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Abstract
Thermal energy storage (TES) is among the cheapest

forms of energy storage and is used to efficiently shift ther-
mal loads such as HVAC. Recent work has begun to explore
using water heaters for TES but does not yet address several
key challenges, including making TES cost effective for all
consumers. This paper presents ThermalThrift, a system that
learns the water consumption patterns of each household in
order to better manage TES standby loss to cost effectively
perform thermal load shifting for individual households. We
evaluate ThermalThrift by collecting 78 days of in-situ hot
water usage data from 6 pairs of participants and 12 different
time-of-use (TOU) pricing schedules from utility companies.
Results indicate that after only 7 days of learning data for a
given household, ThermalThrift is able to achieve a 47-62%
peak load reduction while reducing cost for consumers up
to 25% and never increasing cost for an individual. These
results indicate that TES with water heaters can be made
cost effective for each household by learning and applying
a model of individual water usage patterns.

Categories and Subject Descriptors
C.3 [Special-Purpose and Applications-Based Sys-

tems]: Real-time and embedded systems

General Terms
Design, Experimentation

Keywords
Thermal Energy Storage, Standby Loss, Water Heating

1 Introduction
Thermal energy storage (TES) is the practice of storing

energy in a thermal mass for later use. Of the four main types
of energy storage (thermal, mechanical, electrical, and chem-
ical), TES has some of the lowest capital costs ($60/kWh),

even compared to Pb-acid batteries ($400/kWh) [7]. How-
ever, converting the stored heat back into electricity results
in a loss of 40-70% of the energy [7], and so TES is most
commonly used for heating and cooling (HVAC) so that the
thermal energy is used directly and conversion to electricity
is avoided. To achieve this, TES technologies such as stored
ice, chilled water, or heat bricks are used to store or remove
heat during off-peak hours to meet HVAC needs during peak
hours, thereby reducing a building’s energy bill and reduc-
ing peak load on the energy grid [22, 18, 25]. Recent work
has begun to look beyond HVAC and target water heaters for
TES due to their similar thermal end use during peak hours in
the form of showers, dishwashing, and washing machine use
in the morning and afternoon. However, current approaches
do not address how to make water heater TES cost effective
for consumers given the highly individual nature of hot wa-
ter usage. Without cost effective TES, consumers may not be
incentivized to adopt the technology and the potential 7-19
GWh of storage in the nearly 100 million homes in Europe
with hot water tanks remains unused [6, 3]. In comparison,
the combined capacity from thermal, battery, compressed air,
and flywheel storage currently available totals about 12 GWh
worldwide [32]. If it could be made cost effective for con-
sumers, the existing culture of water heaters has the potential
to provide large scale grid storage at very low cost.

The main goal in water heater TES is to store enough en-
ergy in the tank to facilitate turning off the heating elements
for a period during peak hours and using stored thermal en-
ergy to service demand [1, 11, 26, 4, 19]. Current studies
focus on two main techniques to increase this off period:
increasing the size of the tank (or adding additional tanks)
and raising the temperature setpoint of the tank [10, 13].
However, there are two key challenges that prevent these ap-
proaches from being cost effective. The first challenge is
usage dynamics: water usage patterns vary greatly from one
household to the next. The second challenge is standby loss:
the loss of heat through the walls of the tank due to imper-
fect thermal insulation. All TES systems suffer from some
standby loss, typically discharging 0.5-1% of their stored en-
ergy per day [7], but standby loss is especially problematic
for water heaters, which can discharge 11% or more (even
the most expensive tanks discharge at least 3%). To make
storage cost effective, standby loss must therefore be care-
fully managed. However, doing so is challenging because
of water usage dynamics. For example, storing too much
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energy on a day with little peak water usage can actually in-
crease a household’s energy bill by creating excess standby
losses. Similarly, more energy is required to perform load
shifting for a hot shower at the end of peak hours than at the
beginning because heat must be stored for a longer period.
Existing solutions focus exclusively on load shifting, as op-
posed to consumer costs, and use a static tank size or static
setpoint temperature during off-peak hours without explicitly
addressing usage dynamics and standby loss [10, 13]. Their
results indicate these approaches reduce peak load and total
cost on average across many homes, but they do not achieve
optimal performance for individual households and can even
increase some households’ energy costs. In this paper, we
extend this work by analyzing whether water heaters can be
cost effective TES devices for the individual consumer by
dynamically managing standby loss based on individual wa-
ter usage profiles and real time-of-use pricing schemes.

We present a system that learns the water usage patterns
of each household in order to create cost effective TES. We
call the system ThermalThrift. It first builds a statistical
model of the household’s historical water usage over time
to make predictions about future hot water demand. Then, it
combines these predictions with a time-of-use (TOU) pric-
ing scheme and a thermal model of the water tank to decide
whether and how much thermal energy to store in advance
of peak hours. If raising the temperature is expected to in-
crease total cost for the consumer, ThermalThrift does not
store energy and effectively reverts to conventional setpoint
water heater. ThermalThrift can create cost effective stor-
age in two ways: a consumer-facing variant that minimizes
the total energy cost for the consumer, favoring storage TOU
savings that exceed standby loss costs and a utility-facing
variant that minimizes peak load such that the cost of en-
ergy for the consumer does not exceed a conventional, non-
TES water heater. These two variants represent the two main
stakeholders: consumers, who may install such a system to
respond to TOU prices and save money, and the utility, who
wants consumers to install such a system to reduce peak load.

To evaluate ThermalThrift, we collect water usage data
from 6 pairs of participants over periods of 2-3 weeks each,
for 78 total days. The collection of this empirical data was
essential to our evaluation because the goal of ThermalThrift
is to provide customized performance for each household,
and it therefore cannot be evaluated in simulation using the
ASHRAE domestic hot water consumption profile [23] used
by other studies [10, 13]. Additionally, we collect 12 dif-
ferent TOU pricing schedules from existing electric utilities.
Using these 6 usage datasets and 12 pricing schemes, we
analyze ThermalThrift’s use of TES for cost effective load
shifting. Results indicate that after only 7 days of training
data for a given household, ThermalThrift is able to achieve
within 5% and 36% of the optimal cost and peak load reduc-
tion. The consumer-facing ThermalThrift reduces consumer
cost by 25% and peak load by 47% on average, using indi-
vidualized storage temperatures ranging from 51◦C to 93◦C.
Additionally, the utility-facing ThermalThrift reduces peak
load 62% for water heating without increasing energy costs
for consumers. For utility companies looking to reduce peak
load, ThermalThrift’s savings translate to a potential collec-

tive 1GWh of peak load reduction for approximately 500,000
homes. Additionally, ThermalThrift never increases costs
for the studied households – indicating that individual con-
sumers would be able to use TES cost effectively.

