
Poster: Integrating Rich User Interfaces with Real Systems

Laurent-Frederic Ducreux, Maxime Louvel, François Pacull, Maria Isabel Vergara-Gallego
Univ. of Grenoble Alpes

CEA, LETI, MINATEC Campus

{FirstName.LastName}@cea.fr

Abstract
This paper offers to rely on a coordination environment,

called LINC, to build rich user interfaces for the distributed
systems. Thanks to the abstraction and loose coupling of-
fered by LINC, it is possible to use interfaces designed by
designers to monitor and control the whole system from a
single computer. The paper gives three examples of inter-
faces.
1 Introduction

Today’s systems, so called Internet of Things (IoT), Cy-
ber Physical Systems or Systems of Systems are integrating
many heterogeneous and distributed components. They re-
quire a coordination layer [11] to tackle the challenges aris-
ing in such systems [7].

Based on Linda [3], several coordination environments
have emerged in the last decades to help the applications’
developer [1,6,8–10,12]. These solutions help to design ap-
plications to target the smart* systems. However, most of the
time, the graphical user interfaces are ad-hoc and added on
top of the application. This prevents from offering a real user
experience beyond data plotting in the cloud. For instance,
how to build a single interface to monitor a distributed sys-
tem? How to control a real system from an interface acces-
sible from anywhere? How to provide information to several
users, with different views and remotely located?

This paper offers to tackle this issue by integrating the
user interfaces as the rest of the application components (e.g.
sensors, actuators, embedded systems, existing/independen-
t/autonomous systems, . . .)
2 Rich user interface design

LINC [8] is a coordination environment that has been
used in several domains such as building automation [4],
smart cities [5], and lift energy management [2]. Following
Linda, LINC uses a resource based approach implementing

the shared memory as a distributed set of bags. Resources
(i.e. tuples) are added, read and removed from those bags.
This ensures a decoupling, both in space and time, between
the resource producer and the resource consumer. More-
over, this resource approach offers a universal abstraction
layer with a very simple API. The coordination of the ap-
plication is then ensured by an inference engine with trans-
actional guarantees. The application then evolves from one
consistent state to another one. More details on LINC may
be found in [8].
2.1 Building user interfaces

The loose coupling and the abstraction layer are crucial
to provide a rich user experience in today’s systems. Indeed,
even if the application is distributed, it must be possible to
access all the needed information from a single computer,
smart phone, or tablet. This paper does not only target mon-
itoring but also controlling applications. A typical example
deals with maintenance of systems where a user will con-
nect with a tablet to check the status of the parking, the road,
or the factory. It should be possible to remotely introspect
the systems and, in some cases, to fix problems as well.
Moreover, the same information may be presented differ-
ently to several users (e.g. using realistic pictures/schematics
or graphics).

A Model-View-Controller (MVC) approach has been de-
signed on top of LINC. The status of the application is stored
in bags. Hence, any kind of information may be added due to
the abstraction layer. The graphical aspects of the interfaces
are designed, by designers, using standard web technologies
(HTML5, SVG). These designs are then updated according
to the bags’ content when the interface is served to the web
browser. User interaction is captured with javascript and
added in bags. The controller is implemented by coordina-
tion rules enacted by the LINC engine. A simple interaction
is to switch on/off a light when clicking on the correspond-
ing graphical element. To do that, the onclick method adds
the resource ("eid", "clicked") in the control bag. The
controller then removes this resource, reads the current state
of the light, and produces accordingly the resource to trigger
the command to switch the light on or off (in the light bag).

Figure 1 presents the three roles for applications devel-
opment. A first team is in charge of encapsulating the sen-
sors, actuators and other specific components. This team ba-
sically provides the low level functions to add resources pro-
duced by sensors and to send commands to actuators when

231

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7

resources are added in a specific bag. The second team is
in charge of coordination rules, i.e. application’s behavior.
Finally, the last team, mainly composed of designers, is re-
sponsible for the interface design. Interfaces are integrated
between the last two teams: the designers set the graphical
elements id and the coordination team implements the rules
to connect the interface with the system.

["LiveInt","MVCControl"].rd(column_id, "click", colour) &

::

{

["LiveInt","MVCControl"].get(column_id, "click", colour);

["Column","command"].put(colum_id, colour) &

}.

["App", "CCState"].rd(cc_id, st_id, badge, "charging")&

[st_id, "State"].rd("VEHICLE_CHARGED")&

["App", "UserInfo"].rd(badge, phone)&

::

{

 ["App", "CCState"].get(cc_id, st_id, badge, "charging"); (*\label{lst:end_of_charge:get}*)

 ["App", "CCState"].put(cc_id, st_id, badge, "charged"); (*\label{lst:end_of_charge:put}*)

 ["Alerts", "SendSMS"].put(phone, "Vehicle charged"); (*\label{lst:end_of_charge:sms}*)

 ["DB", "Charge"].put(st_id, bagde);

}.

