the WSN system as a whole has not
been demonstrated.

Therefore, the goal of this paper is to offer a software-
only, simulation environment to enable the systematic ex-
ploration of the potential of WuR technology. This explo-
ration must allow for the development, evaluation and evo-
lution of protocols across all layers of the software stack as
well as the evaluation of the applications in the target envi-
ronments. To this end, we present WaCo, a set of extensions
to the COOJA simulator [10] and Contiki operating system
that allow prototyping of protocols and applications that can
exploit a standard WSN mote extended with a new, simulated
WuR hardware module. Our design allows the specification
of the WuR to be easily modified, allowing researchers to
plug in their own WuR module.

We are not the first to propose simulation of WuR, as

48

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2017
20–22 February, Uppsala, Sweden
© 2017 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-1-4

connectivity requirements have been explored analytically
in MATLAB [11] and the relationship between hop counts,
effective-WuR range, and PDR was explored in [13]. Fur-
ther, OMNET++ [9] and GreenCastalia [1] provide simu-
lation models for WuR based systems. Nevertheless, none
of these consider the entire stack. WaCo, instead, directly
uses binary, deployment-ready code, and therefore provides
the ability to move between simulated and real experiments.
Further, it allows simulation of multiple embedded operating
systems.

This paper presents the relevant background in WuRs and
simulation (Section 2), then outlines the design of WaCo’s
COOJA and Contiki extensions (Section 3). We also pro-
vide a straightforward MAC module, called W-MAC (Sec-
tion 4), which uses the WuR as a trigger for the standard
CC2420 radio, and offers the same interface as other popu-
lar MAC protocols, allowing it to easily sit below standard
routing protocols. We then offer an evaluation of a standard
data collection system (Section 6) with two primary goals:
to demonstrate the benefits of WuR and to show effective-
ness of WaCo at providing this evaluation. Finally Section 7
provides concluding remarks and possible future directions.

2 Background
We begin by offering background on the characteristics

of WuRs and how they can be combined with a traditional
mote. We also provide details of COOJA, as it is the core
simulation environment for WaCo.

2.1 Ultra Low-power Wake-up Radios
Recent developments in CMOS power consumption have

led to the new design paradigm of WuRs that greatly re-
duces power consumption. A typical WuR is composed of
both a wake-up receiver (WuRx) and a wake-up transmitter
(WuTx). The former consumes several orders of magnitude
less power than a traditional low-power radio, allowing it to
be always-on without significantly depleting the battery.
Characteristics. The most critical feature of the WuRx is
its low power consumption. Design for this at the hardware
level has the concrete effect to limit signal detection capabil-
ities and operations that can be preformed by the WuRx. Fur-
ther, such constraints limit the choice of modulation schemes
and receiver complexity, and, as a consequence receiver sen-
sitivity, ultimately reducing the communication range.

Most prototype WuRxs are limited to receiving a very
small packet of up to 16 bits, and, in some cases, interpreting
whether or not the contents of the packet match the address
assigned to the node [8], offering a unicast wake-up mode.
This is motivated by the observation that decoding the ad-
dress consumes energy, typically at an external low-power
micro-controller (MCU). With few address bits, the demod-
ulation at the WuRx is very simple, reducing the power bud-
get as no control or formal check on the demodulated packet
is usually required.
Operation. A typical system couples a WuR with a higher-
power radio, resulting in a dual-radio architecture. When
used as a wake-up device, a remote node transmits a wake-
up signal (WuS) using the WuTx. The WuRx detects this
WuS and generates an interrupt to the main nodes MCU to
switch it from sleep to an active mode. Then, the MCU turns

on the primary transceiver to exchange data packets with the
initiator node in a conventional manner.
Benefits. The idle listening of a standard, low-power radio
contributes significantly to the overall energy consumption
of duty-cycling nodes. The on-demand WuR approach min-
imizes this unnecessary energy wastage, as the main radio
and the node will be activated only when there is actually
data to transmit. Further, WuRs with an addressing mecha-
nism can be used to reduce overhearing. Finally, since the
WuRx can be kept always-on, continuous transmissions will
be avoided as the sender will know precisely when the re-
ceiver will be awake, ready to receive the data.