2 Background and Related Work
Work related to cost effective TES in water heaters can

be roughly categorized into three areas: cost effective TES
approaches in HVAC and other applications, leveraging ex-
isting stored energy in water heaters, and current TES ap-
proaches to load shifting with water heaters.

The foundation of cost effective TES is the design of effi-
cient storage materials that minimize energy loss regardless
of when energy is generated or consumed. Such materials
are often analyzed with respect to variable renewable energy
generation, such as solar or combined heating, cooling and
power plants, and physical environment of the buildings or
spaces where the storage operates [12, 30, 29, 33]. When the
consumption of energy can be controlled–a standard occur-
rence in buildings with HVAC–techniques such as optimiza-
tion and model predictive control (MPC) have been shown
to save energy, shift peak load, and reduce building operat-
ing costs by choosing when to store energy and managing
thermal leakage [18, 8, 28, 17]. For example, Oldewurtel
et al. combined model predictive control with weather pre-
dictions to improve energy efficiency in climate control by
storing thermal energy in advance of weather changes and
Ma et al. uses MPC to minimize costs of precooling tank
water for a water cooled A/C system subject to TOU pric-
ing on a college campus [21, 16]. However, space heating
and cooling is quite different than water heating because the
latter is more dependent on occupant behaviors, which are
different for each water heater. Effectively using MPC to
apply TES for HVAC is very dependent on building an accu-
rate model of the building and having weather information.
Occupant usage patterns affect heating and cooling demand,
but only by 15-30% at most [15, 5] and therefore existing
studies do not account for the effects of dynamic occupancy
when shifting peak heating or cooling load. Applying MPC
to water heaters also requires a thermal model, but the mod-
els aren’t as unique as buildings and their HVAC systems. In
contrast, the key to success is modeling the occupants’ hot
water usage patterns. Unlike weather predictions, which can
be found online, occupant usage patterns are different in ev-
ery building and must be learned. In this paper, we evaluate
how quickly ThermalThrift can learn occupancy patterns to
make TES in water heaters cost effective for consumers.

Several studies have explored the use of thermal energy
stored during normal operation of a tank (49-60◦C) for load
shifting. In these approaches heating is simply turned off
during a period of peak hours, without first charging the tank
with extra heat, and the tank coasts on whatever energy is al-
ready in the tank [1, 11, 26, 4, 19]. This approach is currently
used by many utility companies today. However, this ap-
proach allows the temperatures to drop below user setpoints
when coasting through peak periods. Therefore, it can and
often does affect user comfort, e.g. when using the shower
during peak hours. Research in this area focuses on mini-
mizing or adjusting the resulting payback period when water
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Figure 1: ThermalThrift stores thermal energy in off-peak
hours (solid, edges) in preparation for usage during peak
hours (white, center). ThermalThrift prevents the purchase
of energy during peak hours while higher temperature stored
energy is available. A conventional water heater purchases
energy during the entire peak period.

heaters turn on at the end of peak hours [2]. Some work
uses a fuzzy logic controller to decide when to turn off the
heating elements, while Kepplinger et. al. used linear op-
timization to control water heaters based on stock exchange
prices [4, 1, 11]. Since no additional energy is used for TES,
cost effective TES is not considered in these approaches.

A recent white paper by EPRI and study by Lacriox were
among the first to evaluate water heaters for TES by actively
charging the tanks with more energy than is required for nor-
mal operation. The tank setpoints were set to arbitrarily high
temperatures (92◦C and 77◦C respectively) during off-peak
hours to achieve longer coasting periods [10, 13]. They also
studied the use of extra large tanks in order to increase stor-
age capacity [13]. However, these approaches use static tank
sizes and temperatures during off-peak hours and do not ac-
tively manage standby loss or usage patterns. Because of
this, an excess of thermal energy could be stored. This may
increase costs for the consumer and render TES not cost ef-
fective. This paper is the first to actively create cost effective
TES using water heaters by demonstrating that hot water us-
age patterns can be used to better manage standby loss.

3 Water Heater TES Approach
ThermalThrift achieves cost effective TES with water

heaters by leveraging TOU pricing to buy cheaper energy
during off-peak hours, store it thermally in the tank, and con-
sume it during more expensive peak hours. ThermalThrift
stores thermal energy by increasing the tank temperature
above a conventional setpoint (49-60◦C) to a TES temper-
ature (60-93◦C). Any hot water used during peak hours re-
duces the tank temperature, eliminating the need to consume
additional energy until the temperature drops back to the
conventional setpoint. This process is illustrated in Figure 1.
This approach requires two related parameters to be defined:
the storage start time jT ES and the TES temperature tT ES.
ThermalThrift must select the values of these parameters to
shift peak load and be cost effective for the consumer. If

Table 1: The notation used to model ThermalThrift and pre-
dict usage, heating, and costs.

Tank Parameters
gtank tank water size (L)

stank tank surface area (m2)
mtank tank water weight (g)

Rtank tank insulation value (e.g. R-1.8, m2◦C/W)
tconv comfortable user temperature (◦C)
ptank heating power of the tank (W)

ta ambient air temperature (◦C)
tc cold water temperature (◦C)
cw specific heat of water (4.186 J/g◦C)

maxheat maximum possible change in temperature
(◦C/sec)

Input Data
U historical hot water usage (L)
�pTOU vector of electricity prices ($ /Wh)

Prediction Notation
S temperature of tank at each interval (◦C)
H change in temperature due to heating (◦C)
W hot water drawn from the tank (L)
L change in temperature due to thermal

losses (◦C)
T temperature of tank after losses and mixing

(◦C)
n length of prediction horizon
m interval where peak hours begin, m < n
τ time step interval (seconds)

Control Notation
c consumer-facing TES start control ({0,1})
d consumer-facing TES delay control

({0,1})
tT ES TES temperature (◦C)
jT ES TES start time

jT ES is too early or tT ES too high, thermal storage costs due
to standby loss will outweigh savings during peak hours and
cost more to the consumer than conventional setpoint heat-
ing. If jT ES is too late or tT ES too low, the opportunity to
shift peak load will not be utilized to the fullest and the en-
ergy peak may not be reduced significantly. Therefore, Ther-
malThrift has two variants that select these parameters to ful-
fill one of two objectives: minimizing costs for the consumer
(consumer-facing) or minimizing peak load for the utility
while not increasing costs for the consumer (utility-facing).