["Parking","Sensors"].rd(spot, "Occupied") &

["LiveInt","map"].rd(c, spot) &

::

{

["Parking","Sensors"].rd(spot, "Occupied")

["LiveInt","MVCStatus"].put(c, "visibility", "visible") ;

["LiveInt","MVCRefresh"].put("frame1", "refresh") ;

}.

Interfaces Team Encapsulation

 Team

Application logic Team

Available

Frameworks
....

Figure 1: Interface design integration

Implementing the MVC with LINC allows to duplicate
an interface and to synchronize some or all the interfaces.
Indeed coordination rules can keep the consistency between
several bags and several interfaces can connect to the same
LINC component.
2.2 Examples of user interfaces

Figure 2 shows the interface of a smart parking [5]. The
left part is a picture of the parking. The right part is a live in-
terface to monitor and control several equipment in the park-
ing (car sensors, charging stations, lights, cameras, . . .). It
is possible to click on a graphical element get information
about the corresponding real equipment. It is also possible
to force the state of some pieces of equipment by clicking on
the associated graphical element.

Physical World User Interface

Figure 2: Smart parking interface

Figure 3 shows a light control interface. The left side
shows two pictures of the real system with several lights and
a box to control all the lights. The right side shows the in-
terface built to control the box. When a light is on in the
real world, the interface is automatically updated to make
the same light shine as well. From the interface it is possible
to click on a light to switch on or off in the reality. The new
state will then be propagated to the interface.

Figure 3: Light control interface

Figure 4 shows an interface to monitor the room of an
elderly. The idea is to be able to raise alerts on unexpected
behaviors (e.g. activity at night). For privacy concerns, as
the person is represented in a graphical manner, this interface
enables to follow her behavior without being as intrusive as
with a video camera. The actions on lights, windows or doors
opening are also monitored. Then it is possible to use the
interface to check when an alert is raised.

Physical World User Interface

Figure 4: Elderly support

3 Conclusion
This paper has presented preliminary work to design rich

user interfaces for distributed systems. Based on the LINC
coordination environment, it is possible to monitor and con-
trol a distributed system from a single and rich user interface.
Acknowledge

This Work was supported by the French national program
“Programme Investissements d’Avenir IRT Nanoelec” ANR-
10-AIRT-05.
4 References
[1] J. Barbosa, F. Dillenburg, G. Lermen, A. Garzão, C. Costa, and

J. Rosa. Towards a programming model for context-aware applica-
tions. Computer Languages, Systems & Structures, 38(3):199–213,
2012.

[2] V. Boutin et al. Energy optimisation using analytics and coordination,
the example of lifts. In Emerging Technology and Factory Automation
(ETFA), 2014 IEEE, pages 1–8, Sept 2014.

[3] N. Carriero and D. Gelernter. Linda in context. Commun. ACM,
32:444–458, 1989.

[4] L. Ducreux et al. Resource-based middleware in the context of hetero-
geneous building automation systems. In IECON 2012-38th Annual
Conference on IEEE Industrial Electronics Society, pages 4847–4852,
Montreal, Canada, 2012. IEEE.

[5] L. Ducreux et al. Rapid prototyping of complete systems, the case
study of a smart parking. In 19th IEEE International Symposium on
rapid prototyping, Amsterdam, October 2015, 2015.

[6] C. Julien and G.-C. Roman. Egospaces: Facilitating rapid develop-
ment of context-aware mobile applications. Software Engineering,
IEEE Transactions on, 32(5):281–298, 2006.

[7] E. A. Lee. Cyber physical systems: Design challenges. In Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, pages 363–369. IEEE, 2008.

[8] M. Louvel and F. Pacull. Linc: A compact yet powerful coordination
environment. In Coordination Models and Languages, pages 83–98.
Springer, 2014.

[9] M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications: The tota approach. ACM Transactions on
Software Engineering and Methodology, 18(4):15, 2009.

[10] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coordination
model and middleware supporting mobility of hosts and agents. ACM
Transactions on Software Engineering and Methodology, 15(3):279–
328, 2006.

[11] G. A. Papadopoulos and F. Arbab. Coordination models and lan-
guages. Advances in computers, 46:329–400, 1998.

[12] M. Viroli, D. Pianini, and J. Beal. Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments. In Coordination
Models and Languages, pages 212–229. Springer, 2012.

232

	Introduction
	Rich user interface design
	Building user interfaces
	Examples of user interfaces

	Conclusion
	References

