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Abstract
Low latency reliable data delivery is a key challenge

for mission critical applications in the Industrial Internet of
Things. Chaos was shown to perform well under normal op-
erating conditions. In this paper we discuss some techniques
to enhance its robustness under strong interference.

1 Introduction
Reliable data delivery, especially in harsh environments

with strong interference, is a key challenge for mission crit-
ical applications in Cyber-Physical Systems and the Indus-
trial Internet of Things. These applications, such as wireless
control loops, demand low-latency data delivery and high re-
liability.

Conventional approaches use data collection protocols,
for example, CTP [6] or RPL [11]. Both are best-effort
protocols and trade latency for reliability; achieving an av-
erage latency in the order of seconds in multi-hop deploy-
ments [1, 2, 9]. However, once the topology changes, for
example, due to interference, RPL and CTP need to re-build
their routes, increasing latency, jitter and often reducing re-
liability. Our approach, Chaos [8], departs from this tradi-
tional tree-based routing and bases on synchronous transmis-
sions and distributed data aggregation.

In this paper we present our first results towards a robust
version of Chaos, designed for challenging environments
with strong interference. We briefly provide in Section 2 the
required background on Chaos. Next, we discuss in Section
3 which design aspects of Chaos show limitations under in-
terference. We introduce our extensions for robust network-
ing under inference in Section 4. In Section 5, we discuss
adaptations to Chaos to match the application requirements
of the competition: data collection towards a sink from a
single source, with actuation. Next, we discuss limitations
of the design of our Robust Chaos in Section 6 and conclude

in Section 7.

2 Chaos in A Nutshell
Chaos is an all-to-all data sharing primitive for low-power

wireless networks. Unlike current approaches, Chaos essen-
tially parallelizes collection, processing, and dissemination
inside the network by building on two main mechanisms:
Synchronous transmission and user-defined merge operators.

In Chaos, nodes synchronously send the data they want to
share. Nodes overhearing these transmissions receive pack-
ets with a high probability due to the capture effect [10].
Upon reception, nodes merge the received data with their
own and transmit the results again synchronously. Merg-
ing of data happens according to a user-defined merge op-
erator. Chaos allows users to freely program various merge
operators, from simple aggregates to complex computations.
For example, Chaos computes simple aggregates, such as
the maximum, in a 100- node multi-hop network within less
than 90 milliseconds. The whole process is triggered by an
appointed node, but continues in a fully distributed manner
until all nodes in the network share the same data.

3 Chaos: Robust by Design
Chaos and related approaches such as LWB [3] and

Glossy [4] rely on fast network flooding. In other words,
they do not rely on routed unicasts and are inherently ro-
bust to topology changes. In practice this means that if there
is a path to a node, Chaos and related approaches will find
it. Thus; this class of protocols is a strong alternative for
robust routing protocols in challenging, dynamic environ-
ments. However, the design of Chaos shows limitations un-
der [5]: (1) short-term interference during the end of round
and (2) long-term interference.

If a node at the end of a round cannot receive valid pack-
ets due to interference, this node will most likely not reach
completion and as a result stay awake until the round times
out. This leads to (a) that node not having the final result of
the computation, (b) consuming more energy. Other nodes,
however, have received the result already and therefore will
reach completion. In our experience, this critical time con-
cerns the last 10 to 20 slots of a round. It is in the order of
tens of milliseconds. If a node is under interference during a
complete round, then neither this node nor the the rest of the
network will reach completion, as the other nodes are wait-
ing for input from this node. Overall, we argue that Chaos,
due to its design, inherently provides robustness in the pres-
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ence of low- and medium levels of interference, such as short
bursts from microwave ovens and coexisting 802.15.4 traffic.
However, it has limitations in case of stronger interference,
such as coexistence with 802.11 traffic.
4 Making Chaos Dependable

Once channels become jammed for a long duration, i.e.,
more than a couple of milliseconds, we see reliability in
Chaos dropping and both latency and energy consumption
increasing. In the following, we discuss our extensions to
build a robust Chaos under interference.
4.1 Channel Hopping

Inspired by Bluetooth and WirelessHART [7], we add
channel hopping: Following a pseudo-random hopping-
sequence, each time slot uses a specific channel. This in-
creases robustness if a node is not reachable on one or more
channels. Previously, we argued that whenever there exists
a route to a node, Chaos would find it due to its flooding
based mechanisms. With channel hopping, we can extend
this observation: We argue that whenever there exists a route
to a node on any channel, Chaos will find it. If there is no
announced static 802.11 interference during the competition,
we plan to use the full 16-channel spectrum. In case of strong
802.11 interference, we can exclude these from the hopping
sequence, or leave it up to the adaptive black listing mecha-
nisms explained later.
4.2 Multiple Channels in Parallel

In dense networks, we can further increase robustness and
decrease time until completion by utilizing multiple channels
in parallel. Thus, for each slot we now pick multiple chan-
nels and each node randomly picks one of these per slot. In
practice we choose two to five concurrent channels, depend-
ing on network density. Using multiple channels in parallel
increases both the resilience and the overall performance, as
it allows Chaos to progress on multiple channels in parallel.
4.3 Adaptive, Local Blacklisting

Next, we extend our approach of using multiple channels
in parallel with adaptive local blacklisting. Using RSSI mea-
surements, we determine the noise level of a channel during
a Chaos round. Based on the channel noise level and recep-
tion success rate, we then blacklist bad channels. We use this
to improve the use of multiple channels in parallel: Without
local blacklisting we would utilize each of the parallel chan-
nels with the same probability. With local blacklisting, we
give a higher probability to good channels while limiting the
use of bad ones. These decisions are made locally, as inter-
ference is commonly similar for neighboring nodes.
4.4 Global Blacklisting

To identify channels with intense interference, we use
Chaos to reach an agreement on the best and worst channels
in the network. Thus, next to using local blacklisting, we run
additional rounds of Chaos to collect and vote on the chan-
nel quality similar to how we compute the maximum value
within the network. This feature is helpful in networks with
long-term static interference, such as heavy 802.11 traffic. It
should be noted that a lightweight version of network-wide
blacklisting can be performed alongside the main application
without additional rounds. The cost is a couple of flags per
packet, and a simple union of blacklists is enough.

5 Simple Data Collection with Chaos
Originally, Chaos was designed as all-to-all network com-

munication primitive. For example, Chaos can collect data
from all nodes in the network or compute aggregates such as
a maximum sensor value within the network. For the compe-
tition setup, data shall only be collected from a single node
and delivered over multiple hops to a sink node. Thus; Chaos
round can stop when the root notices that the sink got the
packet.
6 Limitations of Robust Chaos

Chaos and similar approaches such as Glossy and LWB
are a designed for periodic operation: The system schedules
its operation for a specific periodicity and all devices enter
sleep modes in between. The competition, however, uses an
event driven model: Each event shall be detected and com-
municated to the sink. Moreover, both the average and max-
imum rate of events are unknown. This setup is challenging
for the periodic design of Chaos and we have to calibrate it
to balance latency and energy consumption.
7 Conclusion and Future Work

In this paper, we present a robust version of Chaos un-
der both short- and long-term interference. We extend Chaos
with channel hopping, utilize multiple channels in parallel,
and employ local and global blacklisting of channels. In ad-
dition, we adapt Chaos to the specific application and traffic
requirements of the competition settings.
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