Both ThermalThrift variants optimize the predicted costs
of TES, based on historical hot water usage data and a model
of tank operation, to select these parameters in a process sim-
ilar to model predictive control. In the consumer-facing vari-
ant, ThermalThrift implicitly finds jT ES by evaluating the
predicted costs of TES at each time step moving forward.
When the predicted cost of TES falls below that of a conven-
tional setpoint heater, storage begins. In the utility-facing
variant, ThermalThrift explicitly selects tT ES by predicting
the cost of a sweep of TES temperatures and choosing the
temperature that shifts the most peak load without exceeding
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Figure 2: ThermalThrift predicts the state of the tank Si, j
though a series of modeling constraints. The predicted hot
water use Wi, j is calculated from historical use Ui, j and the
previous tank temperature Si, j−1. Thermal losses Li, j are also
calculated from Si, j−1. These losses Ti, j are then used to pre-
dict the heating requirement Hi, j and the final tank tempera-
ture Si, j for the τ second interval.

the predicted cost of a conventional setpoint heater. Ther-
malThrift then calculates the storage start time, jT ES, needed
to reach tT ES when peak hours begin and starts storing ther-
mal energy at that time.

The details of ThermalThrift’s consumer-facing and
utility-facing variants are described below. While both ap-
proaches use different methods to select jT ES and tT ES,
they share common components for predicting heating costs.
Hence, the following sections describe the common water
heater tank model, derived from the physical properties of
water heaters, as well as the novel components specific to
the consumer-facing and utility-facing approaches to TES.

3.1 Water Heater Tank Model
To predict the cost of TES, ThermalThrift estimates the

amount of heating that will be required in the future through
a series of modeling constraints. To ensure predicted costs
accurately reflect the usage in a household, ThermalThrift
estimates the costs based on the historical hot water usage of
that household. This usage is stored in a matrix U , where
each row is a different day of historical data and each col-
umn is a time step over the course of that day. Hence, Ui, j
is the amount of how water drawn from the tank (litres) for
use on day i in time step j. The main task of prediction
is to convert this historical data U into an estimated heat-
ing requirement matrix H based on a model of the tank and
its operation in either the consumer-facing or utility-facing
variant. Depending on the variant, the matrix H can reflect a
variety of control decisions (e.g. TES at a specific start time
jT ES or conventional heating) and the control decision that
produces the optimal cost for that heating is selected. Each
tank model can be individualized to a home though the tank
parameters (size, insulation, surface area, heating power, am-
bient air temp, cold water temp, etc.), listed in Table 1. The
water tank model, represented in equations 1-6, is derived
from the physical properties of water heaters and apply to
any electrically heated tank.

To determine the predicted heating H, ThermalThrift im-

plements six matrices to model the operation of the tank: S,
H, W , U , L, and T . The matrices S, W , L, and T represent
the predicted tank temperature in each interval, the predicted
hot water drawn from the tank, the temperature change due
to standby loss, and the tank temperature before heating re-
spectively, with entries corresponding to the matrices U and
H. Hence, each matrix holds predicted values for all his-
torical days (rows, i) and each time period (of τ seconds)
during those days (columns, j). The tank’s state (i.e. its tem-
perature) at the end of each time period is represented by
the matrix S. Each entry Si, j is calculated from the previous
temperature Si, j−1 by calculating the temperature in the tank
after losses and usage, Ti, j, and adding the necessary heat-
ing Hi, j. ThermalThrift calculates Ti, j from the temperature
change due to standby loss Li, j and the influx of cold water
Wi, j (of temperature tc) entering the tank due to hot water us-
age given the size of the tank gtank. A flow diagram for the
interactions of these matrices is shown in Figure 2. Formally:

Ti, j =
(Si, j−1 −Li, j)∗ (gtank −Wi, j)+Wi, j ∗ tc

gtank
,∀i, j (1)

Si, j = Ti, j +Hi, j,∀i, j (2)

where Si,0 is initialized to the current measured temper-
ature of the tank. The upper tank temperature is bounded
below tlimit (conservatively 93◦C) to prevent boiling by:

Si, j <= tlimit ,∀i, j (3)

All components of equations 1 and 2 (H, L, and W ) must
be calculated to predict the tank state for the next interval.

The component L, the change in temperature due to
standby loss, is calculated from the predicted standby loss
rate over the time interval of length τ. The loss rate is calcu-
lated from the tank surface area (stank), the insulation rating
(R), the ambient air temperature (ta), the specific heat of wa-
ter (cw), and the mass of the tank water (mtank) as shown in:

Li, j =
stank ∗ (Si, j−1 − ta)

R∗ cw ∗mtank
∗ τ,∀i, j (4)

This equation shows that higher tank temperatures cause
proportionally more standby loss, hence why tank setpoints
are often kept in the lower thermostatic range (49-57◦C). Ad-
ditionally, this increase in loss at higher temperatures high-
lights the need for standby loss considerations in TES.

The component W represents the amount of water needed
from the predicted tank to fulfill the historical hot water use
U . If no thermal energy is stored, the predicted usage Wi, j
equals the historical usage Ui, j, since any needed hot water
is drawn directly from the tank. However, high TES temper-
atures storing thermal energy (above 60◦C) are too hot for
direct human use due to potential scalding. To provide com-
fortable temperatures, thermal storage water is mixed with
cold water from the mains before being dispatched to the
consumer. Hence, when thermal energy has been stored, W
is calculated from the mix of cold water (of temperature tc)
with predicted tank water (of temperature Si, j−1) to produce
a comfortable tconv temperature for the user. Formally:

Wi, j =
tconv ∗Ui, j −Ui, j ∗ tc

Si, j−1 − tc
,∀i, j when Si, j−1 > tconv (5)
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While the S equations 1, 2 and 3, the L equation 4, and the
W equation 5 are common to both the consumer-facing and
utility-facing variants, the heating component H and over-
all control mechanisms differ in each variant. Hence, the
component H and the final optimization for each variant are
described in the following sections. To simplify the equa-
tions in both variants, we define a parameter maxheat to be
the maximum rate of change in temperature (◦C per second)
possible due to heating. maxheat is calculated from the wa-
ter mass (mtank) and heating power (ptank) of the tank and the
specific heat of water (cw):

maxheat =
ptank

mtank ∗ cw
(6)

In both variants, when ThermalThrift stores energy for
TES it uses the maximum heating possible (i.e. maxheat) to
do so, since slower heating provides more time for energy
to be lost due to standby. How each variant selects the start
time jT ES or temperature tT ES of thermal storage is describe
below.

