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Abstract
Localization is a mandatory requirement in almost all sen-

sor network applications. In order to avoid power-hungry
GNSS solutions like GPS, alternative localization algorithms
based on anchor nodes are developed. Unfortunately, many
proposed solutions focus on static networks and do not ac-
count for mobility. An often cited and further improved ap-
proach is Monte Carlo Localization (MCL), which is one
of the first methods accounting for total mobility in the
network. In this paper we propose and practically evalu-
ate Sensor-Assisted Monte Carlo Localization (SA-MCL),
which is designed to bypass situations of temporary connec-
tion loss to anchor nodes due to changing network topolo-
gies. SA-MCL uses additional sensor information to update
the position estimation of a node in case no anchor nodes
are available. We show by both practical field tests and sim-
ulations that our dead reckoning approach can successfully
account for situations without anchor node information and
reduces the localization error by about 58 %. Our practical
implementation is performed on IRIS sensor motes which
are mounted to the backside of radio controlled cars.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: COMPUTER-

COMMUNICATION NETWORKS; C.2.1 [COMPUTER-
COMMUNICATION NETWORKS]: Network Architec-
ture and Design—Distributed networks, Wireless communi-
cation

General Terms
ALGORITHMS, EXPERIMENTATION, MEASURE-

MENT, PERFORMANCE

Keywords
Wireless Sensor Network, Mobility, Localization, Range-

Free, Monte Carlo Localization

1 Introduction
Data collected in Wireless Sensor Networks (WSNs) will

often be rendered useless if it is not associated to the physi-
cal location in space of the corresponding sensor mote. In
tracking applications like wildlife monitoring the position
itself might be the data of interest valuable to researchers.
Although global navigation satellite systems (GNSSs) like
GPS solve the localization problem for many systems like
portable computers, digital cameras and mobile phones, they
are not suitable for the application in WSNs. Sensor motes
are designed to be extremely energy-efficient and tend to
reach very small manufacturing sizes. GNSSs however are
very power-hungry components, require an additional an-
tenna and increase the production and deployment costs of
WSNs. Furthermore, GNSSs are known to work only in out-
door scenarios with clear line of sight to the navigation satel-
lites. Sensor network applications are manifold and there-
fore it cannot be guaranteed that the requirements for run-
ning GNSSs can be fulfilled. To avoid the usage of GNSSs
the concept of anchor nodes has been developed. These spe-
cial nodes are the only ones in the network which are al-
ways aware of their position either by using a GNSS or by
having a static position which can be determined during de-
ployment. Anchor nodes are sending out location announce-
ments which basically include a unique id and the position-
ing information of the anchor node. Simple nodes receiving
these announcements use a localization algorithm to estimate
their position based on the information of the anchor nodes.
These estimations are always subject to a certain localization
error εloc. The aim of all localization algorithms is to keep
εloc as low as possible without introducing big additional
hardware or computational requirements.

Localization algorithms can be categorized into two ma-
jor groups [3, 11]. Range-based approaches always require
active participation of the simple nodes in terms of deter-
mining distances to anchor nodes or angles from incoming
radio signals [4, 2]. A very common technique to estimate
the distance to an anchor node is using the Received Sig-
nal Strength Indicator (RSSI). Based on the assumption that
the power of the received signal is proportionally decreasing
with increasing distance to the sender it is theoretically pos-
sible to estimate the distance to the sender by using a suitable
propagation model. However, the RSSI is subject to lots of
different impacts and heavily depends on the physical cir-
cumstances in the network including antennas, weather con-
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ditions, obstacles which might block the signal, etc. Previous
studies of the RSSI indicate that this technique is too un-
steady to achieve reasonable results for usage in localization
techniques [12, 23, 1, 19]. The second group are range-free
algorithms. Range-free localization is usually based on con-
nectivity only and does not require any active measurements
conducted by the simple nodes. Consequently, range-free lo-
calization is often much easier to implement and has lower
deployment costs.