2.2 WSN Simulation Environment: COOJA
Our goal is to provide an environment in which to ex-

plore the potential benefits from the WuR technology with-
out requiring significant hardware investment. COOJA of-
fers a solid environment for such testing, however it does not
support multiple radios on a single hardware platform, nor
does it offer modules to simulate WuR. At the same time,
COOJA directly supports the integration of multiple hard-
ware models in the form of the platform, offering a clear
place for expansion to incorporate the WuR. Further COOJA
exploits MSPSim to allow software designed and compiled
for real hardware such as the TMote Sky platform to be di-
rectly used for simulation. MSPSim emulates the MSP430
MCU and the CC2420 transceiver at the instruction level,
offering very fine-grained, low-level simulations.

COOJA also allows developers to test and run their appli-
cations using different radio models on fully emulated hard-
ware devices, a functionality not available in other simulators
such as Castalia [2] and MiXiM [5].

Above the hardware, COOJA also enables simulation of
systems with various operating systems designed for re-
source constrained devices. For this work, we chose Con-
tikiOS [3], which itself contains several protocols from the
application to the physical layers, as shown in Figure 1b and
two networking stacks: Rime [4] and uIPv6.

3 WaCo: Enabling Support of WuR in Simu-
lation

To enable simulations with WuR technology, modifica-
tions of both the simulator and the mote software are re-
quired. The simulator must be extended with a simulated
hardware module (WuR chip) and support for multiple radio
channels, able to be used simultaneously and independently.
Additionally, the visual simulator plug-ins that simplify de-
bugging and measuring system performance must be added.

The mote software requires changes to the OS and proto-
cols that interface with the newly added hardware modules.
For this, we modify Contiki, providing a new physical layer
interface for the WuR and a new MAC protocol that uses
both the new WuR and the standard CC2420 data radio.

This section details the hardware and software extensions
that form the core of WaCo, summarized in Figure 1, while
Section 4 provides details of our MAC protocol.

3.1 COOJA Platform Extensions
In COOJA, node hardware is represented as a platform

description, containing models for the MCU, radio, sensors,

49

�������	�

��
����������

���

���

������ �������	�

��
��������

�������� 	

�
�����������

�����

(a) Node and radio modules in
COOJA

����

����	

		
�
�

����

��

��
�

�
��
�

�
�
��

�
�
	

�����������

(b) ContikiOS networking stack

Figure 1: The WuR module extensions of WaCo to COOJA
and ContikiOS.

memory, and other hardware components. We chose to ex-
tend the existing TMote Sky platform, a popular platform in
the community. Further, because COOJA integrates MSP-
Sim, simulations exploiting the TMote platform can be exe-
cuted directly with code compiled for real nodes, simplifying
the development process. Our description of the components
specific to the WuR appear in three places in the COOJA sys-
tem: the platform, the simulator core, and in its plugins.

First, the emulated TMote platform of COOJA is ex-
tended with a module, represented by WuR in Figure 1. The
module implements the hardware interface between the WuR
and the CPU, based on I/O ports and a memory buffer. Fur-
thermore, it defines the operational aspects of the wake-up
transceiver, e.g., its transmission rate. Conceptually, this in-
terface is similar to that of the pre-existing CC2420, with
interrupt processing to receive an incoming WuS and a trans-
mit operation to send either an addressed unicast or broadcast
signal. Additional operations enable reading and writing to
the memory of the processor to communicate the destination
address received or to be transmitted. While these opera-
tions cover the functionality of most WuRs found in the lit-
erature, our interface can easily be extended. For example,
some radios additionally support duty cycling, necessitating
extensions to turn on and off the WuR.

Second, in the core of COOJA we implemented sup-
port for multiple independent radio channels to be used by
multiple-transceiver platform. The extension allows simu-
lating an arbitrary number of radio channels, with a separate
signal propagation model associated to each of them. For our
extended platform we use two radio channels.