3.2 Consumer-Facing Cost Optimization
The consumer-facing ThermalThrift uses TES to mini-

mize the cost of water heating for the homeowner. Though
the goal of this variant is cost reduction, the TOU pricing
monetarily rewards reductions in peak energy. Hence, mini-
mizing costs for the consumer also tends to reduce peak en-
ergy consumption. However, if the cost of peak power is only
slightly larger than off-peak, the increased standby loss due
to higher temperatures may mean TES is predicted as not
cost effective. In this situation, the consumer-facing Ther-
malThrift will neither store energy nor shift peak load, but
will operate as a conventional water heater.

The consumer-facing approach implicitly selects the start
time jT ES of storage by evaluating the cost of TES at each
time period (τ seconds) of its operation before peak hours.
At each time step, ThermalThrift optimizes the average pre-
dicted cost of the heating component H given the TOU price
of electricity �pTOU , subject to the tank modeling Equations
2, 3, 4, 5 and its specific constraints on the heating compo-
nent H. The objective function can be formally stated:

min
c

avg((
H ∗mtank ∗ cw

3600
)∗ �pTOU ) (7)

Each time ThermalThrift predicts costs, the values of
component H can represent three different control decisions:
store thermal energy now ( jT ES = 1), store it in the next
time period ( jT ES = 2), and do not store thermal energy. If
jT ES = 1 is optimal, storage begins immediately. If either
jT ES = 2 or no thermal storage is optimal, ThermalThrift
maintains the conventional setpoint until the next time pe-
riod, where it again evaluates the costs of TES. These three
control decisions are represented in the prediction equations
for H using two control parameters: the immediate control
c = {0,1} and the delay control d = {0,1}. To store thermal
energy now, c must be 1. To store energy in the next time pe-
riod, c = 0 and d = 1. To never store thermal energy, c = 0
and d = 0. Only the control decision c is applied to the tank
the optimization of the cost of H is complete. While the de-
lay decision d is predicted for the current optimization, the

next time step’s optimization may make a different decision
due to new usage information.

The modeling of H is divided into four equations: heat-
ing predictions in the first time step, heating in the second
time step, heating from the third time step to the start of
peak hours, and heating during peak hours. Storage heating
is performed in the first three equations. The fourth equa-
tion models the effect of storage on required heating dur-
ing peak hours. For each time period j in the equations,
H must hold either the heating amount required for stor-
age or for maintaining the comfortable setpoint tconv. Stor-
age heating is denoted with the maximum possible change
in temperature maxheat ∗ τ. Maintaining a comfortable set-
point is denoted with the temperature change max(0,min(
maxheat ∗ τ, tconv −Ti, j−1)), where the conventional temper-
ature is maintained after temperature loss to the ability of the
heating elements. Hence, for the first H equation represent-
ing the first interval j = 1, either storage heating is performed
or the conventional temperature is maintained according to:

Hi,1 = c∗maxheat ∗ τ
+(1− c)∗max(0,min(maxheat ∗ τ, tconv −Ti,1)),∀i

(8)

In the second equation and prediction interval, heating
could either continue storage heating from the previous in-
terval (c = 1), have delayed the start of TES heating to this
interval (c= 0, d = 1), or be maintaining a conventional tem-
perature (c = 0, d = 0). Formally:

Hi,2 = c∗maxheat ∗ τ+(1− c)∗ (d ∗maxheat ∗ τ
+(1−d)∗max(0,min(maxheat ∗ τ, tconv −Ti,2)),

∀i (9)

The third heating equation either continues increasing
storage or maintains a conventional temperature until peak
hours being. The beginning of peak hours is denoted by
the interval m, when the price of electricity increases over
the current price. Even when the current price is considered
”peak”, if the next price change increases the price then TES
will be evaluated. This ensures that even 3-tiered peak sys-
tems (off-peak, peak, and super-peak) are evaluated for cost
effective TES. Hence, until peak hours are reached at interval
m, heating follows the equation:

Hi, j = max(c,d)∗maxheat ∗ τ+(1−max(c,d))∗
(max(0,min(maxheat ∗ τ, tconv −Ti, j)),

∀i,2 < j < m (10)

Once peak hours being in interval m, thermal energy stor-
age ceases since any electricity bought during these periods
will not reduce peak consumption and will be more expen-
sive. However, evaluation of heating costs extends past the
start of peak hours m to the time step where the price of elec-
tricity returns to or falls below the current price (i.e. the pre-
diction horizon), denoted as interval n. This ensures that the
predicted cost of TES includes the subsequent monetary sav-
ings during peak hours. Hence the fourth H equation predicts
the cost of only maintaining the conventional setpoint in the
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period between the start of peak hours m and the end of peak
hours n. Formally:

Hi, j = max(0,min(maxheat ∗ τ, tconv −Ti, j),

∀i,m ≤ j < n (11)

We end prediction at interval n, often far short of the
end of a day, since there will be no monetary savings from
the current TES decision after this point – electricity can
be bought for immediate use at off-peak prices without the
standby loss due to storage. Each time prediction takes place
for the new time period, n and m are recalculated to reflect
the new price-change times for that prediction. This allows
pricing schemes with two peaks (e.g. one in the morning and
one in the evening) to have both peaks evaluated for TES.

In the consumer facing approach, ThermalThrift stores
thermal energy when costs are predicted to be lower than
a conventional setpoint heater. As a byproduct of the TOU
pricing, this also tends to shift peak load. For the utility-
facing approach, described below, shifting peak load is the
focus of prediction – provided TES is still cost effective.