A popular representative of range-free localization is
Monte Carlo Localization (MCL) [13]. MCL was originally
developed for the usage in robotics and has been adapted by
Hu and Evans for Wireless Sensor Networks in 2004. The
key idea of MCL is to represent the probability distribution
of the position of the sensor mote as a set of weighted sam-
ples. Each sample represents a possible location of the mote.
Bayesian filtering is used to eliminate impossible samples,
i.e. samples which are not in communication range to an-
chor nodes. The average of all samples passing the filter is
the localization estimation of the node. The most important
contribution of MCL is that it is especially designed for mo-
bile WSNs, i.e. all nodes including anchors are allowed to
move arbitrarily during network operation time.

A common problem of all localization techniques based
on anchors information in mobile WSNs is the steadily
changing network topology, which might lead to complete
connection loss to all anchor nodes. In this case no lo-
cation estimation is possible. In this work we are extend-
ing MCL using a dead reckoning technique to bypass these
situations using additional sensor information from a gyro-
scope, a magnetometer and an accelerometer. In contrast to
many other works we implement our approach called Sensor-
Assisted Monte Carlo Localization (SA-MCL) on real hard-
ware and evaluate it in a mobile sensor network testbed con-
sisting of radio controlled cars. Furthermore, to analyze im-
portant metrics like scalability we provide excessive simu-
lation studies and compare all results to the original MCL
algorithm. In summary, our contributions are as follows:

1. We propose SA-MCL, an approach on top of MCL to
bypass situations without anchor information

2. We provide an excessive comparison study of SA-MCL
and MCL based on network simulation

3. We introduce our mobile wireless sensor network
testbed.

4. We implement and evaluate MCL and SA-MCL on real
hardware.

The rest of the paper is structured as follows. After intro-
ducing necessary terms and revising MCL in Section 2, we
review related work in Section 3. In Section 4 we explain our
extension SA-MCL. Section 5 gives a detailed report of our
simulation studies. Our mobile WSN evaluation of SA-MCL
is provided in Section 6. Finally, we conclude our work in
Section 7.

2 System Model and Review of MCL
In this section we describe the system model used in this

paper and introduce necessary terms. Further, we review the
original MCL algorithm to provide a basic understanding for
the reader.

2.1 Terms
• Localization: The term localization refers to the process

of determining the own position in space. Position and
location are equally used in this paper.
• Seed nodes: A seed node is a node in the network capa-

ble of determining its position on its own, e.g. by using
GPS, and is distributing this information at regular in-
tervals as a broadcast message.
• Simple nodes: All other nodes in the network which are

trying to localize themselves are called simple nodes.
They are the majority of the network and do not have the
capability to determine their location without additional
information.
• Location announcement: A broadcasted message by a

seed node including its own location, a timestamp and
an identifier to be able to distinguish between multiple
received location announcements.

2.2 Known Parameters and System Model
This paper assumes all nodes are homogenous, i.e. they

share the same hardware capabilities including antennas,
processors, memory, etc. Seed nodes only differ by being
equipped with GPS and otherwise share the same parameter
set. The only parameters known by all nodes in the system
are vmax and r.

• vmax
The maximum velocity a node can have. A node does
not necessarily have to move with vmax all the time. It
is just an upper bound.

• r
The maximum communication range. Every node i can
assume that the distance to another node j is≤ r if i can
receive messages from j.

All nodes are assumed to move arbitrary in a deployment
area of limited dimensions. The boundaries of the deploy-
ment area are insuperable. In general the mobility in our
system can be described using the random waypoint model:
all nodes will move to an arbitrary destination and rest for a
maximum time of twait before choosing a new waypoint and
starting over.

2.3 Monte Carlo Localization
The MCL algorithm has been adapted from the area of

robotics [10] and presented for the usage in WSNs by Hu and
Evans [13]. The core idea of MCL is to represent the prob-
ability distribution of a nodes’ location as a set of weighted
samples, L, where each sample lt represents a possible loca-
tion of the node at time t. Impossible samples are filtered
based on made observations, i.e. the received location an-
nouncements.