Third, COOJA uses a plugin architecture to extend its core
functionality. Our wake-up extension affects two plugins:
the power tracker and timeline. Accurate power profiling
requires augmenting COOJA with a second instance of the
power tracker plugin associated with the WuR. Thanks to
our extension it is possible to record, for each radio, the time
spent in different states. Efficient debugging requires a visual
representation of the network behaviour on a unified timeline
showing events generated by both radio transceivers.

Regarding the radio channel model, most COOJA users
opt for the Multi-path Ray-tracer Medium (MRM), which
we also apply to the CC2420. Nevertheless, for the WuR,
we use the Unit Disk Graph Medium (UDGM) with constant
loss. While UDGM is simplistic, its use reflects our current
goal of creating a generic model of WuRs.

3.2 Contiki OS extensions
We now turn our attention to extensions for WaCo on the

mote software side, as shown in Figure 1b. Most signifi-
cantly, we wrote a new physical layer module for Contiki to
wrap the interface of the WuR. This interface follows that
of the analogous module for the CC2420, with operations
to support two-way data communication, i.e., handling inter-
rupts to the CPU when the node receives the signal over the
wake-up channel and triggering transmission of wake-up sig-
nals, optionally specifying the destination address. We also
implemented a MAC protocol, outlined in the next section.

4 W-MAC in a Nutshell
W-MAC, our MAC protocol for the dual-radio setup, has

been implemented to offer the same interface to higher layer
protocols as the popular ContikiMAC, making it seamlessly
interoperable. The major contribution of W-MAC is its co-
ordination of the dual radios, using an always-on WuRx as a
trigger for activating the CC2420.

W-MAC assumes all network nodes host both radios, nat-
urally forming a multi-hop network in which nodes alter-
nately act as senders and receivers. Further, W-MAC is a
sender-initiated protocol in which the message source trig-
gers the receiver to wake up.

The basic operation of W-MAC is as follows: when a
node has data to send, either generated from the upper layers
of the protocol stack or forwarded by another node, W-MAC
first transmits a WuS containing the address of the destina-
tion. It should be noted that the two networking stacks of
Contiki use different layer 2 address sizes, specifically the
Rime stack uses 2 B while uIPv6 requires 8 B. W-MAC al-
lows these different network address sizes, with correspond-
ing consequences on the costs due to increased transmission
and demodulation times.

On the WuRx side, the receipt of the WuS matching the
receiver’s address triggers the activation of the CC2420 in re-
ceive mode. If no data packet is received within a predefined
time due to interference or collisions, the receiver switches
the CC2420 back into sleep mode, keeping the WuRx ac-
tively listening for subsequent signals. Instead, if a packet
is received on the CC2420, an acknowledgment (ACK) is
sent, then the receiver’s primary radio is turned off. Upon re-
ceipt of the ACK, the transmitter’s primary radio is similarly
turned off. On the sender side, after the WuS is transmit-
ted, the node waits for a short period of time during which
it expects the receiver’s CC2420 to be switched into receive
mode. It then transmits the data on the main, data radio,
switches into receive mode to receive the ACK, then goes
back to sleep. If the sender does not receive the ACK within
a certain time interval, it will return to the beginning of the
sequence, re-transmitting the WuS.

Thus far we have only discussed unicast, addressed trans-
mission, however our WuR also supports broadcast. In this
case, the receipt of the WuS causes all receiving nodes to
switch on their primary radios. As before, the sender waits
a short period, then transmits the data. However, unlike uni-
cast mode, broadcast transmissions are not acknowledged,
allowing the sender to immediately switch off the CC2420
after transmission and the receiver to switch off after receipt.

