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Abstract
Targeting the problem of generating high-resolution air

quality maps for cities, we leverage four different sources of
data: (i) in-situ air quality measurements produced by our
mobile sensor network deployed on public transportation
vehicles, (ii) explanatory air-quality and meteorological
variables obtained from two static monitoring stations, (iii)
land-use data of the city, and (iv) traffic statistics. We propose
two novel approaches for estimating the targeted pollutant
level at desired time-location pairs, extending also to areas
of the city that are beyond the coverage of our mobile sensor
network. The first is a log-linear regression model which is
built over a virtual dependency graph based on land-use data.
The second is a deep learning framework that automatically
captures the dependencies of the data based on autoencoders.
We have evaluated the two proposed approaches against
three canonical modeling techniques considering metrics of
coefficient of determination (R2), root mean square error
(RMSE), and the fraction of predictions within a factor of
two of observations (FAC2). Using more than 45 million real
measurements in the models, the results show consistently
superior performance in respect to the canonical techniques.

1 Introduction
Assessing the relationship between human health and long-

term exposure to urban air pollutants is a major goal of many
medical studies. This is a momentous problem considering
the fact that statistically more than 7 million premature
human deaths are annually linked to air pollution [39]. In
the framework of numerous medical projects (e.g., CoLaus
[32]), various health related parameters (e.g., blood pressure,
renal salt excretion and physical activities) and location of
a large number of participants are frequently collected. For
physicians, one of the main missing pieces of the puzzle to

accurately link specific medical disorders with air pollution
is the availability of spatial high-resolution air quality maps
of the urban areas in which participants reside and work. One
way of generating such maps is to densely sense the very
same air that people breathe. Unfortunately, this is not yet
achievable with the current technology for a large number of
participants.

In most countries, monitoring air quality is carried out
through the use of air quality stations operated by national
environmental protection agencies. These reference stations
provide highly accurate measurements from a limited number
of specially selected sites. In most cases, the distance between
two stations is in the order of tens of hundreds of kilometers
resulting in very low spatial resolution of the generated
air quality maps. Although this low spatial resolution is
restrictive, using data of such few static stations and through
pilot experiments, the physicians have shown that short-term
exposure to higher levels of air pollution (e.g., particulate
matters) is associated with many health disorders such as
higher night-time systolic blood pressure, reduced nocturnal
blood pressure dipping, and a reduced ability of the kidney to
excrete sodium during the day [36]. Further understanding of
these assessments clearly requires highly-resolved air quality
maps.

1.1 Mobile Sensing
As opposed to traditional air quality monitoring stations,

the use of networks of low-cost sensors is quickly emerging,
aiming at providing air quality data with unprecedented
temporal and spatial resolution. Mobile sensors can dynam-
ically move throughout the environment and provide high
spatial resolution data. Innovative sensing strategies such as
integrating air quality sensing nodes into wearable devices
[21] and smart-phones [15] are proposed. These crowd-
sourcing strategies may open exciting new opportunities for
the study of urban air quality and its impact on health, if
deployed in large numbers. However, most of such systems
currently suffer from noisy measurements produced by low-
cost sensors. Moreover, in many cases they are operated by
inexpert users and the provided data is not fully trustworthy
due to unknown sampling conditions and high uncertainty in
the calibration and maintenance procedures.

Aiming at generating high-quality and high-resolution air
quality maps, we use a heterogeneous system to gather data
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from four sources: (i) a mobile network using moderate-cost
sensors which is deployed and maintained in the framework
of our project, OpenSense II1, in Lausanne, Switzerland, (ii)
two traditional static air quality and meteorological stations
maintained by NABEL (the Swiss National Air Pollution
Monitoring Network) and MeteoSwiss (the Swiss Federal
Office of Meteorology and Climatology), respectively, (iii)
land-use data (as the correlated measures for air quality)
gathered and reported by the Swiss Federal Office of Topog-
raphy (Swisstopo) and the Swiss Federal Office of Statistics
(GeoStat), and (iv) traffic counts of the streets of the city
provided by the Transitec company. For the first data category,
we have anchored our sensing nodes on top of ten public buses
in Lausanne [27, 4]. This innovative deployment has been
later followed by some other researchers (e.g., Gao et al. [13]).
This approach which adds mobility to monitoring platforms
brings significant benefits in comparison to more traditional
static Wireless Sensor Networks (WSNs): finer spatial
resolution, coverage of a wider area (including urban, sub-
urban, and even rural) with fewer nodes, cheaper maintenance,
etc. However, not much literature exists on field estimation
using non-stationary sensor networks. The movements of
the nodes are not under our control and not even predictable
since the buses are assigned to different lines every few hours
depending on real-time needs of the public transportation
company. The spatial coverage of the mobile sensor network
in respect to the urban area of interest is in any case partial:
the bus network is limited to a subset of the streets of the
city, meaning that we never have any measurement for the
streets/areas that are not covered by bus lines. Moreover,
the coverage changes dynamically over time because of the
dynamic assignment of buses mentioned above. Therefore
at any given period of time there are many parts of the city
that do not have any measurements. Given these conditions,
generating consistent and as complete as possible maps with
high resolution is a tough challenge. In this paper, we
use the three other mentioned sources of information (i.e.
measurements of static air-quality/meteorological stations,
land-use, and traffic data) to generate extended maps through
data-driven models.

1.2 Modeling and Estimation of Air Quality
To generate extended maps out of sparse measurements,

we need to develop air quality models. ‘Deterministic
simulation’ and ‘statistical modeling’ are the two main
categories of works on air quality estimations [24]. Determin-
istic simulations use physico-chemical models of airborne
gas dispersion and estimate the concentrations having the
sources of emissions as input. GRAL [31] is an advanced
example of this category which mathematically models
the motion of pollution plume particles in the atmosphere
using a Lagrangian dispersion model. Berchet et al. [7]
have developed a GRAMM/GRAL simulation framework
for Lausanne, Switzerland and achieved ten years of NOx
concentration maps with a spatial resolution of 5 m. One
drawback of this category is that they require accurate data
of emission inventories (e.g., type and number of vehicles
in the streets), structural and geographical details of the

1http://opensense.epfl.ch

environment (e.g., building dimensions), and meteorological
data (e.g., temperature and wind speed), which are not
always available in high temporal resolutions. Moreover,
these simulations cannot adapt without manual intervention
to real-world changes respective to their set-up parameters
(e.g., topography or traffic flow modifications) and cannot
capture particular pollution events (e.g., construction sites,
fires, sudden changes in the weather conditions, etc.)