The initial set, L0, is selected by choosing random lo-
cations in the whole deployment area. A node will always
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1: procedure MCL
2: Lt = {}
3: while size(Lt)< Nsample do
4: R = {li

t |li
t from p(lt |li

t−1), li
t−1 ∈ Lt−1}

5: ∀ i,1≤ i≤ N
6:
7: Rfiltered = {li

t |li
t where li

t ∈ R∧ p(ot |li
t )> 0}

8: Lt = choose(Lt ∪Rfiltered,N)
9: end while

10: end procedure
Figure 1: Original MCL algorithm [13].

maintain a fixed number of samples, Nsample, to guaran-
tee enough variability while still limiting the computational
overhead. The MCL algorithm shown in Figure 1 computes
the sample set Lt using the information of sample set Lt−1
and observations of seed nodes, ot , available at time t. To
account for uncertainty about the node movement behavior
the algorithm includes a prediction step (line 4) in which a
new sample is drawn from a circular sampling area with ra-
dius rsarea = vmax× tcheck around its current position given by
a transition equation p(lt |lt−1). As explained above, in MCL
vmax is the maximum velocity of a node. tcheck is the time be-
tween two localization attempts of a node. The probability
of the current location given the previous location estima-
tion is given by a uniform distribution [13], where d(..) de-
notes the Euclidean distance between two samples as shown
in Equation(1).

p(lt |lt−1) =


1

π×rsarea 2 , if d(lt , lt−1)≤ rsarea

0, if d(lt , lt−1)> rsarea

(1)

The set generated in the prediction step is put into the
filtering step (line 7) which uses the observations ot to filter
impossible node locations from the sample set. Each node
keeps track of its first-hop neighbor seeds S and of its second-
hop neighbor seeds T . The filtering condition for a sample l
is given in Equation (2).

filter(l) = ∀s ∈ S,d(l,s)≤ r∧∀s ∈ T,r < d(l,s)≤ 2r (2)

Samples passing the filter are assigned a weight of 1, all
others a weight of 0. Samples with a weight of 0 are ig-
nored in further re-sampling steps. If more than Nsample sam-
ples have been generated, Nsample random samples are cho-
sen from the current set (line 8). The process is repeated until
|Lt |>= Nsample (line 3). The final step is to compute the po-
sition estimation by calculating the weighted average of the
sample set, i.e. the average of all samples with a weight of 1.
For a more detailed description of MCL we would like to
refer the reader to the original paper [13].

3 Related Work
Existing work on improvements of MCL mainly focuses

on enhancing the filtering step either by introducing more
sophisticated sample weighting or by defining more precise
filtering conditions.

Rudafshani and Datta [20] take neighboring information
into consideration for calculating sample weights. This
means not only seed nodes contribute to the localization pro-
cess of a node, but all neighbors of a node do. The authors
present two versions of their algorithm: MSL* calculates
weights for all of a neighbor’s samples, while MSL tries to
reduce the therefore emerging computational and commu-
nication overhead by calculating a single weight for every
neighbor. Hence, in this work a closeness value is introduced
which describes the quality of a location estimate. The close-
ness value is used to identify neighbors which seem to have
a good estimation of their own position and therefore pro-
vide more valuable information to the node which tries to
localize.

Zhang et al. propose WMCL [24] (weighted MCL) which
provides further improvements for the MCL algorithm fam-
ily. A bounding box is constructed to reduce the area from
which new candidate samples are drawn. According to the
authors this results in less overhead when the new sample
set is computed. In addition to that, WMCL makes use of
neighborhood position estimations to increase the localiza-
tion efficiency. The authors state that their algorithm works
better in static scenarios than previous solutions without tun-
ing special parameters as done in MSL/MSL*. A real imple-
mentation on MICAz motes [7] is provided in a small testbed
to evaluate a static scenario.

