Competition: An Adaptive Protocol Stack for High-Dependability
based on the Population Protocols Paradigm

Dimitrios Amaxilatis
Computer Engineering & Informatics Department
University of Patras
and Computer Technology Institute & Press (CTI)

amaxilat@cti.gr

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring;
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Population Protocols, Dependability

Keywords
Adaptive Protocols, Algorithm Engineering, Low Power
and Lossy Networks

1 Introduction

The last decade we witnessed a tremendous progress to-
wards the interconnection of the digital and physical do-
mains, giving rise to the “Internet of Things”. An outstand-
ing activity is taking place not only in research but also in
commercial areas where ICT is increasingly being embed-
ded into the physical world. Mobile phones, smartphones,
NFC, RFID, GPS, and, at a lesser scale, networked sensors,
which were placed market-wise until recently as niche prod-
ucts, are now becoming familiar items in our everyday lives.
Our homes, our cars, and the things around us are getting
fully integrated with the web. The coexistence and coopera-
tion of embedded systems with our social life is unveiling a
brand new era of exciting possibilities.

These new systems are characterized by two critical com-
ponents: (a) dynamicity - the mobility of devices, intermit-
tent connectivity due to lossy links, limited power are some
typical factors that create very challenging system models
where what was trivially solvable in a static distributed sys-
tem, is now far from being trivial in this new landscape. (b)
robustness - if we expect our societies to depend on future
systems, it is imperative that software infrastructures (e.g.,
cloud of things) will have to be always on, continuously
available. The need to make distributed systems more de-
pendable is certainly not new - e.g., Lamport pioneered in

International Conference on Embedded Wireless

Systems and Networks (EWSN) 2016

15—17 February, Graz, Austria

© 2016 Copyright is held by the authors.

Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7

loannis Chatzigiannakis
Department of Computer, Control and Management
Engineering
Sapienza University of Rome
and Computer Technology Institute & Press (CTI)

ichatz@dis.uniroma..it

the field since the 80s, Tanenbaum made it a crucial design
element for the minix system - yet we are by far lacking sim-
ple techniques for delivering robust ICT infrastructures.

In this paper we present a protocol stack that is able to
adapt to the local environment and coordinate the actions of
the IoT devices via simple, local interactions. Our protocol
stack is able to detect sudden changes to the structure and
operation of the network either due to transient failures (e.g.,
as a result of the lossy nature of wireless networks) or due to
more permanent failures of nodes (e.g., due to limited power
resources or due to external forces). Thus the system con-
tinues to operate in a set of desired states with maintained,
or gracefully degraded or even improved quality of service.
Our design adopts the concept of [3] for self-organization
that has been widely mentioned in the scope of distributed
computing and peer to peer networks.

We implement our solution by following a component-
based design using the Wiselib [6]: a code library, that al-
lows implementations to be OS-independent. We totally
avoid implementing our algorithm as a monolithic, stand-
alone piece of code. The modules can be easily integrated
as sub-protocols in other problems such as energy conserva-
tion, routing, role assignment, security etc.. We conduct a
thorough evaluation using an experimental testbed environ-
ment. For all cases, our results indicate that our approach
adapts to the external and internal changes. Experimental
evidence from real-world deployment indicates that as long
as dynamic changes are limited in time and space, they do
not affect the rest of the network.

2 Adaptive Protocol Stack

An important aspect of our protocol stack is the ability to
detect the current topology of the network so that the opera-
tion of the devices is properly adjusted to frequent and/or sig-
nificant topology changes. Beaconing is currently the most
effective methodology for neighborhood discovery. With the
term beaconing [1] we refer to the exchange of special mes-
sages containing information not only for the presence of the
node itself but also for its view of the neighborhood.

In contrast to using a network monitoring protocol based
on constant periodic beacon exchanges, we chose an adap-
tive protocol [2] that allows each node to independently mod-
ify the beacon broadcast period based on its local perception
on the consistency of the network, i.e., the changes to the lo-
cal neighborhood detected by the node. The protocol uses a



292

simple rule: as long as a node does not detect any changes
on its neighborhood (i.e., it is consistent) the beaconing in-
terval period is doubled until a maximum beaconing inter-
val period is reached. Therefore, changes to the topology of
the network due to failures, interference, or malicious exter-
nal actions force the nodes affected by the changes to adjust
the intensity of the network monitoring process, while unaf-
fected nodes can relax the intensity and achieve lower energy
consumption while the network is relatively stable.

The devices use the following indicators for examining
the quality of the communication channels are (a) the LQI of
the received beacons, (b) the RSSI of the received beacons,
(c) the link associativity [5] (the time, in beacons, that nodes
are associated, i.e., they retain a connection), (d) the node
stability [5] (the average link associativity for all neighbor-
ing nodes) and (e) the reverse node stability [2] (indicating
the average numbers of consecutive beacons that success-
fully delivered on a destination).

On top of the network monitoring protocol, our protocol
stack provides basic operations for propagation of messages,
aggregation of values, symmetry breaking, and detection of
critical events using the Population Protocols paradigm [4].
The main benefit of this paradigm is that protocol specifica-
tions have no dependence on the number of devices that take
part. In other words, since no knowledge about the num-
ber of agents is required by the protocols, our protocol stack
achieves high scalability for any number of IoT devices. We
implement the theoretical model for distributed computation
in real IoT environments based on the methodology of [7].