3.3 Utility-Facing Peak Optimization
The utility-facing ThermalThrift takes advantage of TES

to reduce peak energy consumption at no more cost to the
consumer than their daily, non-TES average. The goal of
peak load reduction, and not cost minimization, allows Ther-
malThrift to store more thermal energy than the consumer-
facing approach and cover more usage during peak hours –
at the cost of higher standby losses and overall costs. To pre-
vent costs from exceeding a conventional heater, the utility-
facing approach incorporates a constraint to keep predicted
TES costs below the predicted cost of a non-TES water
heater to ensure storage is still cost effective.

The utility-facing variant optimizes for the TES tempera-
ture, tT ES, for each peak period during a day. The TES tem-
perature designates the amount of thermal energy to have in
storage when peak hours being. Unlike the consumer-facing
approach, the prediction evaluation for this control decision
is performed only once per peak period – rather than on an
interval by interval basis. This allows the utility-facing vari-
ant to select the TES temperature that optimizes load shift-
ing, while ensuring costs do not exceed the predicted conven-
tional setpoint heater costs for that entire off-peak and peak
period. Prediction is performed either when the day starts, or
at the start of the off-peak hours before a peak period. Once
the TES temperature is chosen, ThermalThrift calculates the
storage start time jT ES necessary to reach the temperature
and beings energy storage at that time.

To predict what tT ES temperature will save the most peak
energy while remaining cost effect, ThermalThrift optimizes
over a sweep of possible TES temperatures. The TES tem-
perature that is predicted to shift the most energy on average,
when evaluated with predictions from k days of historical
data, is selected using this objective function:

min
tT ES

∑k
i=1 ∑n

j=m Hi, j ∗mtank ∗ cw

k
(12)

To ensure any chosen tT ES is cost effective, the average
predicted cost of heating the tank must be below the average

predicted cost of operating a conventional setpoint heater.
For brevity, the predicted cost of operating a normal water
heater on each historical day is denoted costconv. Hence, the
main constraint that ensures the selected TES temperature is
cost effective is:

avg((
H ∗mtank ∗ cw

3600
)∗ �pTOU )≤ avg(costconv) (13)

To ensure comfort for the user, tT ES must be at or above
the comfortable water temperature (e.g. 49 ◦C):

tT ES ≥ tconv (14)

Additionally, the tT ES temperature must be reached just
before peak hours begin in interval m. Formally:

Si,m = tT ES,∀i (15)

The heating component H can take on values represent-
ing each of the tT ES temperatures in the temperature sweep
subject to the constraints in Equations 13, 14, and 15. The
modeling of H is divided into four equations: predicted con-
ventional heating up to the start of storage, heating for stor-
age, ensuring storage exactly reaches tT ES, and conventional
heating during peak hours. Because each historical day of
data might require slightly different start times to reach tT ES,
due to hot water usage during energy storage, the storage
start time of each predicted day is denoted by the vector �s.
Before this start time for each day the tank is predicted as
heating only to maintain a conventional temperature in the
first H equation:

Hi, j = max(0,min(maxheat ∗ τ, tconv −Ti, j)),

∀i,1 ≤ j <�si (16)

The next two H equations model the heating between this
�si interval for each predicted day and the start of the peak
period m. First, the tank is heated with maxheat until the m-
1 interval just before peak hours. Then, if less than maxheat
is required in the m-1 interval, only enough heating is used
to reach the TES temperature. Formally:

Hi, j = maxheat ∗ τ,∀i,�si ≤ j < m−1 (17)

Hi,m−1 = tT ES −Ti,m−1,∀i (18)

The final H equation for the utility-facing approach mod-
els conventional setpoint heating during peak hours. As in
the consumer-facing approach, this prediction only lasts to
the end of the peak period, n, since energy bought after this
period will have the same cost as the energy being stored.
Formally:

Hi, j = max(0,min(maxheat ∗ τ, tconv −Ti, j)),

∀i,m < j < n (19)

Given these constraints on the prediction model, the
utility-facing variant chooses the optimal TES temperature
for load shifting while not increasing costs. If costs cause
tT ES = tconv, then ThermalThrift acts as a conventional wa-
ter heater and performs no thermal storage. As a byprod-
uct of TOU pricing, reducing peak load also tends to reduce
consumer costs and allows ThermalThrift to shift load cost
effectively.

29



Figure 3: An inline water sensor (bottom) with attached data
logger collects second granularity data on water drawn from
the hot water tank (top) in the test home.

4 Experimental Setup
To assess the potential of ThermalThrift to cost effec-

tively shift peak load given dynamic usage and standby loss
in TES, we collected data on real world hot water usage in
a test home and TOU pricing from various utility companies
across the US. To ensure we had behavioral variation in our
water usage data, we collected data from 6 different pairs of
participants. We used this historical data and TOU pricing
along with our approach to control a water heater modeled
by the energy simulation software TRNSYS [20].

4.1 Usage Data
Hot water use traces were collected in-situ from 6 pairs

of participants (G1-6) living in an instrumented test home
(5 pairs for 2 weeks, the 6th for 3). The test home had all
the hot water fixtures common to a residential home (kitchen
sink, 2 bathroom sinks, dishwasher, washing machine, and
shower). To ensure the data had the personal usage patterns
of the participants, participants were encouraged to live in
and use the home as they normally would use their own. The
study had IRB approval and each participant received a $100
incentive. Due to a sensor malfunction the third participant
pair, study group G3, has only 8 days of collected data. In
total, 78 days of usage data is used in this work.

Usage data was collected externally to the water heater as
hot water left the tank. A Seametrics SEA Series Turbine
Flow Meter, shown in Figure 3, recorded the flow of hot wa-
ter as it was used by the participants. Flow data was collected
using a Hobo Data logger at a sample rate of 1Hz and stored
locally. Due to the length of the in-situ studies, and the stor-
age limits of other sensors in the home, data stored on the
logger was extracted manually at two week intervals.

The usage data collected from the participants varied
widely in the amount of water, type of fixtures, and time of
use. For example, bathroom sink usage ranged from 62 to
359 uses across groups and the dishwasher ranged from 0 to
12 uses. Figure 4 shows the average hourly usage for each
group. Most of the participants’ usage follows expected peak
patterns, peaking in the morning and evening. However, per-
sonal variation is visible in group G4’s usage peak in the
early afternoon.