Statistical models treat air quality as a random distribution
and try to derive an analytical description for it. These
methods can be divided into two classes. The first class
is represented by the purely field-driven models which
aim at finding all the dependencies and variables from the
measurements of the targeted pollutant. Spatial interpolation
methodologies (e.g., inverse distance weighing interpolation
[38], and K-Nearest Neighbor (KNN) [11]) are the most
common approaches in this class. The performance of such
methods drops drastically if the pollution distribution is
dynamic and multi-variant [27] (which is usually the case
for urban environments under short term observational condi-
tions). The second class treat other modalities correlated to
air quality (AKA explanatory variables, e.g., temperature) as
random variables to derive a model for the target distribution.
In other words, this class consists of statistical models which
work not only based on the field measurements but also
take one or more explanatory variables into account. These
methods usually show higher performance compared to the
purely field-driven models.

As concrete examples of the second class, Niska et al. [30]
designed an architecture of a Multi-Layer Perceptron (MLP)
Artificial Neural Network (ANN) model for forecasting
concentrations of nitrogen dioxide at an urban station. They
proposed a parallel genetic algorithm for selecting the input
variables. Yi et al. [40] proposed another ANN structure
for modeling ozone based on meteorological variables in an
urban environment through a pattern recognition approach.
Hussein et al. [23] developed a linear regression model on
the data of a stationary monitoring node to predict aerosol
particles. Mølgaard et al. [28] proposed a Bayesian regression
model to predict Ultra-Fine Particles (UFPs) concentrations
of an urban monitoring station using meteorology and traffic
data as inputs. To obtain better prediction performance,
Clifford et al. [9] proposed a generalized additive model
using meteorological data, time, solar radiation and rainfall
as explanatory variables. Reggente et al. [33] employed a
Gaussian process regression to estimate UFPs in an urban
air pollution monitoring network based on local and remote
concentrations of NOx, O3, CO, and UFPs. Zheng et al. [41]
inferred the real-time and fine-grained air quality information
based on the historical and real-time data reported by static
monitoring stations and a variety of explanatory data sources
such as meteorology, traffic, human mobility, structure of
road networks, and point of interests. They presented a semi-
supervised learning approach on a framework that consists
of two stacked models; an ANN-based model for capturing
spatial, and a linear-chain conditional random field method
for capturing temporal dependencies. None of the mentioned
works have considered mobile sensor networks as source of
in-situ measured air quality data.
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One thrust of research has focused on modeling the
air quality based on land-use data. Land-use features (in
the context of environmental engineering) are measures of
population density, building heights, heating type, terrain
elevation, terrain slope, types of roads, and so on, and even
sometimes average traffic volumes. Li et al. [26] proposed
a Gaussian process regression (AKA Kriging) model using
land-use characteristics to estimate urban UFP levels from
measurements collected from trams within different grid-cells.
The main problem with land-use data is that usually they
are not available in high temporal resolutions, implying that,
they are usually considered only as long-term representative
for trends of air quality. One way to overcome this issue
is to generate different models for every target time period.
Hasenfratz et al. [17] and Li et al. [26] (in two separate
works) built up two sets of models, each targeting one time
period (e.g., one model per day) for one city. These models
cannot be used for time periods other than those they have
been trained for. In the method of Hasenfratz et al. [17],
measurements gathered in a previous period are also used in
the model to increase the accuracy of high resolution maps.
In particular, they annotate the UFP measurements obtained
during one year with the corresponding meteorological (e.g.,
temperature) and time data (e.g., weekday). Then based on
the current meteorological conditions and time, they fetch
the most relevant historic UFP measurements and use them
to augment the current dataset represented by the real-time
UFP measurements. This method significantly increases the
accuracy of the maps, although the real-time meteorological
data are not directly used in the model itself. On the
other hand, Li et al. [26] did not consider meteorological
parameters.

In our previous work [27], based on an analysis of the
Pearson correlation of the targeted pollutant in various regions
of the city, we built a graphical network that connects
the regions (i.e., street segments) with highest statistical
correlations. Using this network, we proposed a Probabilistic
Graphical Model (PGM) to estimate the concentration of the
target pollution for the nodes using Bayesian inference on the
historical probability distribution of the nodes. Although
promising results were reported, this method had a few
drawbacks. First, PGMs require a huge amount of data to
generate the probability distributions accurately (for instance,
this is why the reported method could not build the model for
a monthly time resolution). Second, marginalization of the
probability distributions is a very heavy process. Third, that
method is limited to the area covered by the sensors meaning
that it cannot estimate the air quality outside the coverage of
the mobile WSN. Finally, that work did not incorporate any
land-use data in the model due to the fact that the land-use
data usually does not have a temporal property and building
probability distributions out of them is not trivial.

1.3 Our Contribution
To address the stated problem, this paper presents three

contributions:

1. We propose to leverage four sources of data: (i) targeted
air quality data provided by a mobile WSN, (ii) explanatory
air quality and meteorology variables, (iii) land-use, and

(iv) traffic data. These modalities together will enable us
to generate air quality maps of the city that go beyond the
actual sampling locations. There are only a few previous
works which have integrated these types of data (e.g., [41]) to
estimate the air quality. However, to the best of our knowledge
none of them has ever dealt with the peculiarities of a mobile
sensor network. The details of our mobile sensor network
and the three other types of data are presented in Section 2.
Similar to [25, 27] we discretize the area topologically based
on the street segments in the city.

