
Poster: System Architecture
for Programmable Connected Devices

Maria Laura Stefanizzi∗, Luca Mottola+, Luca Mainetti∗, Luigi Patrono∗
∗University of Salento (Italy), +Politecnico di Milano (Italy) and SICS Swedish ICT

Contact author: laura.stefanizzi@unisalento.it

Abstract
We present a system architecture to enable running a slice

of a mobile app’s logic onto connected devices such as prox-
imity beacons, body-worn sensors, and controllable light
bulbs. These are normally black-boxes: their functional-
ity is fixed by vendors and typically accessed only through
low-level APIs. We overcome the limitations of this design
by providing a generic programmable substrate on the con-
nected device. Mobile apps can dynamically deploy arbi-
trary tasks implemented as loosely-coupled actor-like com-
ponents. The underlying run-time support takes care of the
coordination across tasks and of their real-time scheduling.
Our current prototype indicates that our design is not only
feasible, but incurs in very limited system overhead.

1 Overview
Motivation. Wireless embedded sensing and personal mo-
bile computing are blending. Emerging wireless tech-
nologies such as Bluetooth Low Energy are backing this
trend by enabling seamless data exchange between energy-
constrained embedded devices and, for example, mobile
phones. As a result, networking stacks and interoperabil-
ity frameworks [2] appear to implement applications using
connected devices such as proximity beacons [4], body-worn
sensors [10], and controllable light bulbs [5].

Most such efforts share the assumption of the connected
device as a black-box. Manufacturers ship the devices pre-
programmed with a generic low-level API that mainly en-
ables extracting raw data from sensors and/or controlling ba-
sic actuator functionality. Changes to the on-board software
are limited to firmware updates shipped by the manufacturers
to improve protocol compatibility or to patch security flaws.

Such a state of affairs entails that: i) even the simplest
functionality requires intense wireless interactions across
mobile and connected devices, affecting resource consump-

tion; ii) mobile apps need to be developed based on vendor-
specific APIs, preventing portability and seamless operation
in heterogeneous settings; iii) app functionality are limited to
the time of actual wireless connection, that is, disconnected
operations are fundamentally hampered.
Approach. To overcome these limitations, we design and
implement a system architecture that allows connected de-
vice to i) run arbitrary app logic in an on-demand fashion,
and ii) host data on behalf of applications.

The problem strikingly differs from traditional sensor net-
working. Applications are supplied by third parties. Their
characteristics, such as processing load and memory require-
ments, are difficult to anticipate. Multiple such applications
with distinct requirements may need to operate concurrently.
Processing is also expected to be largely event-driven; for
example, being dictated by on-the-fly connections of mobile
devices, rather than occurring periodically. These aspects
shape the system challenge into a new form.

Our answer to this challenge rests upon two pillars: a cus-
tom programming model and a dedicated run-time support
that replaces the existing device firmware.

1.1 Programming Model
To tame heterogeneity and vendor lock-in, we shift the in-

teractions across mobile and connected devices to data rather
the devices themselves. Central to this is the notion of task
as a programmer-defined relocatable slice of app logic. In
a fitness app, for example, programmers may define a task
that computes burned calories based on the range of sensors
available on modern fitness trackers. The mobile phone may
opportunistically deploy such a task on the fitness tracker
itself, so to limit the data exchanges to a single semantically-
rich quantity rather raw data.

To enable interactions among functionality supplied by
different parties, tasks are decoupled w.r.t. each other both in
time and data, in an actor-like fashion [1]. Tasks are fully
defined by the data they consume, the processing they per-
form, and the data they produce. Their processing is meant
to be entirely reactive. For example, we discourage the use
of long-running threads whose fair scheduling may become
difficult in the setting we target. The input data of a task may
come from the sensors aboard the device, or be the result of
a different task. For example, a health-monitoring app may
employ the burned calorie information of the fitness app to
augment the long-term time analysis it performs. Tasks that

251

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7



Figure 1. Overall architecture.

provide vendor-independent interaction paradigms and data
formats can be similarly developed.

The execution of tasks is also decoupled from the con-
nection to the mobile device. Tasks may, for example, reside
on the connected device also whenever the mobile device
that originally deployed them moves away, enabling discon-
nected operations. The same applies also to data. Tasks may
produce data to be consumed by any mobile device, as long
as a matching app is running on the latter. Data resides on the
connected device according to programmer-defined criteria,
rendering the device itself a general-purpose environment-
immersed data store. This is useful, for example, when im-
plementing pervasive games [8].
1.2 Run-time Support

Fig. 1 shows the architecture of the run-time support un-
derpinning the whole task lifecycle. It is composed of four
components: i) a virtual machine (VM) layer, ii) a broker,
iii) a scheduler, and iv) a task manager.