4.2 TOU Pricing
Pricing schedules for the evaluation were taken from real

world TOU pricing schemes from utilities across the United
States. The 12 TOU schemes we selected to represent a di-
verse set of possible pricing schedules and from different ge-
ographic locations. Two power utilities (National Grid and
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Figure 4: Participants’ hot water use generally peaks in the
morning and evening, though group G4 used the majority of
their hot water around noon.

Texas Utilities) have year round schedules, where pricing
does not change according to the season. The 5 other utili-
ties have seasonal pricing, where prices and peak power tiers
change. Many of the utilities use a 2 tier peak pricing sys-
tem, with off-peak and on-peak pricing. Others use a 3 tier
system with off-peak, mid-peak, and on-peak pricing (some-
times called off-peak, on-peak, and super-peak). The pricing
schedules we chose have a variety of each of these proper-
ties. For simplicity, the pricing models are hereby referred to
as P1-12 in descending order of average conventional water
heater peak load used by the study groups (G1-6). In gen-
eral, the lower the pricing number (P1), the more hot water
averaged across the study groups is used during peak hours.
The prices themselves can be seen for the summer in Fig-
ure 5 and winter in Figure 6. The peak price increase ranges
from $0.02 per kWh (P5) to $0.18 per kWh (P2). The prices
and times were obtained from each utility’s website.

4.3 Baseline and Optimal Algorithms
We compare against two baselines. First, we model a

conventional water heater that maintains a constant temp of
49◦C. The 49◦C temperature was chosen as our baseline be-
cause it is traditionally recommended as the most energy
efficient setpoint for conventional residential water heaters
in the U.S. Any lower, and the bacteria Legionella would
be capable of growth in the tank. Any higher, and standby
loss would increase, thereby increasing the amount of en-
ergy used to maintain the temperature. In many European
countries and Canada, 60 ◦C is the regulated setpoint tem-
perature with a required mixer for lower temperature deliv-
ery, since the bacteria Legionella dies after 30 minutes at
this temperature. Despite this, we chose 49◦C as our base-
line because of the prevalence of hot water tanks in the U.S.
and other countries, it’s lower consumption of peak energy
due to the lower setpoint, and because, with high tempera-
ture TES storage, ThermalThrift could be modified to also
consider holding a temp of 60◦C or higher for 30 minutes to
kill the bacteria – allowing a 49◦C setpoint temperature to re-
duce costs while still providing sanitary tank water. Both the
consumer-facing and utility-facing approaches are compared
to this baseline. If the consumer-facing approach chooses
never perform TES, it duplicates the baseline results. If the
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Figure 5: Many summer TOU pricing schedules have peak
hours that span the entire daytime period from 8am-9pm.

utility-facing approach chooses a 49◦C TES temperature, it
also duplicates the baseline results.

Second, we compare against a usage agnostic version
of ThermalThrift. This baseline represents approaches that
statically choose high TES temperatures for off peak hours.
However, the agnostic approach only heats to this tempera-
ture just before peak hours to minimize easily avoidable off-
peak standby loss. Hence, the usage agnostic approach is a
stronger baseline than current static approaches, but still does
not account for individual household usage. The highest
temperature of 93◦C is chosen as the pre-peak temperature
to represent the main motivation for this type of TES: load
shifting. Like ThermalThrift and the conventional baseline,
it maintains a minimum comfortable temperature of 49◦C.

The results for both approaches are evaluated against their
ThermalThrift optimal values. We define optimal by using
the day being evaluated as the only historical day in U when
an optimization is performed. Essentially, the optimal evalu-
ation has perfect prediction for future hot water usage as it is
modeling from oracle data.

4.4 Water Heater Simulation
We used the TRNSYS energy simulation software de-

veloped by the University of Wisconsin Madison to evalu-
ate ThermalThrift’s control on a water heater [20, 31]. We
used the Type4a water heater (non-stratified with no hot wa-
ter inlet) provided with the TRNSYS version 17 library for
our simulation. The water heater is modeled after the wa-
ter heater present in the test home. It uses a 151 litre tank,
insulation of R = 2.6, 4.5kW heating elements, and a con-
ventional or comfortable temperature of tconv = 49◦C. As the
tank was situated in the basement, an ambient air tempera-
ture of 10◦C is used and cold water entering the tank is set
to 10◦C. Overall, the tank represents a typical, well insulated
residential water heater used in a 1-3 person home.

For the TRNSYS simulation, TES controls are applied
to the TRNSYS water heater at each time step according
to the two ThermalThrift variants. The electrical use of the
TRNSYS water heater and the cost of that usage is recorded.
Then, ThermalThrift’s control is recalculated by the Ther-
malThrift variants and applied for the next time step. For our
evaluation we chose to use a 2 minute interval since Ther-
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Figure 6: Some winter TOU pricing schedules have two
peaks: one in the morning and one in the evening.

malThrift models the tank as a discrete system. We found no
appreciable difference in results at smaller intervals.

5 Results
We evaluate cost effectiveness of water heater TES with

ThermalThrift by replaying the 2-3 week traces from the par-
ticipant datasets. Each day is evaluated in order, with the
temperature at the end of one day starting the next to ensure
any standby loss across multiple days is accounted for. All
days in a dataset, except the current day being evaluated, are
used as historical data in the matrix U in equation 5 for learn-
ing. Each dataset has a different number of days, and hence
each dataset uses a different number of historical days in the
evaluation. The minimum number of days the approaches
learn on is 7 in dataset G3. The maximum number is 19
days for G6. ThermalThrift’s results using this historical data
for both the consumer-facing and utility-facing variants are
called learned, with the title of each graph or section speci-
fying the variant. Three evaluation metrics are used through-
out: cost, peak load, and total load. Load is the amount of
kWh drawn by the water heater to heat water. Load can be
either peak energy, when the power is drawn during a pricing
schedule defined peak period, or the total energy drawn over
the course of the day. Cost is the cost of this energy over the
course of the entire day. We present results as an average of
all participant groups for each of the TOU pricing schedules.
For all individual households, ThermalThrift never increased
their average daily costs over a conventional setpoint heater.