2. A network-based log-linear regression model is proposed
that takes into account the measurements gathered by the
mobile sensor network values, nine meteorological (e.g., tem-
perature and precipitations) and gaseous (e.g., NO2 and CO)
explanatory variables obtained from the two static stations
(explained in Section 2.2), eleven land-use modalities, and six
traffic measures. This model is similar to the second model
proposed in [27] with the following two improvements: (i)
we generate the dependency network based on the similarities
of street segments in terms of land-use and traffic data (while
in [27] the network is built exclusively based on correlation of
air quality data); (ii) we integrate the land-use data as another
useful source of data in the log-linear regression model (while
in [27], we did not use land-use data at all). Obviously
log-linear models cannot capture the non-linearities of the
data, however, we present how this vastly used class can be
upgraded to predict the air quality even outside the coverage
area of the mobile sensor network. Although these types of
models are vastly studied [23, 27, 28, 33], the use of land-
use data in building a virtual network that naturally captures
the dependencies between street segments, the number of
explanatory variables, the scale of the data, and the time
resolutions which we consider in this paper are beyond the
framework of many previous works in this area. Section 3.1
provides details of this contribution.

3. A deep learning framework is proposed in which an ANN
is built while meaningful features of data are automatically
captured. We found this framework very suitable for the stated
problem since its predictions are not limited to the spatio-
temporal domain used for the training process. By presenting
this model, we show how an advanced machine learning
technique can further improve the performance of air quality
maps. To the best of our knowledge, none of the previous
works in this area have designed a deep learning ANN to
capture automatically the features of the four types of data.
This powerful tool is explained in Section 3.2. Compared to
the work of Zheng et al. [41] which proposes two stacked
models; one for capturing spatial dependencies, and the other
for temporal ones using a static sensor network, our model
simultaneously learns the temporal and spatial dependencies
using data gathered by a mobile sensor network.

2 System Overview and Data Sources
Our proposed heterogeneous system consists of four

sources of information. This section presents the details of
each one of them.
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2.1 Mobile Sensor Network
Among the airborne pollutants (CO, SOx, NOx, NH3, O3,

etc.), a growing attention is being placed towards studying
Particulate Matter (PM) due to their significant adverse impact
on human health. Most of the previous studies (e.g., [8]) have
focused on PM10 or PM2.5 which describe the fraction of
particles smaller than 10 μm or 2.5 μm in a given volume,
respectively. The most commonly used metrics for particulate
matter are particle mass and particle count. However, the mass
or number of particles are not necessarily the best measures
for all impacts to human health. In fact, the surface area of the
particles also matters. It is well-known that finer particles are
potentially more harmful than coarse particles [34]. Studies
have shown that measuring the surface of nano-particles,
rather than their mass or number, is more meaningful for
quantifying their health impact [5, 29]. UFPs are able to
travel deeper into the lungs and, due to their large surface-to-
volume ratio, have higher reactivity which can result in higher
toxicity. Therefore, following our previous work presented
in [27], we are interested in measuring and estimating the
Lung-Deposited Surface Area (LDSA) which is a measure
that describes the deposited surface of particles per volume
of air inhaled.

2.1.1 Mobile sensing platforms
We have designed and developed dedicated sensing nodes

anchored to ten public buses which measure multiple air
quality parameters including LDSA. The measurements are
geo- and time- stamped locally by the sampling node. The
localization of the mobile nodes is achieved through fusion of
GNSS and vehicle odometry data, and accurate timestamps
are also obtained from the GNSS module. The measurements
are sent through GPRS to a database server. Along with these,
there are several meta-data information that are sent to the
server to indicate the health state of the measurement network.
The final deployment of our mobile sensor network started in
October 2013, and is ongoing. The LDSA sensors are Naneos
Partector 2, devices with negligible aging and drift which are
calibrated by the manufacturer and therefore ready to use
without further calibration efforts. The response time for this
active sampling device is in the order of fractions of a second;
multiple sub-second measurements are aggregated to result in
a still relatively fast and reliable measurement output at 1 Hz
frequency. The extension of the techniques presented in this
paper to gas-phase pollutants (e.g., CO, NOx) is beyond the
scope of this work. However, this would be feasible once the
issues of maintaining chemical sensor calibration [16] and
mitigating mobility induced measurement distortions [3] due
to the slow response of the chemical sensors are addressed.
Figure 1 shows one of the sensing nodes used in this project.

2.1.2 LDSA data
More than 45 million geo- and time- stamped LDSA

measurements gathered by our urban mobile sensor network
during the year 2014 are used in this paper. The buses
circulate only from 5 A.M. to mid-night approximately and
the allocation of the buses to the transport lines is out of
our control and driven by the transportation company needs.
Therefore the distribution of LDSA measurements varies both

2http://www.naneos.ch

Figure 1. One of the LDSA sensing modules (left). One
sensor node anchored on top of a public bus (right).

Figure 2. Number of LDSA measurements per street
segment during one year.

in time and space. Streets of the city center and bus stops have
a higher number of measurements as can be seen in Figure 2.
Note that these are the total number of measurements for the
whole year so, in practice, many of the streets will not have
enough measurements to generate daily air quality maps. It is
important to note that about 5% of the LDSA data provided
by the mobile network were filtered out because of sensor
malfunctioning using the meta-information that the sensors
send alongside the measurements. The challenge is to produce
a model of air quality over the whole city using these data
that are still relatively sparse both in time and space.