Considering event-driven reporting of critical events, we
use the One-Way Epidemic protocol described in [7]. De-
vices operate in a silent monitoring state and are activated to
transmit notification events when the sensor readings match
specific criteria. For example, whenever a strong variation
in the lighting is detected, the device produces an output ‘1’
bit that signifies that a critical event has occurred. Whenever
a device discovers a nearby node (via the networking moni-
toring protocol) that is not aware of the event (i.e., the local
bit is set to ‘0’), it transmits a short message propagating the
critical event. This is the so-called State Scheduler [7] which
guarantees the acceleration of the epidemic process, deliver-
ing the events with at most O(n) interactions (where n is the
number of IoT devices).

3 Implementation Details

Our protocols are implemented in Wiselib [6] based on
C++ and templates, but without virtual inheritance and ex-
ceptions. All implemented algorithms are platform inde-
pendent as they can be compiled on a number of different
IoT platforms (e.g., TelosB, iSense, ScatterWeb) and OS
independent as they can be automatically used in systems
implemented using C (Contiki), C++ (iSense), and nesC
(TinyOS). Interestingly, our code is also compatible with An-
droid and iOS thus they can be executed in SmartPhones and
SmartWatches. Clearly, the ability to implement once and
run the same code base on such a broad range of [oT devices
is a huge advantage that really speeds up development.

Regarding the implementation of the network monitoring
sub-protocol, the beacon messages follow the ULA format:

the header consists of a 1Byte Message id and 2 counters for
the number on neighbors and scheduler payloads contained
in the message. The list of neighbors is an array of 2Byte
neighbor MAC addresses in the plain implementation while
for the various indicators we add after each address the re-
spective indicator’s value as an unsigned 8bir integer. Due
to hardware limitations of the IoT devices, a single beacon
cannot contain an unlimited number of neighbors or piggy-
backed payloads of very big size. In Wiselib 802.15.4, pack-
ets are limited to 116Byres and as a result, it may include a
maximum of 37 neighbors. If we need to operate on a larger
neighborhood we can use the Wiselib Fragmenting Radio and
transmit beacons larger than a single message, allowing us
to handle neighborhoods of up to 255 nodes which is the
limit of the unsigned integer counter used for the neighbors
counter in the message header.

Population protocol Schedulers are implemented by pig-
gybacking information on the state of each IoT device on
the beacon messages (the “scheduler” payloads). We use the
Wiselib’s callback mechanism to provide the information as
additional payloads attached in each beacon. Thus each node
is aware for each neighboring node along with its current
state (in terms of the higher-layer population protocols).

4 Conclusions

We provide the first population-protocols-based proto-
col stack implementation for achieving high-dependability in
real-world IoT deployments. We evaluate our adaptive proto-
col stack over a real-world experimental testbed and through
large scale simulations. Our results indicate that our pro-
tocol stack achieves high-dependability and high-scalability
while minimizing battery consumption. Our work suggests
many new promising directions in applying the population-
protocols paradigm for the development IoT applications.

5 References

[1] D. Amaxilatis, I. Chatzigiannakis, S. Dolev, C. Koninis, A. Pyrgelis,
and P. Spirakis. Adaptive Hierarchical Network Structures for Wireless
Sensor Networks. In Int. Conference on Ad Hoc Networks, AdHocNets
11,

[2] D. Amaxilatis, G. Oikonomou, and I. Chatzigiannakis. Adaptive neigh-
bor discovery for mobile and low power wireless sensor networks. In
Proceedings of the 15th ACM International Conference on Modeling,
analysis and simulation of wireless and mobile systems, pages 385-394.
ACM, 2012.

[3] E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. Towards a the-
ory of self-organization. 9th International Conference on Principels of
Distributed Systems, OPODIS, pages 146-156, 2005.

[4] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Com-
putation in networks of passively mobile finite-state sensors. In PODC
'04: Proceedings of the twenty-third annual ACM symposium on Prin-
ciples of distributed computing, pages 290-299, New York, NY, USA,
2004. ACM.

[5] A. Bamis, A. Boukerche, I. Chatzigiannakis, and S. Nikoletseas. A
mobility aware protocol synthesis for efficient routing in ad hoc mobile
networks. Computer Networks, 52(1):130 — 154, 2008. MSWIM’06.

[6] T.Baumgartner, I. Chatzigiannakis, S. P. Fekete, C. Koninis, A. Kroller,
and A. Pyrgelis. Wiselib: A generic algorithm library for heterogeneous
sensor networks. In Proceedings of the 7th European Conference on
Wireless Sensor Networks (EWSN), pages 162—177, 2010.

[7] 1. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and P. G. Spi-
rakis. Not all fair probabilistic schedulers are equivalent. In Princi-
ples of Distributed Systems, 13th International Conference, OPODIS
2009, Nimes, France, December 15-18, 2009. Proceedings, pages 33—
47, 2009.