50

As is typical, our WuR and main radio use different chan-
nels, eliminating the possibility of collisions between the
WuS and the data packets. However, collisions can still oc-
cur between concurrent wake-up signals or concurrent data
transmissions. In our current implementation, channel sens-
ing is only performed by the main radio before transmission,
allowing us to avoid most data packet collisions. For this,
we use Contiki’s default CSMA mechanism and if the data
channel is busy due to an on-going transmission or reception,
the transmitting node backs off for a random period before
retransmitting the WuS. The drawback of performing car-
rier sense just before data transmission is the penalty of in-
creasing the on-time for the main radio at the receiver, which
was awakened by the WuS, but due to the data channel be-
ing busy, the data transmission cannot proceed. To overcome
this, an alternative solution could be to use WuR for channel
sensing and reservation rather than the main radio. We plan
to investigate the benefits of this in the future.

5 WaCo Evaluation Settings
To evaluate WaCo, we demonstrate its use through the sim-

ulation of a data collection application, a common scenario
for low-power WSNs. First, however, we recall that our ob-
jective is to answer the following two questions: to what ex-
tent can battery-powered networks be made energy efficient
by equipping them with WuR technology and can WaCo be
used to demonstrate this.

We describe our simulation settings, beginning with
the lowest physical network topology and progressing up
through the routing and application layers.

Network Topology. To avoid the bias of network density,
we established a 10 by 10 grid of 100 nodes. The horizontal
and vertical distance between nodes is 30 m and we place a
single sink node close to the center of the grid.

Routing Protocols. The architecture of WaCo and W-MAC
allows us to run different routing protocols, as long as they
utilize the standard MAC interface. In this work, we experi-
ment with Contiki Collect and RPL [12]. Together they rep-
resent the current state-of-the-art in data collection and are
staple references for many-to-one scenarios.

MAC Protocols. The routing protocols described above sit
on top of the MAC layer, whose primary objective is to con-
trol the radios, including duty cycling. For ContikiMAC,
the sleep interval was set to 125 ms with the phase lock-
mechanism enabled. In our case, NullRDC serves as a com-
parison baseline. The most significant difference between
W-MAC and the others is its ability to exploit the WuR,
while the others use only the CC2420.

Simulation Parameters and Metrics. The protocols men-
tioned above are highly customizable with parameters such
as buffer sizes, timeouts, retries and maximum hop count.
We used the default values unless otherwise noted. The
CC2420 radio chip is configured using MRM with a mean
noise value of -80 dBm and noise variance of 4 resulting in
a ∼65 m transmission range. For UDGM, associated with
WuR, the transmission range is fixed to 50 m with a success
ratio of 100% and interference range of 50 m.

In each of our simulation scenarios, every source node
generates 6 B data packets at a fixed inter packet interval

Table 1: Power consumption of the CC2420 and WuR. Idle
reflects listening to the channel, but not actively receiving.

Power Consumption (mW)
Parameters RX TX Idle
CC2420 56.4 52.2 56.4
WuR 0.144 8.38 0.001944

(IPI). The WuR signals are sent at 100 kbps, and consist of
2 B of address data for Rime and 8 B for uIPv6. Each run
simulates 40 minutes of runtime with the first 10 minutes
serving as a burn-in time for the routing and MAC protocols.
The subsequent 30 minutes are analyzed and results reported
for i) power consumption, ii) reliability and iii) end-to-end
packet latency. Each point on our plots in Section 6 repre-
sents the network-wide average of five simulated runs.
WuR Hardware Parameters. For evaluation purposes, the
WuR solution that we adopted is a custom designed ultra
low-power module [7], representative of most WuRs found
in the literature. Its performance parameters are set to values
obtained from actual, in-lab measurements. The WuR board
includes two modules: the addressable WuRx and a WuTx.
The WuRx module operates in the ISM 868 MHz band and
has a high receiver sensitivity of -55 dBm with a maximum
communication range of 50 m. The power consumption of
the WuRx is 144 μW in receiving mode and of 1.944 μW
when it is in an idle state, listening for the signal. The power
consumption of the WuTx is measured to be 8.3 mW when
transmitting at +10dBm.