2.1.3 Street segmentation
Most of the previous works (e.g., [17, 22]) divide the

city into uniform grid cells, assuming that the measurements
inside a cell have the same conditions in terms of weather,
wind, traffic, and homogeneity of distribution of pollutants.
Depending on the cell-size, one cell can cover several streets
which have different environments and traffic conditions. To
overcome this issue, Jutzeler et al. [25] proposed to use
regions of homologous emissions in order to divide the city
into partitions with similar daily traffic estimations. We
showed that compared to grid-based, a partitioning based on
the streets segments produces better predictions for pollutants
distributions [27]. In this paper, we follow the same concept
for space tessellation using the street segments of the city
(acquired from the online OpenStreetMap [14] database). The
use of this space discretization method will inherently result
in higher resolutions in the downtown areas where street
segments are shorter and the heterogeneity of the measured
field is expected to also be higher than in suburban areas. In
total we extracted 1669 street segments for the city under
consideration.
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Figure 3. The red diamonds represent the location of the
two stationary stations: air-quality measuring station (1)
and the meteorological station (2). The green lines show
partially the coverage of the bus network in Lausanne.

Table 1. The modalities measured by two static stations
(left). The parameters of land-use data gathered from
various agencies (right).

Parameter Unit
CO mg/m3

NO mg/m3

O3 mg/m3

NO2 mg/m3

Rain mm
Radiation W/m2

Temperature K
Relative Humidity %

Wind speed m/s

Parameter Unit
Altitude m
Slope angle in ◦

Population #/ha

Households #/ha

# of buildings #/ha

# of buildings using gas heating #/ha

# of buildings using oil heating #/ha

Industry #/ha

Primary Industries #/ha

Secondary Industries #/ha

Tertiary Industries #/ha

Table 2. The traffic data modalities.

Parameter Symbol
Daily mean charge TJM

Daily traffic volume mean during working days TJOM

Hourly charge during morning rush hours HPM

Hourly charge during night rush hours HPS

Estimated effect of highways HT

2.1.4 Back-end database
In order to manage the massive amount of data sent in

real-time by the buses, we have adopted GSN (Global Sensor
Networks) [2] for our back-end server, a middleware solution
designed to handle the life-cycle of sensors. This includes
sensor data acquisition, metadata management, storage, real-
time processing, and publishing of measurement data.

2.2 Stationary Nodes
In addition to the LDSA measurements collected by the

buses, we consider two static monitoring stations in our sys-
tem (their location is shown in Figure 3). One is an air-quality
measuring station which monitors many parameters (e.g., CO,
NO, NO2). The other is a monitoring station which provides
meteorological parameters (e.g., precipitations, radiation and
humidity). These two stations report their measured values
(listed in in Table 1) every ten minutes.

2.3 Land-use Data
As mentioned already land-use features are measures of

types of vegetation, population density, building heights,
heating type, terrain elevation, etc. Since these are relevant
variables to air quality, we have selected a number of
modalities of interest for the city under study. It is important
to note that we have extracted these data not only for the street
segments that are covered by the mobile sensor network but
also for the other parts of the city. This will later enable us to

Figure 4. Slope profile of street segments of Lausanne.

Figure 5. Data points of land-use data in hectare grid for-
mat (left) and its corresponding Thiessen polygon parti-
tioning (right). Each point (in the left picture) represents
one land-use data point for one hectare. Since the land-
use grid data is sparse and non-uniformly distributed, the
Thiessen polygon partitioning is used to assign the mean
data to the streets segments that traverse a partition.

estimate the air quality for the segments that are beyond our
sensor network coverage.

• Altitude and slope: These are potentially two important
land-use parameters. We obtained a digital height library of
the city that represents the 3D form of the earth’s surface
with spatial resolution of 25 m and average error of 1.5 m
(provided by Swisstopo). Applying a digital elevation model
(DEM) tool in a GIS software we extracted the mean altitude
and the mean slope of the street segments of the city. Figure 4
is an example that shows the slope raster data (in the
background) and the extracted corresponding data of the street
segments.

• Density of population households, buildings, indus-
tries: GeoStat has provided a large variety of land-use and
population statistics averaged in 100×100 m2 (i.e. hectare)
grids. Number of habitants, buildings, buildings which use
natural gas for heating, industry facilities, etc. are the main
modalities of this dataset. Table 1 (right) gives a complete list
of these modalities.

Translating the land-use statistics data (which is in hectare
grid format) to our street segments spatial model was not a
trivial task particularly due to the fact that the land-use data
is sparse and not every point in the hectare grid has a value
(see Figure 5, left). Moreover, street segments are in different
lengths, so they traverse different number of grids and each
would be corresponding to various land-use statistics values.
To produce an adequate predictor based on these data, we
firstly partitioned the whole area of the city using Thiessen
polygons. This divided the area in polygons having the value
of the closest point with a land-use statistical measurement
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Figure 6. Average daily traffic charge (TJM) of street
segments.

(shown in Figure 5, right). Then, the weighted average (with
weights corresponding to length of street segment in each
polygon) of the values of the polygons that were intersected
by the street segments was calculated and assigned to each
street segment to be used as a predictor.

2.4 Traffic Data
Many previous works have shown that traffic has a signif-

icant impact on urban air quality [18]. Various parameters
of traffic counts for the streets are provided by Transitec in
collaboration with the transport office of the city. We have
extracted five traffic modalities for our street segments, listed
in Table 2. Figure 6 is an example that presents the resulting
allocation of one of these modalities (i.e. average daily traffic
charge) over the street segments of the city. The first four
modalities (in Table 2) have been directly provided by the
datasets, while the last parameter was produced by us. Since
the traffic volume of the highways are very likely to have an
important effect on the LDSA measurements, a variable to
model the “estimated effect of highways” was produced as
follows:

HTi =

{ TH
( d

dmin
)2

if d ≥ dmin

TH if d < dmin

(1)

where TH denotes the mean traffic charge in the closest
highway and d is the distance of the street segment i to
that highway. This predictor variable estimates the effect of
highways by taking the traffic volume of the closest highway
to each street segment divided by the normalized square of
the distance to that highway. If the distance is less than dmin
(a constant thresholding parameter, which is set to dmin = 1 m
in this paper), we simply give the value of the traffic volume
to this predictor.

It is important to mention that the data of all the above
modalities have been pre-processed through statistical data
cleansing to remove corrupted data and finally a unity-based
normalization is performed.

