
Poster: Programming Support for Time-sensitive Software
Adaptation in Cyberphysical Systems

Mikhail Afanasov
Politecnico di Milano, Italy

mikhail.afanasov@polimi.it

Luca Mottola
Politecnico di Milano, Italy

SICS Swedish ICT

luca.mottola@polimi.it

Carlo Ghezzi
Politecnico di Milano, Italy

carlo.ghezzi@polimi.it

Abstract
We present programming constructs that allow developers

to gain control on the timing aspect when enforcing adap-
tation decisions in Cyberphysical System (CPS) software.
The operation of CPS often depends on environmental con-
ditions; as a result, the software must adapt to the changes in
these conditions. Often, CPS software is also time-sensitive;
for example, when implementing control loops. As a result,
the timing of enforcing adaptation decisions becomes cru-
cial. However, developers are left without dedicated pro-
gramming support to cope with these aspects, which leads
either to simply neglect them or to invest additional effort to
realize hand-crafted solutions. The programming constructs
we conceive allow developers to rely on well-specified se-
mantics when triggering adaptations, and to define time
boundaries that the adaptation process must adhere to. We
argue that this greatly simplifies the implementation of time-
sensitive adaptive CPS software, at the price of a very modest
run-time overhead.

1 Overview
Many CPSs implement some form of control loop to take

actions on the environment based on sensor inputs [6]. Such
control loops are often time-sensitive [5]. By the same to-
ken, the operation of such control loops is frequently depend-
ing on environment dynamics. To deal with such dynamics,
CPS software may implement various forms of adaptation,
including dynamically changing the control logic itself.
Problem. For example, our investigations on the control
software for autonomous mobile sensing vehicles [1, 3, 4]
show that little to no programming support is offered to CPS
developers to deal with time-sensitive adaptation of control
loops. As a result, developers may simply overlook the po-
tential issues arising in the run-time change of control logic,
which affects the system’s dependability. Otherwise, devel-

1 static bool set_control_loop(uint8_t controller) {
2 bool success = false;
3 switch(controller) {
4 case NAVIGATION:
55 success = navigation_init();break;
6 case HOVER:
77 success = hover_init();break;
8 case LEAK_LOC:
99 success = leak_loc_init();break;

10 // ...
11 if (success) {
1212 exit_mode(current_controller , controller);}
13 return success;}

Figure 1. Example implementation of adaptation routine,
borrowed from ArduPilot [1].

opers manually implement ad-hoc functionality to deal with
these issues. This may result in significant additional effort,
as it is currently a one-off activity.

Consider an application to localize gas leaks in an in-
door environment using aerial drones equipped with gas sen-
sors [2]. Initially, every drone moves to a predefined loca-
tion using a Navigation controller. Upon arriving, drones
switch to a Hovering controller to sample the gas concen-
tration. Whenever a drone detects a high gas concentration,
it switches to a LeakLocalization controller that dis-
seminates alert beacons in the vicinity, using a low-range ra-
dio. All other drones that receive this beacon also switch to
the LeakLocalization controller to come closer to the
one that initially detected the leak. This allows the drones to
obtain more fine-grained measurements of the relevant area.

Figure 1 depicts an example implementation of the re-
quired dynamic change of controller logic. The struc-
ture of the code in the example reflects real imple-
mentations; for example, the ArduPilot codebase [1].
The set flight mode() function is called whenever a
switch in the controller logic is needed; for example, in
line 5 , 7 , and 9 . The function initializes the required
controller and performs necessary clean-up of the previous
controller, as shown in line 12 . Such a seemingly simple ex-
ample conceals two issues:
1) As it stands, the code initializes the next controller first,

and then performs the clean-up of the previous one. In
other words, there is a time when both controllers are ac-
tive simultaneously. For example, there might be periodic
tasks launched from within the previous controller, such
as the periodic beaconing of LeakLocalization,

243

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7



:main :Controller manager :LeakLoc :Hovering:main :Controller manager :LeakLoc :Hovering

activate Hovering lazy
LeakLocLeakLoc

deactivate

activate
notify initialized

UncertainUncertain

notify Hovering active
HoveringHovering

(a). Lazy activation.

:main :Controller manager :LeakLoc :Hovering:main :Controller manager :LeakLoc :Hovering

activate Hovering fast

initialize
notify initialized

LeakLocLeakLoc

notify Hovering active
cleanup

HoveringHovering

(b). Fast activation.

Figure 2. Activation types.

whose scheduling happens after the next controller is al-
ready active. The system’s behavior in such a situation is
hard to foresee; it is generally unclear how the underlying
run-time support takes care of these potential conflicts.