The VM layer is in charge of the concrete execution of
dynamically deployed tasks. Using a VM rather than some
form of run-time binary linking has pros and cons. A VM
detaches the implementation of tasks from the specific hard-
ware. Further, a VM lessens the programming burden by
supporting high-level languages such as Python and Java.
On the downside, VMs suffer some unavoidable process-
ing overhead due to code interpretation. Given the hetero-
geneous setting we target, the non-safety critical nature of
most mobile apps, and the availability of powerful MCUs
with reduced energy consumption, we argue that the use of a
VM brings more advantages than disadvantages.

The broker acts as a single intermediate point between
tasks and the data they consume or produce. Data is out-
put by physical sensors or by existing tasks along given top-
ics. For example, “burned calories” may represent a topic
for data output by the fitness app task, as much as “acceler-
ation” is the topic that accelerometers employ for raw data.
The broker matches data appearing on certain topics with
the topics taken as inputs by existing tasks, triggering their
execution. Topics are defined by tasks when installed on a
device; each task carries a manifest that indicates the topics
it consumes, the ones it produces, the rate of probing physi-
cal sensors if necessary, and the number of output values the
tasks wants to make reside on the device.

The broker may, in principle, trigger several tasks con-
currently if they all consume the same topic. The question
is then how to schedule these tasks. Our scheduler imple-
ments an Earliest Deadline First (EDF) [7] policy. Informa-
tion on the absolute deadline of a task is part of the manifest.
We choose an EDF policy because of its real-time optimal-
ity [6], which entails that if a schedule able to meet all task
deadlines exist, EDF definitely finds one. The potential is-

Table 1. Program memory and RAM requirements.
Component Program memory [Bytes] RAM [Bytes]

Broker 8456 876
Scheduler 3912 584
Task manager 112 564

Complete system 154516 10076

sue in applying EDF is, however, its processing overhead.
We argue this should not pose scalability problems in our
setting, given we are generally not expecting an extremely
large number of tasks to be simultaneously triggered.

Finally, a task manager takes care of the run-time deploy-
ment of tasks, handling operations such as the reception of
the task bytecode over the network and its un-installation
upon request from a mobile device.
2 Ongoing Work

Our prototype targets the STM NUCLEO-F091RC board,
equipped with an ARM Cortex M0 MCU. To enable the
communication to/from a mobile device, we attach an
X-NUCLEO shield that provides BTLE 4.0 connectivity. We
realize custom implementations of broker, scheduler, and
task manager. We port PyMite [9], a reduced Python in-
terpreter, as VM support. We choose Python because, un-
like languages such as JavaScript, it compiles to bytecode,
which reduces network traffic when deploying tasks. More-
over, Python supports multiple programming paradigms, in-
cluding object-oriented, imperative, and functional.

Early results demonstrate the feasibility of our design
with limited overhead. Table 1 reports on the memory over-
head of the custom implementations of broker, scheduler,
and task manager. The majority of the overhead is currently
due to the PyMite port, which is however only meant to pro-
vide a working interpreter. Even with this limitation, our pro-
totype leaves about 69% (41%) of RAM (program memory)
available. The processing slow down due to interpretation is
inline with existing results [3].

We plan to carry out a full assessment of the flexibility of
our design against diverse requirements, and a careful system
evaluation. We also intend to investigate how to arbitrate
resources among different tasks. Next, we plan to conceive
a dedicated data model to organize topics. This way, an app
may dynamically gain knowledge on what data is possibly
already produced by currently running tasks.
3 References
[1] G. Agha. Actors: a model of concurrent computation in distributed

systems. PhD thesis, MIT Artificial Intelligence Laboratory, 1985.
[2] Allseen Alliance. Alljoin. allseenalliance.org.
[3] N. Brouwers et al. Darjeeling, a feature-rich vm for the resource poor.

In ACM SENSYS, 2009.
[4] easiBeacon. ibeacon. www.easibeacon.com.
[5] Flux Smart Lighting. Smart LED light bulb. bluetoothlightbulb.com.
[6] M. Kargahi and A. Movaghar. A method for performance analysis of

earliest-deadline-first scheduling policy. The Journal of Supercomput-
ing, 37(2), 2006.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of ACM, 20(1), 1973.

[8] L. Mottola et al. Pervasive games in a mote-enabled virtual world
using tuple space middleware. In ACM NETGAMES, 2006.

[9] PyMite. code.google.com/p/python-on-a-chip/.
[10] Xiaomi. Mi band. www.mi.com.

252


	Overview
	Programming Model
	Run-time Support

	Ongoing Work
	References