3 Modeling Methods
Among the 1699 street segments of the city, there are

many streets that do not have enough LDSA measurements,
thus they are not useful for training the models. In this
paper we consider 300 street segments, each having more
than 20,000 measurements, to train and validate the models.
The models then can be used in the other streets of the city
for prediction of LDSA. In terms of time, we consider four
resolutions: ‘quarterly’, ‘monthly’, ‘weekly’ and ‘daily’. The

LDSA measurements and the data of the explanatory variables
were aggregated in intervals of the considered time resolution.
For example, for the ‘monthly’ time resolution, the LDSA
measurements of each month were averaged for each street
segment, as well as all the explanatory variables (e.g., CO).

3.1 Log-linear Regression Model based on
Land-use and Traffic Network

The goal is to estimate the LDSA values for the location-
time pairs that the mobile sensor network has not covered.
Many studies have shown that the mathematical links between
many environmental parameters are logarithmic [17, 28]. We
previously built a network-based log-linear regression model
that fulfills this objective with one major limitation [27]: the
measured LDSA values of other segments were taken into
account for predicting the LDSA values for a given segment
in a given time window. Then a virtual dependency network
was built in which each segment was one node and a directed
edge was drawn between node Sm and Sn if node Sn was
considered as a variable in the model of node Sm. The metric
used to generate this dependency network was the Pearson
correlation between the LDSA measurements of the streets
(i.e. two nodes are connected if their LDSA correlation is
high). Therefore that model works only for the location-time
pairs that have been covered at least once by the bus network,
otherwise no correlation could be built. This means that the
estimations could not go beyond the area actually covered by
the mobile sensor network. Here we tackle this limitation by
changing the way we build the dependency network and also
by using land-use and traffic data. We refer to this approach
as a Land-Use Network-based Log-Linear model (LU-NLL).
3.1.1 The model

The mathematical formulation of our model is defined by
the following equation:

log(LSm ) = α+
9

∑
i=1

βi . log(vi)+
16

∑
i=1

γi . log(Ui,Sm )+ ∑
[m−n]∈E

δn . log(LSn ) (2)

where LSm denotes the LDSA estimated value in segment Sm,
α the intercept, vi the explanatory variable i provided by the
stationary nodes, Ui,Sm the land-use and traffic variables i in
segment Sm (see Table 1 and Table 2 for the list of variables),
E the edge list of the dependency network, and finally β, γ
and δ the coefficients of each variable. Hereafter, the operator
‘log’ actually represents a ‘shifted-log’ transformation due
to many zeros in environmental data (basically a positive
number, in this case one, has been added to the data before log-
transforming, i.e. log(1+ vi)). The last term in (2) indicates
that we have used the LDSA of street segment n as an input
to estimate the LDSA of street segment m. At this point, the
question is how to define the dependency network.

3.1.2 Virtual graph
Instead of defining the dependency network based on the

LDSA correlations of the street segments, we define it based
on the land-use and traffic data. This provides a significant
advantage since the dependency graph (based on land-use
and traffic data) no longer requires LDSA measurements and
can be extended to all the streets of the city even beyond
the coverage of the mobile sensor network. Of course this
extension is limited to the regions that have environmental,
geographic and structural properties similar to the coverage
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Figure 7. Virtual graph generated for the street segments
of the city. Each node represents one street segment and
the edges are drawn based on similarity in the land-use
and traffic data. For increasing readability, not all the
nodes and edges are shown in this figure.

area of the sensors. In the virtual graph, each street segment is
one node and we connect the nodes with highest similarity in
terms of their land-use and traffic data. Therefore the criteria
for connectivity of nodes in the dependency graph is defined
as follows:

DL(Sm,Sn) =

√√√√ 16

∑
i=1

(
l̂og(Ui,Sm )− l̂og(Ui,Sn )

)2
(3)

where l̂og denotes the normalized shifted-log transformation.
DL(Sn,Sm) is the Euclidian land-use and traffic distance
between two arbitrary street segments Sm and Sn. We calculate
this distance for all combinations of street segments and then
we connect each street to the one with the smallest distance.
We keep connecting nodes with smallest land-use and traffic
distance until all the graph becomes connected. Figure 7
shows partially such a graph generated for the city under
study.

To the best of our knowledge no previous work has ever
built a virtual network based on land-use and traffic data and
integrated it into such a model.

3.1.3 Training the model
To train and evaluate the model, we randomly divide the

available data into two subsets, the “training set” and the
“validation set”, using 10-fold cross validation. We use the QR
decomposition algorithm [35] on the training set to solve the
linear least squares problem in order to find the coefficients
of the model.

There is no reliable ground truth data to evaluate the
models in such systems. This is due to the fact that ground
truth would be only acquirable with a dense deployment of
high-end stations, a nonexistent solution given the resulting
unaffordable cost. Therefore, similar to many previous works
in environmental sensing, we use the validation data set (i.e.
10 % of the measurements that are separated from the training)
as ground truth to assess the performance of the models.
Working on four time resolutions we developed four models
for the whole city (differently from [27] in which one model
per street was generated). In fact, land-use and traffic data
are used in this model as particular distinguishing features of

Figure 8. Correlation of four variables from static sta-
tions with LDSA concentrations in one street segment.
The data aggregated by hour, for one street in the city
that has a particularly large amount of bus measures.

the street segments and naturally categorize them into similar
classes. The results are reported in Section 4.

3.2 Deep Learning Model (DLM)
The previously explained model inherently assumes that

the LDSA distribution is a linear function of input variables.
In fact, if the correlations between the input variables and
the target variable (i.e. LDSA) are linear, then the regression
model can estimate the target pollutant very well. However,
studying the correlation between these variables shows that
the dependencies are non-linear in most of the cases. Figure 8
shows the correlation between four exemplar variables with
LDSA in one particular street segment. As can be seen on
the plots, the data are quite scattered and linear correlations
cannot always be observed. Some variables (e.g., CO) slightly
correlate linearly with LDSA, while the others not at all.
Therefore, we need a model that is able to capture the non-
linearities and complex relationships between the variables.