While the experiments presented here reflect the specific
properties of our prototype WuR, the results can be general-
ized to the class of WuR. Further, as new technologies de-
velop, WaCo can be easily extended with the hardware pa-
rameters of other modules, as outlined in Section 3.1.

6 WaCo for Network Performance Analysis
WaCo enables evaluation of systems with WuRs in two

ways. First, W-MAC, as a part of WaCo, can be seamlessly
substituted for the stock ContikiMAC. Further, other MAC
protocols employing WuRs or cross-layer solutions can be
evaluated in WaCo by exploiting its WuR model and the plu-
gins for power profiling and visual debugging.

Here, we concretely demonstrate how WaCo can be used
to investigate the performance gains provided by W-MAC
when integrated in an networking stack. Our tests vary the
network load to determine how the choice of a MAC af-
fects network capacity by exploring a range of IPIs from
10s to 600s, with the lower IPIs showing performance in
a highly stressed setting. We also experiment with no data
traffic, zero-IPI, observing the network without any applica-
tion load to offer a baseline for the maximum power savings
achievable. We first focus on the results of Contiki Collect,
then briefly discuss the performance differences of the uIPv6
stack with RPL.

6.1 Contiki Collect with WuR
We begin our evaluation by considering the data collec-

tion reliability, shown in Figure 2a. At the smallest IPI, the
highest load, all the protocols suffer from overload showing
reliability below 75%. As expected, ContikiMAC demon-
strates the smallest network capacity due to its duty-cycling

51

●

●

●● ●

0.
00

0.
25

0.
50

0.
75

1.
00

10 30 100 300 600
IPI [s]

R
el

ia
bi

lit
y

●

ContikiMAC

W−MAC

NullRDC

(a) Reliability

●

●

●● ●0
50

10
0

15
0

10 30 100 300 600
IPI [s]

La
te

nc
y

[s
] ●

ContikiMAC

W−MAC

NullRDC

(b) Latency

−− −− −0
1

2
3

4

10 30 100 300 600
IPI [s]

P
ow

er
 C

on
su

m
pt

io
n

[m
W

]

−

ContikiMAC
W−MAC

ContikiMAC_no−data
W−MAC_no−data

(c) Power consumption.

Figure 2: Contiki Collect evaluation collected with WaCo.

Table 2: Summary of network-wide performance gain of W-
MAC over ContikiMAC

Network Stack Power Reliability Latency
Contiki Collect 4.75–20.40× 1.00–7.85× 1.45–23.94×
RPL 3.00–8.40× 1.00–3.69× 9.18–228.50×

nature. The nodes only have one chance to receive a sin-
gle packet in each sleep interval, configured as 125ms in our
simulations. NullRDC, instead, is on the other end of the
spectrum, showing the highest capacity. Packets are tightly
packed into the available bandwidth with no additional de-
lays besides CSMA backoffs. W-MAC stands in the mid-
dle, albeit closer to NullRDC, due to delays imposed by the
signaling of the WuR and the activation of the data radio.
These delays are much smaller than the duty cycle period of
ContikiMAC, allowing it to push more packets through. The
same reasoning explains the differences in average latency
shown for the three MAC protocols.

The high load negatively affects both reliability and la-
tency as higher contention means longer backoffs and longer
packet queues. In overload conditions the queues overflow
and packets are dropped. As we decrease traffic with higher
IPIs, all MAC protocols achieve perfect reliability and the
latencies in line with those of NullRDC. Notably, each MAC
protocol achieves perfect reliability at a different IPI, reflect-
ing the ability to handle higher bandwidth due to the different
times required to transmit each packet. W-MAC improves
the network capacity over ContikiMAC, handling the IPI of
100s, while the latter delivers all packets only at IPI ≥ 300s.
At low load, the latency of all protocols become very similar.

We now turn our attention to the power consumption
shown in Figure 2c. As NullRDC keeps the main radio
transceiver always on, its power consumption is several or-
ders of magnitude higher than the others, averaging 56mW .
Therefore our plots only show power consumption for W-
MAC and ContikiMAC. We also offer two lines showing the
consumption for zero-IPI, or no data. This concretely shows
the baseline consumption required to maintain the collection
topology, separating out the additional cost to transmit data.