5.1 Consumer-Facing Cost Minimization
The consumer-facing approach of ThermalThrift shows

that water heater TES can be used to save both cost and peak
load for all pricing schedules when performing load shifting,
as shown in Figure 7. Overall, the consumer-facing approach
taken by ThermalThrift uses TES to reduce 47% of the peak
electric load and 25% of the cost to consumers over a con-
ventional water heater. For the usage agnostic baseline, cost
reductions are often comparable to the learned and optimal
ThermalThrift, except for three pricing schedules (P4,5,8)
where it costs consumers more than a conventional tank to
attempt storage without using a learning method to man-
age standby loss with respect to usage. Additionally, the
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Figure 7: (a-b)Consumer-facing ThermalThrift saves both money and peak energy for every pricing schedule (P1-12). Sched-
ules that have low cost savings tend also to have lower peak energy savings (e.g. P4-5).(d) Utility-facing ThermalThrift saves
more peak energy than the consumer-facing variant. (f) The chosen TES temperatures for these savings vary widely across
pricing schedules, participant groups, and individual days. The most common TES temperature is the highest possible, 93◦C.
(b,e) Both variants use more total energy.

usage agnostic approach uses more total energy than Ther-
malThrift’s 8% increase, as unused storage is wasted through
standby loss as seen in Figure 7(b). While the usage agnos-
tic approach does save more peak energy, it is unlikely to be
adopted by consumers due to these costs and therefore fails
to leverage the potential TES of water heaters.

While ThermalThrift reduces costs for all pricing sched-
ules and shows that dynamically managing standby loss is
costs effective for load shifting, the total savings vary with
TOU pricing schedules. The lowest saving pricing schedules
can be categorized into two groups: low relative increase in
peak pricing and high relative increase in peak pricing dur-
ing variable use hours. Pricing models P4, P5, and P8 fit into
the first category; they have high peak usage, but low differ-
ences between peak and off-peak prices ($0.037, $0.02, and
$0.0309). For these pricing schedules the standby loss cost
of incorrectly storing too much TES is too large compared to
the possible savings, so ThermalThrift performs little stor-
age. Even in the optimal case, where ThermalThrift knows
how much hot water will be used during peak hours, the op-
timal cost improves little over the learned cost due to the low
price differential.

In the second category, pricing schedules P10 and P11
have high price differences between peak and off-peak hours
($0.1219 and $0.14), meaning TES standby loss costs could

easily be covered by peak savings. However, most usage
within the participant groups occurs outside of these hours,
causing the learning component of ThermalThrift to predict
low amounts of usage during peak hours and store little ther-
mal energy. However, the occasional use of high flow appli-
ances (shower, dishwasher, washing machine) during these
hours is costly and consumes a large amount of peak load.
Since ThermalThrift had not learned these events from his-
torical data, it did not store energy in preparation for them.
This, and the higher savings exhibited by the optimal Ther-
malThrift for both cost and peak load, highlight the impor-
tance of prediction for water heater TES. The current ap-
proach uses a simple algorithm to the average cost across all
historical days for prediction. The approach could be more
complex, weighting predicted costs based on day of the week
or similarity to the current day’s usage, to achieve additional
savings in P10-11. However, overall, the simple averaging
approach already reduces 47% of the water heating peak
load. Additionally, the algorithm’s simplicity allows Ther-
malThrift to learn usage and operate effectively with only a
short learning period (i.e. a few days).

5.2 Utility-Facing Peak Optimization
The utility-facing results in Figure 7(d) show an even

greater reduction in peak energy over the consumer-facing
variant. On average, ThermalThrift reduces 62% of peak
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Figure 8: ThermalThrift is able to quickly learn usage pat-
terns and successfully use predictions to manage standby
loss. After only 7 days of training data for a given house-
hold, ThermalThrift is able to achieve within 5% and 36% of
the optimal cost and peak load reduction.

load while maintaining costs below that of a conventional,
non-TES water heater. Since it maintains the conventional
cost, ThermalThrift cannot reach the peak shifting achieved
by the aggressively peak shifting usage agnostic approach
as seen in Figure 7(d). This is most visible for schedules
P4, 5, and 8 where cost constraints limit the learned Ther-
malThrift’s peak savings. However, by maintaining conven-
tional costs the utility-facing ThermalThrift is more likely to
be accepted by consumers, facilitating peak load shifting for
utilities using water heater TES. Additionally, due to the de-
sign of TOU pricing to monetarily incentivize load shifting,
the utility-facing approach does still save consumers money
as seen in Figure 8.

The chosen TES temperatures for ThermalThrift’s sav-
ings varied significantly across pricing schedules and par-
ticipant groups, as shown in Figure 7(e). Some schedules
(P2,3,7) had the majority of their daily TES temperatures set
to 93◦C, indicating that TES is highly cost effective for these
participant group/pricing schedule combinations. Three low
peak load shifting schedules (P4, 5, 8) had TES temperatures
clustered around lower temperatures and show the same sav-
ing issues as the consumer-facing approach: relative pricing
between peak and off-peak is too low to risk TES. Many of
the schedules (P1, 6, 9, 10, 11, 12) had TES temperatures
that greatly varied between individual participant groups and
across days due to the differences in usage patterns during
peak hours, indicating that learning these usage patterns for
individual households is necessary to manage standby loss
for cost effective TES and load shifting. Overall, Ther-
malThrift shifted water heating peak load for every pricing
scheme we evaluated and reduced 15% more peak load on
average than the consumer-facing approach with only a 13%
increase in total energy consumption.

5.3 Learning Period Analysis
The success of a learning water heater depends in part on

how quickly it can learn. Therefore, we also evaluate Ther-
malThrift with limited learning days in Figure 8. The figure
shows the average cost and peak load across all participant
groups and TOU schedules for all combinations of learning
days in 8 days of data using cross-fold validation. This indi-
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Figure 9: With a human tolerable TES limit of 60◦C requir-
ing no mixing valve, ThermalThrift shifts 24% of the peak
load. For some pricing schemes no more shifting is possible
(e.g. P4-5), but on average a 93◦C TES limit shifts far more
of the peak load (62%).

cates that after only 7 days of training data for a household,
ThermalThrift achieves within 5% and 36% of the optimal
cost and peak load reduction for the utility-facing approach,
with similar results for the consumer-facing approach. Ad-
ditionally, ThermalThrift halves the difference between the
conventional and optimal baselines with only one day of
learning data. This indicates that learning usage patterns can
quickly make TES cost effective for real consumers.