ANNs are usually useful to automatically capture the de-
pendencies and interpreting non-linear correlations between
the input variables, without needing to know the underlying
function. Theoretically, an ANN function is defined as a
composition of other functions which can further be defined
as a composition of other functions. This can be conveniently
represented as a network structure, with arrows depicting
the dependencies between functions and variables. The
universal approximation theorem [20] states that a feed-
forward network with a single hidden layer containing a
finite number of neurons (AKA Multi-Layer Perceptron,
MLP) can approximate any continuous function under mild
assumptions.

Studying the history of multi-layer ANNs, their difficult
optimization has mostly prevented obtaining expected bene-
fits of going beyond one or two hidden layers [6], especially
considering high-dimensional data. However, this situation
has recently changed with the promising approach of Deep
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Figure 9. An exemplar autoencoder with three layers.
The outputs (x̂i) are learned to predict the input variables
(xi). After training, z (layer 2) will be an encoded repre-
sentation of x with lower dimension.

Neural Networks (DNNs) and stacked Auto-Encoders (AEs)
[6, 19, 37]. Since ANN are effectively trained using a
supervised learning approach, it has been repeatedly and
experimentally proven that learning the coefficients gets
difficult (if not impossible) when the number of input
variables, number of layers, and number of neurons gets
large. A key component of the DNN success is the procedure
of partially pre-training the network using an unsupervised
training criterion. The input data itself is used to partially
train the neural network. This way, the network can learn
intrinsic information about the data without the help of a
target vector (i.e. the measured LDSA data in our case).
In this process, the network automatically learns high-level
features from the input data and it captures the non-linear
dependencies between them. The learned information is
stored as the initial weights of the network. Moreover,
through this unsupervised learning process the dimensions
of the input data is reduced while the amount of information
in the data is not significantly lost. This is known as feature
hierarchy, and it is a hierarchy of increasing complexity and
abstraction. It makes deep-learning networks capable of
handling very large, high-dimensional data sets (which is the
case in our work) with billions of parameters that pass through
nonlinear functions. AEs and restricted Boltzmann machines
are two equally efficient methods to generate and pre-train
DNNs. In this paper, we have used AEs to automatically
capture the useful features of the data.

3.2.1 Automatic feature extraction using AEs
AEs can be considered as multi-layer sparse coding

networks. The differences between AEs and MLPs are that
(i) in an AE the output layer has the same number of nodes as
the input layer, and (ii) instead of being trained to predict the
target value given inputs, AEs are trained to reconstruct their
own inputs. In other words, AEs try to learn an approximation
to the identity function, such that the output x̂ is similar to
the input x. By placing constraints on the network, such as
by limiting the number of hidden units (z), AEs can discover
interesting structures about the data.

An AE first maps the scaled d-dimension input vec-
tor x ∈ [−1,1]d to a hidden d′-dimension representation

z ∈ [−1,1]d
′

(where d′ < d) through a deterministic mapping
function: z = fθ(x) = s(Wx+b), (4)

parameterized by θ = {W,b}, where s is the activation
function (e.g., sigmoid, tanh, softmax), W is a d′ ×d weight

z11

x1 x2 x3 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

Static stations’ data Traffic data Land-use data
x10 x11 x12 x13 x14 x15 x16 x17 x25

x1̂0 x1̂1 x1̂2 x1̂3 x1̂4

x26

LD
SA

x̂1 x2̂ x3̂ x9̂ x1̂5 x1̂6 x1̂7 x2̂5

x27

… …

… …

W1 W2 W3

W4

W6 W7 W8

W5

Figure 10. The proposed DNN structure. The blue
nodes (x1 − x27) represent the input data, the red nodes
(z1 − z11) represent the lower dimension features of the
input data and the orange (x̂1 − x̂25) shows the decode
part of the AEs.

matrix, and b is a bias vector. The resulting latent repre-
sentation z is then mapped back to a reconstructed vector
y ∈ [−1,1]d of the input vector, thus:

x̂ = gθ′ (z) = s(W ′z+b′) (5)

with θ′ = {W ′,b′}. The parameters of this model (θ and θ′)
are optimized to minimize the average reconstruction error:

(θ∗,θ′∗) = argmin
θ,θ′

1

d

d

∑
i=1

(xi − x̂i)
2

= argmin
θ,θ′

1

d

d

∑
i=1

(
xi −gθ′

(
fθ(xi)

))2
(6)

Eq. (6) shows that θ∗ and θ′∗ are functions of only the
input vector x, implying that a completely unsupervised back-
propagation learning approach can learn optimized weights.

Figure 9 shows an example of an AE network with three
layers. In this example, there are seven inputs xi and there are
3 hidden units (zi) in the middle layer, so the AE network is
forced to learn a compressed (low-dimensional) intermediate
representation of the input and then re-construct the 7 input
data (x̂i) using z in an unsupervised manner. If there are
structures in the data (e.g., if some of the input features are
correlated), then the AE will be able to discover some of those
correlations.

Once the weights of the AE network was learned (through
an optimization method, in our work AdaGrad explained
later in Section 3.2.3), the “decode” part of the AE network
(colored with orange in Figure 9) will be eliminated and the
middle layer (z) will be the input of the next layers of a feed
forward DNN which will try to model the target modality.
The obtained coefficients of the AE will be used as the initial
values of the weights of the larger multi-layer DNN.

3.2.2 The structure of the deep network
As explained in Section 2, we propose to use four sources

of information to estimate LDSA in various points of the city.
Our proposed network structure uses AEs for each of these
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sources to (i) extract informative features of the data, and (ii)
lower the dimensions of the input data.

Figure 10 presents the proposed structure of the DNN.
For increasing the readability we have not shown the usual
‘bias’ nodes in each layer. The details of this structure are as
follows:

1. The nine modalities of the meteorological and air-quality
measures obtained from the two static stations (listed in
Table 1 (left) are coded into a feature vector with four nodes
(z1 − z4).