Most importantly, we note that in all scenarios, the ad-
dition of the WuR yields significant savings, as summarized
in Table 2. With no data, consumption drops dramatically
from 1.01mW to 0.1mW. In the setting when both proto-
cols achieve high reliability, namely the IPI of 300, the data
traffic of ContikiMAC pushes consumption above the base-
line to 1.6mW while W-MAC is very close to its baseline.

The reason for this significant difference is that W-MAC re-
duces idle listening of the power-hungry main radio and does
not need long packet trains to deliver the packet as in duty-
cycling MAC protocols, thus achieving short transmission
times. While ContikiMAC does mitigate this by starting the
packet train close to the end of the sleep interval of the des-
tination node, this estimation is not perfect. Instead, the sig-
naling of the WuR ensures tight timing, except in overloaded
scenarios.

When the system is overloaded, both protocols show in-
creased power consumption because of channel contention
that leads to collisions and retransmissions. As the IPI de-
creases the effect of data traffic gradually reduces until the
system lifetime is dominated by protocol overhead.

6.2 RPL with WuR
To demonstrate the capabilities of WaCo, we offer a brief

evaluation of RPL, shown in Figure 3 on top of ContikiMAC,
W-MAC, and NullRDC. Interestingly, the overall network
performance achieved by RPL is better than that of Contiki
Collect. The reliability recorded for all three MAC protocols
is higher at the respective IPIs, moreover ContikiMAC shows
perfect reliability starting from the IPI of 100s.

Similarly, the latency and power consumption in absolute
terms are lower than those of Contiki Collect. However, in
relative terms W-MAC achieves less improvement over Con-
tikiMAC. One of the reasons is that the wake-up address in
RPL is configured to 8B, which is 4× longer than the Rime
node address. Therefore, the WuR spends more time trans-
mitting the addresses due to longer bit duration. On aver-
age the power consumed by WuRs is 1.1× more than that of
Contiki Collect in the no-data scenario.

6.3 Validation
Finally, we validate our simulation results against a small,

hardware setup with two Tmote Sky motes, one connected to
a WuRx and the other to a WuTx. Figure 4 shows a COOJA
timeline trace and a trace collected by an oscilloscope. The
traces show the exchange of the WuS followed by the ex-
change of a data packet on the main radio. In the COOJA
timeline, blue indicates transmission and green reception,
with the WuR exchange lasting longer than data exchange.
This is due to the fact that we ran our simulation at 1Hz, so
that it matches the restriction of the research prototype we
compare to here. Note that in the simulations above, we ran
the WuR at 100Hz, a value more common to WuR proto-
types found in the literature. As can be seen in the table,

52

●

●

●●
●

0.
00

0.
25

0.
50

0.
75

1.
00

10 30 100 300 600
IPI [s]

R
el

ia
bi

lit
y

●

ContikiMAC

W−MAC

NullRDC

(a) RPL Reliability

●● ●● ●0
10

20
30

10 30 100 300 600
IPI [s]

La
te

nc
y

[s
] ●

ContikiMAC

W−MAC

NullRDC

(b) RPL Latency

−− −− −

0
1

2
3

10 30 100 300 600
IPI [s]

P
ow

er
 C

on
su

m
pt

io
n

[m
W

]

−

ContikiMAC
W−MAC

ContikiMAC_no−data
W−MAC_no−data

(c) RPL Power consumption.

Figure 3: RPL evaluation collected with WaCo.

the consumption we measure in COOJA is in line with that
measured in the lab, validating our simulation environment.
Small differences account for variations in hardware config-
urations, such as keeping the WuRx active for a short period
after reception ends.

