
Demo: Terra – Scripting Customized Components for Wireless
Sensor Networks

Adriano Branco
Department of Informatics

Pontifı́cia Universidade Católica
do Rio de Janeiro

abranco@inf.puc-rio.br

Noemi Rodriguez
Department of Informatics

Pontifı́cia Universidade Católica
do Rio de Janeiro

noemi@inf.puc-rio.br

Silvana Rossetto
Department of Computer Science
Universidade Federal do Rio de

Janeiro

silvana@dcc.ufrj.br

Abstract
Terra is a system that combines the use of configurable

component-based virtual machines with a reactive scripting
language which can be statically analyzed to avoid
unbounded execution and memory conflicts. This approach
allows the flexibility of remotely uploading code on motes
to be combined with a set of guarantees for the programmer.
The choice of the specific set of components in a virtual
machine configuration defines the abstraction level seen by
the application script. In this work we demonstrate an
instance of Terra with high-level abstractions for routing
and grouping. We discuss how these abstractions allow the
programmer to build a reasonably powerful application in a
few lines of code and present the integrated environment that
facilitates the development and testing of applications.
Keywords

WSN Wireless Sensor Networks, Virtual Machine,
Reactive Programming, Safety

1 Introduction
Terra’s goal is to facilitate the creation of WSN

applications, specifically as refers to dealing with
event-driven programming and with network programming.
The Terra model is based on a virtual machine and combines
a reactive scripting language with a set of customized
components. These components may be selected as needed,
creating customized virtual machines with abstractions
provided by the component interfaces. A scripting language
enforces a programming model that glues components
together to create powerful applications in a few lines of
code. This makes them suitable for creating programs
that benefit from the pre-defined and pre-installed set of
components and that can be easily sent over the network.

Terra uses Céu-T as its scripting language and provides a
component-based virtual machine VM-T to be customized

for different application domains. Céu-T implements a
variation of the Céu programming language [2]. The Terra
Virtual machine VM-T, with its customizations, runs on
WSN nodes with limited resources. We built VM-T using the
nesC programming language and the TinyOS [1] operating
system. Figure 1 presents the three basic elements of Terra.

Figure 1. Terra system basic elements.

Terra’s guarantees for race freedom and against local
starvation and invalid pointers contribute to safer code.
These guarantees came, basically, from the static analysis of
the Céu compiler and runtime checks of the VM-T execution.
2 VM-T architecture

The Terra virtual machine (VM-T) is composed by three
modules as shown in Figure 2.

Figure 2. VM-T modules

The VM module is the main module. It provides an
interface for receiving new application code from the Basic
Services module and three interfaces for customized events
and functions. The Engine submodule controls the execution
of code interpreted by the Decoder submodule and handles
external events received from the Event Queue submodule.

245

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7



The Basic Services module controls the communication
primitives to support to code dissemination and to the
custom components module interface. The Upload
Control submodule controls the dissemination protocol and
loads code into VM program memory. The Custom
Comm submodule has a generic interface to support new
communication protocols defined at the Custom Components
module level.

The Custom Components module implements specific
flavors of Terra. The developer of new customization needs
only to implement the custom events and functions inside
this module and write the equivalent configuration file to be
used by a Céu-T script. It is possible to start from a very
basic customization of Terra to include the new events and
functions.

3 Terra Customizations
Terra offers a basic library of components that can

be included (or not) in a specific virtual machine. As
far as possible, these components are parameterized for
genericity. New components can also be included by
programmer-savvy users to create abstractions for new
programming patterns, but the goal of this basic library
is to offer a set of components that is sufficient for a
range of common applications. This is feasible because
most applications for sensor networks are variations of
a basic monitoring and control pattern. We organized
the needed functionality in four areas: communication
– support for radio communication among sensor nodes;
group management – support for group creation and other
control operations; aggregation – support for information
collection and synthesis inside a group; local operations –
support for accessing sensors and actuators.

4 Demonstration
We begin the demo by presenting the Terra environment

composed by: Editor/Compiler – text editor adapted to call
the Céu-T compiler. LoadTool – Java tool to send bytecode
to network and receive user messages. Grid Simulator
– TOSSIM running a VM-T runtime + Graph viewer - a
grid formation where each node reach its neighbors. Node
simulation – shows LEDs, radio sends, and sensor reads.
The sensor value may be adjusted during execution of the
simulation. Figure 3 shows the interfaces for the Load Tool
and the Grid simulator.

Figure 3. Terra Load Tool and Grid Simulator.

The demo example shows how simple it is to write a
script commanding complex operations already embedded in
the VM-T runtime. In this application, each node monitors
the local temperature and, if the reading is above a certain
threshold, asks for its one-hop neighbors to send their current
readings, and sends the average of the collected results to the
basestation. To demonstrate the working application, we use
the facility of forcing a rise in the temperature to be read by
a node, triggering an aggregation operation. Figure 4 shows
how concise is the script to have this complete application.
This example, after compilation, has only 105 bytes of
bytecode.

1 var g roup t gr1 ;
2 g r o u p I n i t ( gr1 ,1 ,0 ,1 ,TRUE,eOFF , 0 ) ;
3 var aggreg t agA ;
4 a g g r e g I n i t ( agA , gr1 , SID TEMP , fAVG ,opGTE , 0 ) ;
5

6 pktype msg from msgBS t w i th
7 var ulong average ;
8 end ;
9 var msg dataMsg ;

10

11 loop do
12 awai t 10s ;
13 emit REQ TEMP ( ) ;
14 var ushor t tValue = awai t TEMP( ) ;
15 i f ( tValue > 550) then
16 emit AGGREG(agA ) ;
17 var aggDone t data = awai t AGGREG DONE;
18 dataMsg . average = data . value ;
19 emit SEND BS( dataMsg ) ;
20 end
21 end

Figure 4. Céu-T code for average alarm

5 Final remarks
Currently Terra runs in MicaZ, Mica2, and

TelosB motes, but it may be easily ported to any
platform available for TinyOS. Different platform
interoperability is possible when using the same
radio standard. Terra is available for download at
http://www.inf.puc-rio.br/˜abranco/terra.html.
6 Acknowledgments

The authors would like to thank the partial support
from CNPq – Brazilian National Counsel of Technological
and Scientific Development and FAPERJ – Rio de Janeiro
Research Foundation.
7 References
[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An
operating system for sensor networks. In Ambient Intelligence. Springer
Verlag, 2004.

[2] F. Sant’Anna, N. Rodriguez, R. Ierusalimschy, O. Landsiedel, and
P. Tsigas. Safe system-level concurrency on resource-constrained
nodes. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, pages 11:1–11:14, New York,
NY, USA, 2013. ACM.

246