2. The five measures related to traffic (listed in Table 2) are
mapped into a feature vector with three nodes (z5 − z7).

3. The eleven measures related to land-use (listed in Ta-
ble 1, right) are mapped into a feature vector with four nodes
(z8 − z11).

4. In order to take into account the land-use network shown
in Figure 7, we have inserted node x26 into this DNN. This
node represents the LDSA measurement of the most similar
street segment in terms of land-use data. Since this is only
one node, there is no need to propose an AE for it.

5. The last modality taken into account is “time”, represented
by x27 in the DNN. The value of this node is dependent on
the time resolution of the model. Since four time resolutions
(daily, weekly, monthly and quarterly) have been considered,
this nodes has four different implication (i.e. day number,
week number, month number, and quarter number).

In each intermediate layer of the DNN, we use the
following nonlinear neural transfer function to compute the
output of the nodes:

hW,b(x) = tanh(
N

∑
i=1

Wixi +b) (7)

where xi represents the input nodes, N is the number of inputs,
while b and Wi are the bias and the weights to be optimized.
The hyperbolic tangent that is used as activation function is
suitable for our model due to the fact that all the inputs and
the target modalities are scalar numbers that are normalized
to [−1,1].

3.2.3 Training and implementation
We use the same exact training set, validation set and

land-use network explained in Section 3.1 for this model
too. Using the training set, first the AEs of the DNN are
trained (unsupervised), and optimized values of their weights
(W1,W2,W3,W6,W7,W8) are obtained. Then the upper part of
the AEs (colored orange) is ignored and the whole DNN is
trained (supervised) starting with the partial initial weights’
values obtained from the AEs.

For optimizing the weights and the biases, we use a recent
adaptive sub-gradient optimization method called AdaGrad
[12] which has shown remarkably good results on large scale
multi-dimensional learning tasks in a distributed environment
[10]. AdaGrad automatically scales the learning rate of
each parameter in every iteration and tries to dampen the
extreme parameter updates, while increasing the learning rate
of parameters that have got few or small updates. The loss
function used as the criteria of the optimization process was
simply the root square error of the estimated values relative
to the measured values.

We have implemented our models in the framework
of Tensorflow [1] which is an open-source framework for
numerical computations using data flow graphs, recently
released by Google. This framework significantly facilitates
the process of building and training the networks and provides
useful optimization libraries.

4 Performance Evaluation
The proposed models are used to estimate LDSA values

for locations/times of interest. In contrast to many previous
studies (including our previous work in [27]), the models are
able to predict air quality even outside the coverage of the
sensor network.

4.1 Canonical Baseline Methods
To assess the performance of the proposed methods, we

need to compare them with canonical baseline techniques.
Most of the previous works compare their models with purely
unsupervised data-driven statistical models (e.g., KNN)
which usually show very poor results in real environmental
datasets. We instead compare our proposed models with
three supervised log-linear regression models which have
already delivered acceptable results. In order to optimize
their parameters, we have trained these models using the
very same training set that is used for training the two new
proposed methods. The three baseline methods are as follows.

• Basic log-linear regression model (BLL): As the first
baseline model we use only the data of the static stations
to predict the LDSA values. This is similar to many previous
works including the first model presented in [27]. The
mathematical formulation of this model is defined by:

log(LSm ) = α+
9

∑
i=1

βi . log(vi) (8)

Since the static stations do not provide spatial variety, we
have to generate one model per street segment. This implies
that this model cannot be further extended to street segments
outside the coverage area of the mobile sensor network.

• Network-based log-linear regression (NLL): The second
baseline method is similar to the first proposed method (see
Section 3.1) but instead of building the virtual dependency
network based on the similarity in the land-use data, we build
the virtual network based on the Pearson correlation between
the LDSA measurements of the streets. This is similar to the
second method proposed in our previous work [27].

log(LSm ) = α+
9

∑
i=1

βi . log(vi)+ ∑
[m−n]∈E ′

δn . log(LSn ) (9)

Note that unlike Eq. (2), here E ′ is defined as the edges of
the network generated based on the Pearson correlation of
LDSA measurements. As already mentioned the estimations
of this model cannot go beyond the area actually covered by
the mobile sensor network.

• Basic log-linear regression with land-use (BLL-LU): As
the third baseline model, we have integrated also the land-use
and the traffic data into a log-linear regression model. Since
the land-use and the traffic data inherently provide spatial
variety, we can build one general model for the city and it can
predict even for regions outside our sensor network coverage.
The mathematical formulation of this model is defined by:
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log(LSm ) = α+
9

∑
i=1

βi . log(vi)+
16

∑
i=1

γi . log(Ui,Sm ) (10)

This basic model is similar to our first proposed method
explained in Section 3.1 with the significant difference that it
does not integrate in the log linear regression a virtual network
built on land-use data (compare Eq. (10) and (2)).

4.2 Evaluation Metrics
We have considered three metrics for statistical evaluation

of the methods. In the validation datasets, for every estimated
value (model’s prediction), there is an observed measurement.
Denoting M as the set of modeled values and O as the set of
corresponding observations, we consider these metrics:

1. R2: The coefficient of determination shows how well the
model fits the observed values. This metric is defined as:

R2 = 1− ∑i (Oi −Mi)
2

∑i (Oi −mean(O))2
(11)

where mean(O) represents the mean of all observations

which are considered in the validation sets. R2 = 1
indicates a perfect linear fit between the model and the
observations.

2. RMSE: The root mean square error is computed as the
following:

RMSE =

√
1

L ∑
i
(Oi −Mi)2 (12)

where L is the number of estimations provided by the
model. Obviously, the lower the RMSE is, the better the
model works.

3. FAC2: The factor of two measure, is the percentage of
ratios Oi/Mi that fall between 0.5 and 2. i.e.

0.5 <
Oi

Mi
< 2 (13)

The more close to 1 this metric is, the better the model has
estimated the observations.