Events WaCo (mW) Hardware (mW)

WuTX 384 387
WuRX 202 129
Data TX 250 264
Data RX 210 236

(a) Table 3: Measured power consumption using WaCo and hard-
ware

����

����

��	�
��

��	�
��

���

(b) Cooja-WaCo timeline trace and radio events

����

�������

�	
�

�������������

���
������
������

�����

�������������

�����

��������

 ���
��

�!"

 ���

� �!"

#��

����

�$��

����

(c) Oscilloscope trace for radio events

Figure 4: WaCo Validation.

7 Summary and Future Directions
Our stated goals were two fold: demonstrate the poten-

tial of the novel WuR technology, and offer a tool to provide
this evaluation. Toward the first goal, we have shown that
with a representative WuRx, data collection networks can
be built using a standard network stack. The results show
that the WuR technology has the potential to offer significant
energy savings without compromising on reliability and la-
tency. Actually, in terms of reliability, due to the brief trans-
mission duration fostered by using the WuR as a signaling
technology for a higher power radio, systems can support

higher throughput. For the latter, we have demonstrated that
WaCo provides an effective environment for analysis of pro-
tocols proposed for WuR technology.

Future work will involve further testing of the WaCo en-
vironment with different WuR hardware specifications from
the literature, the development of novel MAC and routing
protocols, possibly incorporating an acknowledgment mech-
anism at the WuR level, and cross layer protocols to better
exploit the features of the WuR through the routing and ap-
plication layers.

8 References
[1] D. Benedetti, C. Petrioli, and D. Spenza. GreenCastalia: An Energy-

Harvesting-enabled Framework for the Castalia Simulator. In Pro-
ceedings of the 1st International Workshop on Energy Neutral Sensing
Systems, page 7. ACM, 2013.

[2] A. Boulis. Castalia: Revealing Pitfalls in Designing Distributed Algo-
rithms in WSN. In SenSys, pages 407–408. ACM, 2007.

[3] A. Dunkels, B. Gronvall, and T. Voigt. Contiki- A Lightweight and
Flexible Operating System for Tiny Networked Sensors. In IEEE
LCN, pages 455–462, 2004.

[4] A. Dunkels, F. Österlind, and Z. He. An adaptive communication
architecture for wireless sensor networks. In SenSys, pages 335–349.
ACM, 2007.

[5] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. Haneveld, T. E.
Parker, O. W. Visser, H. S. Lichte, and S. Valentin. Simulating Wire-
less and Mobile Networks in OMNeT++ the MiXiM Vision. In Simu-
tools, page 71, 2008.

[6] K. Langendoen. The MAC Alphabet Soup Served in Wireless Sensor
Networks, 2004.

[7] M. Magno and L. Benini. An Ultra Low Power High Sensitivity Wake-
up Radio Receiver with Addressing Capability. In IEEEWiMob, pages
92–99, 2014.

[8] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. U. Gamm, and
L. Reindl. Performance Evaluation and Comparative Analysis of
SubCarrier Modulation Wake-up Radio Systems for Energy-Efficient
Wireless Sensor Networks. Sensors, 14(1):22–51, 2013.

[9] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. U. Gamm, and
L. Reindl. Has Time Come to Switch From Duty-Cycled MAC Pro-
tocols to Wake-up Radio for Wireless Sensor Networks? IEEE/ACM
Transactions on Networking, 24(2):674–687, 2016.

[10] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
Level Sensor Network Simulation with COOJA. In IEEE LCN, pages
641–648, Nov 2006.

[11] R. Su, T. Watteyne, and K. S. Pister. Comparison between Preamble
Sampling and Wake-up Receivers in Wireless Sensor Networks. In
IEEE GLOBECOM, pages 1–5, 2010.

[12] T. Winter, T. Pascal, B. Anders, W. H. Jonathan, and K. Richard. RPL:
IPv6 Routing Protocol for Low-Power and Lossy Networks. IETF,
2012.

[13] Y. Zhang and G. Dolmans. Wake-up Radio Assisted Energy-aware
Multi-hop Relaying for Low Power Communications. In IEEE
WCNC, pages 2498–2503, 2012.

53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