2) Independent of the first issue, the time allowed for
switching controller may be upper-bound. On aerial
drones, for example, the control logic runs as fast as
100 Hz. This means that a complete change of control
logic needs to happen within a 10 ms bound, or the drone
may be left with no active controller for at least a full
control cycle. Handling these situations is typically left
to the programmers’ ingenuity and skills, provided the
problem is understood in the first place.

Contribution. We address these issues with dedicated pro-
gramming concepts and corresponding language constructs:

1) To gain control on the interleavings between controllers
to be activated and deactivated, we define two activa-
tion types with specified semantics. The concept allows
programmers to trade the latency in switching controller
against the risk of potentially harmful conflicts whenever
multiple controllers are simultaneously active.

2) We define a notion of activation deadline that program-
mers use to specify an upper bound on the controller
switching time. Whenever the deadline is violated, pro-
grammers are explicitly notified so they can apply proper
countermeasures, while the previous controller is auto-
matically re-instantiated.

We argue that these simple concepts ease the program-
ming burden in implementing time-sensitive adaptation. We
materialize these concepts as described next.

2 State of Play
We currently target C++ implementations running atop

ARM Cortex M microcontrollers, which are arguably repre-
sentative of a vast class of modern CPS—including the aerial
drone platforms we mentioned earlier.
Activation types. We define two such types, which cover
opposite extremes of the same spectrum.

In lazy activation, shown in Figure 2a, the clean-up rou-
tines of the controller to be deactivated are ensured to com-
plete before any initialization routine of the controller to be
activated ever starts. This processing is encapsulated in a sin-
gle C++ instruction activate <CONTROLLER> lazy,
where CONTROLLER is the name of a C++ class implement-
ing a default interface. This single instruction can be placed
anywhere in the code and replaces the processing of Figure 1
while ensuring the stated semantics, guaranteeing that no

conflicts between simultaneously active controllers occurs.
However, Figure 2a shows that the system rests in an uncer-
tain state where no controller is active, while the latency to
switch controller grows as the sum of the time to clean-up
from the previous controller and to initialize the new one.

In contrast, Figure 2b shows a case of fast activation,
where the semantics aims to reduce the latency for the new
controller to become active. In fact, programmers are noti-
fied of the new controller completing the initialization before
starting the clean-up from the previous controller. This may
be advantageous, for example, when either routine should
wait on I/O operations. The processing is triggered using a
C++ instruction activate <CONTROLLER> fast. As
mentioned before, this scheduling of operations may lead to
functional conflicts, which generally depend on the involved
controllers. A general solution is thus hard to conceive. The
straightforward approach is, for example, to wrap the indi-
vidual controllers to ensure that their functionality does not
affect the system during the switch.
Activation deadlines. Programmers may append a modi-
fier within <T> after the activation instructions to spec-
ify an upper bound of T time units on the controller switch.
For example, should the switch to the Hovering con-
troller happen using lazy activation within 5 ms, program-
mers specify activate Hovering lazy within 5
ms. If the upper bound is violated, the switch of controller
stops and the previous controller is re-instantiated. This
processing happens transparently to programmers, who are
asynchronously notified of the issue and can possibly react
with application-specific counteractions.
Feasibility. We check the feasibility of the semantics de-
scribed above on our target platforms, specifically using an
STM Nucleo STM32L152 prototyping board equipped with
a Cortex M3 microcontroller. We employ dummy controllers
void of any concrete logic and benchmark the latency of the
single controller switch using either activation type and with
or without stated deadlines.

According to our measurements, on average, lazy acti-
vation incurs in 7.7µs (6.8µs) latency with (without) the
deadline option, whereas the fast activation requires 6.7µs
(5.6µs). As expected, lazy activation is slower, whereas fast
activation instantiates the new controller as soon as possi-
ble. Applying deadlines leads to additional processing time
because of the implementation of the underlying semantics.
Overall, the absolute numbers are very limited, and would
hardly affect the timings of the application-level processing
that typically ranges over orders of magnitude larger values.
3 References
[1] ArduPilot. www.ardupilot.com.
[2] T. R. Bretschneider and K. Shetti. Uav-based gas pipeline leak detec-

tion. In Proceedings of the Asian Conference on Remote Sensing, 2015.
[3] Cleanflight. www.cleanflight.com.
[4] OpenROV. www.openrov.com.
[5] J. Stankovic et al. Real-time communication and coordination in em-

bedded sensor networks. Proceedings of the IEEE, 91(7), 2003.
[6] J. Stankovic et al. Opportunities and obligations for physical computing

systems. IEEE Computer, 38(11), 2005.

244