4.3 Results
All five modeling methods have been tested using the same

data set, with models being derived for daily, weekly, monthly,
and, in the case of models that exploit land-use and traffic data,
also quarterly time resolutions. The results of calculating the
metrics for all the proposed models are shown in Figure 11.
Although not directly comparable, some observations can be
made on the difference between the attainable performance
for methods that derive models for each street segment (i.e.
local models that do not use spatial explanatory variables),
and global models derived for the whole city that make
use of land-use and traffic data. As can be expected, the
BLL and NLL methods are able to deliver locally higher
performance than single models for the whole city. This is
because they generate one model per street segment, thus each
local model is trained and validated on a small (and usually
highly homogeneous) fraction of the data taken in one street
segment. The variability of this performance is, however,
large. Also, as the temporal aggregation is increased, these
methods start having a harder time fitting their local models
because of the reduced number of aggregated data points
within the 12 months considered in each street segment. This
starts affecting their performance at the monthly scale, while

RM
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3 )
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Figure 11. The evaluation results for the proposed mod-
eling methods. The results of the methods that derive
one model per street segment (BLL and NLL) are shown
with red boxplots, while the results for the other modeling
techniques which derive one model for the whole city are
depicted with green boxplots.

making it impossible to fit local models at the quarterly levels
(there are only four complete year-quarters in the considered
interval). Anyhow, as already mentioned, the local models
(BLL and NLL) cannot be extended to the areas beyond the
coverage area of the sensor network.

A significant advantage of the three models that also
exploit land-use and traffic data (BLL-LU, LU-NLL and
DLM) is that one single model is generated for the whole
city that can capture all the dependencies between all the
street segments and also the dependencies between the LDSA
values of each segment with the input variables. Basically,
only a few models are built for the whole city (one model per
time resolution) and they can generate high spatial resolution
maps even for locations beyond the coverage area of the
mobile sensor network where both land-use and traffic data
are available. Figure 12 shows two daily air quality maps of
the city generated by the proposed DLM model.

The quantitative performances of the three global methods
(BLL-LU, LU-NLL and DLM) is more consistent, with
smaller variations compared to the two local models (BLL
and NLL) for the three metrics (see Figure 11). Although
the NLL shows higher mean R2 and FAC2 and lower mean
RMSE for most of the time resolutions, its standard variation
is very large. Considering the fact that NLL is a local
modeling approach, this means that there are a considerable
number of street segments that are associated with very poor
models (and of course there are also many streets with really
good models). On the other hand, the global models that
use the land-use and traffic data, can always guarantee an
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acceptable performance over the whole city. This consistency
in the performance results is an important achievement that is
required for generating global air quality maps with bounded
errors for the whole city. This proves that exploiting the land-
use together with the other three sources of data provides a
significant advantage in this estimation/map building effort.

The two proposed methods provide very satisfactory
results (even compared to the only global baseline method
BLL-LU): mean R2 always above 0.2, mean FAC2 always
above 0.85 and mean RMSE always bellow 21 μm2/cm3.
However, their performance depends also on the targeted time
resolution. For the lower time resolutions (e.g., quarterly)
the performance of these models is better (i.e. higher
R2 and FAC, while lower RMSE) than for the high time
resolution (e.g., daily). This is due to the fact that lowering
time resolution implies aggregating more data together and
therefore damping high frequency fluctuations, which makes
the signals smoother, thus easier to be modeled.

The results prove the impact of using a virtual network
in this system. For both cases when a virtual dependency
network is used (i.e. for the NLL and LU-NLL methods) this
has a significant positive impact on performance when com-
pared to the respective basic log-linear regression methods
(i.e. BLL and BLL-LU). Differently from NLL, the proposed
land-use virtual network also allows us to extend the maps
beyond the coverage of the mobile WSN .

Finally, the second proposed method (DLM) outperforms
the other two global models (BLL-LU and LU-NLL), deliv-
ering the best performance for the three metrics. However,
this superiority comes with the price of higher complexity
and higher computational cost, it takes about 20 hours to train
the DLM on the daily resolution, while the LU-NLL takes
less than five minutes to be trained on the same computer
platform with the same dataset. Therefore, the suitability of
the methods depends also on the application. For an online
service that should model the air quality every few minutes
the first proposed method is appropriate, while for an offline
survey service that should accurately process the history of
data and generate a more precise air quality map, the DLM
method is suitable.

5 Conclusion
In this paper, we showed how to use a heterogeneous

system, which consists of a mobile sensor network, two static
monitoring stations and two other sources of land-use and
traffic data, to generate extended high-resolution air quality
maps of a city. We proposed two novel modeling approaches
in order to be able to estimate the air quality for time-location
pairs with no associated measurements. The first method
was a log-linear regression model based on a virtual land-use
network of the street segments of the city. The second method
was a deep learning approach using autoencoder structures
which automatically capture the dependencies of the input
variables and extracts their informative features.

The two proposed models are universal and consistent in
a sense that one single model for one time resolution can
capture all the dependencies between all the street segments
and also the dependencies between the LDSA values of each
segment with the input variables. The resolution and the

Date:15.09.2014

Date: 02.10.2014

Figure 12. Two examples of LDSA daily maps of Lau-
sanne, generated by the DLM model.

area coverage of the maps generated by the proposed models
are beyond the ones of our mobile sensor network, and are
extended to the resolution and coverage of the land-use and
traffic data. The main limitation of the presented methods
lies in the fact that the coverage of the output maps cannot
be extended beyond the spatial information provided by both
land-use and traffic data. While land-use data are typically
available for the whole territory, traffic data, especially if
gathered with canonical vehicle counting techniques, are more
sparse in time and space and represent therefore the main
bottleneck for further mapping extension.

Comparing with three baseline methods, we conclude that
both proposed methods show very good results considering
three metrics of R2, RMSE and FAC2. Nevertheless, the
second proposed method based on Deep Neural Networks out-
performs the other global models, implying that its increased
complexity and computational cost is adding significant value
in terms of estimation performance.
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