5.4 TES Potential and the Mixing Valve
The addition of a mixing valve on tanks allows the tank

to be heated much higher than human tolerable temperatures
and therefore provides a larger opportunity for TES. How-
ever, ThermalThrift can still provide TES with only human
tolerable temperatures (60◦C and below), provided a low
comfort temperature such as 49◦C is used. Some pricing
schedules P4, P5, P8, and P11 have many chosen TES tem-
peratures at or below 60◦C even when higher temperatures
are available, as shown in Figure 7(f). Thus, for these pricing
schemes, the highest potential load shifting is often available
cost effectively without exceeding human tolerance limits.
Figure 9 shows peak energy savings in a TES limited 60◦C
and 93◦C ThermalThrift. It shows that ThermalThrift could
save peak load over a conventional tank even without mix-
ing capabilities. Additionally, a lower temperature limit con-
sumes less energy for TES in the pre-peak period than the
93◦C limit, reducing total energy consumption. However,
pricing schemes that do benefit from the higher TES tem-
perature limit can shift more than twice as much peak load
due to the larger storage capacity. ThermalThrift with a 93◦C
limit can shift 62% of peak load on average across all pricing
schemes, while a 60◦C limit shifts only 24%.

5.5 TES Power Peak
In managing standby loss by implementing storage just

before peak hours, there is the potential for a slightly earlier
water heating aggregate peak in a neighborhood. However,
aggregate energy peaks across the grid consist of more than
just water heating energy and include other peak energy use
such as HVAC and lighting. A new peak in water heating use
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Figure 10: Heating TES just before peak hours to minimize standby loss can create a ”new peak” in water heating just before
peak hours. However, the magnitude and time of this peak depends greatly on the pricing scheme. In widespread use, such
prices could be adjusted to suppress this peak or move it to times of excess power generation (e.g. renewables).

may simply help fill the valley still present due to other peak
energy use and can be used to perform peak leveling. Con-
trolling this leveling may depend on the pricing scheme used.
Figure 10 shows four pricing schemes and the shift in heating
energy caused by the shifting focused utility-facing variant.
In each case, shifted energy use creates a water heating peak
just before peak hours. The amplitude and time of this spike
depends greatly on the pricing scheme itself. While P8 and
P9 have peaks that fill in the valleys of the aggregate wa-
ter heating use of the study groups, scheme P11 heightens a
peak in the middle of the day. Adjustments to the price and
time of peak hours, in conjunction with information about
the historical data and operation of the learning algorithm,
could be used on a neighborhood scale to shift water heating
to ideal times. Additionally, neighborhood schemes, such as
one similar to that presented in [27] to account for the ”pay-
back peak” when off water heaters are turned back on after
peak hours, could constrain TES charging in a neighborhood
to reduce or level the new peak. Hence, while such a peak is
a concern when the learning algorithm is widely used, it can
be mitigated or shifted on a neighborhood scale.

6 Limitations and Future Work
ThermalThrift’s results indicate that learning hot water

usage patterns in each home can produce cost effective TES.
This approach can reduce costs for the consumer and re-
duce peak energy for the utility. Future work must explore
whether these results extend across a wider variety of house-
holds and buildings, including homes with larger families
and a wider variety of household water appliances, or other
building types such as laundromats, restaurants, and hotels.
Intuitively, buildings with more hot water usage in the begin-
ning of peak hours will experience more savings with Ther-
malThrift – due to standby losses usage patterns during the
ends of peak periods will fare less favorably.

With TES, ThermalThrift maintains a higher temperature
during peak hours for a longer period of time than conven-

tional water heaters. Most water activities will be unaffected
by more available hot water, such as sink, dishwasher, or
washing machine uses, but usage such as showers could
potentially be prolonged due to the increased hot water –
thereby increasing hot water use during peak hours. Fu-
ture work must analyzing this potential effect, and how Ther-
malThrift might adapt to these changes in water use.

Future work may also look at the effect of changing tem-
peratures in a tank over time. For water heaters, higher
temperatures can increase sediment buildup, covering and/or
wearing out the heating elements, shortening the lifespan.
However, the effect of limited and dynamic higher tem-
peratures is not well studied (ThermalThrift only uses high
temperatures just before and during peak hours) and Ther-
malThrift shows savings even with water heater recom-
mended temperatures as the upper TES bound (e.g. 60◦C).
The effect of these temperature changes on lifetime is an av-
enue of future work. In terms of temperature, future work
may also look at adding a Legionella killing temperature
constraint to TES operation if 49◦C is maintained as the user
comfort minimum. Most Canadian homes have hot water
thermostats at 60 ◦C to kill Legionella at the costs of larger
standby losses. However, 60 ◦C need only be maintained for
30 minutes to kill Legionella and such temperatures could be
deliberately achieved periodically with TES.

In addition to thermal load shifting, ThermalThrift could
also be used for cost effective storage in other demand-
response services including storage of renewable energy
and performing frequency regulation. Several works, eval-
uate water heating for ancillary services to aggregately store
highly variable renewable energy, but note that heating de-
mand does not necessarily match excess power [9, 14] and
Pourmousavi et. al. use load shifting to match with wind
generation but do not account for consumer costs [24]. Com-
bining these approaches with ThermalThrift, which accounts
for consumer costs and requires excess energy for TES
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charging, may provide a cost effective way to direct renew-
able energy to a consumer who will use it to decrease their
own costs – something that will vary significantly based on
individual usage and TOU pricing. Along with changing
TOU pricing, this may also be used to control the potential
for a slightly earlier aggregate peak in a neighborhood from
ThermalThrift. Evaluating what response ThermalThrift has
on changing peak periods, prices, and renewable energy is a
direction for future work.

7 Conclusion
In this paper we demonstrate that learning hot water usage

patterns for each household can help manage standby loss
and ensures hot water TES is cost effective for consumers.
Our findings show that the consumer-facing approach, de-
signed to reduce costs, reduces peak electrical load 47% and
reduces costs 25% over a conventional water heater. Our
utility-facing approach, designed to reduce peak load with-
out increasing consumer costs, reduces peak load 62% over
a conventional water heater. Additionally, the standby loss
caused by TES only increased total energy use 8% and 13%
for the consumer and utility variants respectively. These
savings show the large potential impact of TES for water
heaters and indicate that homeowners and utilities may be
sufficiently incentivized by ThermalThrift’s savings to pro-
mote the technology for cost and peak load reduction.
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