Teng et al. [22] show how a single mobile seed node can
be used to localize all nodes in a static sensor network in
their approach called MA-MCL. Applications for these sce-
narios might be rare and can only be expected when sensor
nodes are deployed in a rush so that there is no time to cal-
ibrate the position. The sensors are not expected to move
after deployment. The seed node is the only node equipped
with GPS and will move randomly in the whole deployment
area. Since the unknown nodes do not move, they generate
new samples based on their current position only in a static
square area with side length β which is a tunable parameter
of the algorithm and is by default set to β = 0.1r where r is
the communication range of the simple node. The authors
compare their work to the solution given in [20] and show
that in these special scenarios their algorithm outperforms
MSL and MSL*. However, they created a single point of
failure situation: if the mobile seed fails for any reasons, the
whole network will not be able to localize.

All of the mentioned extensions for MCL are working
well, assuming that seed information is always present, i.e.
seed nodes are always in communication range. Our ap-
proach differs from all of the above, since we are account-
ing for temporary situations in which no seed nodes are
present at all. Furthermore, except for WMCL none of the
approaches was implemented on real hardware not to men-
tion a proper evaluation in a mobile WSN testbed.

Aside MCL, other range-free solutions have been pro-
posed. Zhong and He introduce the regulated signature dis-
tance (RSD) [25] which acts as an additional metric for con-
nectivity based approaches. The authors follow the assump-
tion that RSSI is not a reliable estimator for determining po-
sitions on its own, but can be used as an additional indicator
to improve connectivity based solutions.
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(a) t=5 (b) t=10 (c) t=15 (d) t=20

Figure 2: Sample set degeneration of MCL.

Klingbeil and Wark proposed using a combination of sen-
sor data originating from a IMU and a set of static seed nodes
to form a network able to monitor motions and paths of walk-
ing people in an indoor scenario [16]. Their approach of
detecting movement and heading is similar to the one used
in this paper, but the localization algorithm is executed on
a central personal computer. Therefore, this solution is not
suited for spontaneously formed networks where all nodes
are mobile.

Evaluations of algorithms for WSNs performed in mo-
bile test beds are rare in general. Kafle et al. recently pro-
posed a dynamic mobile sensor networking platform [15].
Their work can be understood as a framework for all kinds
of sensor network applications, which might encourage re-
searchers to put more focus on real implementations.

4 Sensor-Assisted MCL
In this section we first analyze the behavior of MCL in

situations with no seed information present and propose our
dead reckoning improvement named Sensor-Assisted Monte
Carlo Localization (SA-MCL) afterwards.

4.1 Problem Statement
Mobility in WSNs continuously generates new network

topologies. The network might be divided into different parts
and single nodes could be isolated completely. Depending on
the number of seed nodes in the network the complete cov-
erage of the deployment area cannot be guaranteed. Even-
tually, simple nodes are confronted with situations without
seed information. In this case a simple node can only ex-
ecute the prediction step of MCL. Consequently, for longer
periods of seed node absence the MCL sample set will de-
generate, i.e. the samples are spread over the whole deploy-
ment area as illustrated in Figure 2. The green bars indicate
the distance from the real position of the node to the sam-
ples of its MCL sample set. Due to repeated MCL prediction
without MCL filtering the samples are spread more and more
in the deployment area over time. As a consequence, the po-
sition estimation indicated by the black dot is getting worse
and worse.

In our work we are focusing on bypassing these situa-
tions by using additional sensor information. In the immi-
nent event of losing contact to all seed nodes a combination
of sensor information from an accelerometer, a magnetome-
ter and a gyroscope is used to update the nodes’ position
based on the last location estimation.

4.2 Design
The core idea of SA-MCL is to record the path of a node

relative to the last known position if no seed information is
available. Therefore, a simple node in SA-MCL has to be
equipped with additional sensors:

1. A magnetometer is a simple compass module able to
measure the strength of the magnetic field of the Earth.
Consequently, it can be used to determine the heading
of an object in degrees where magnetic North is fixed
at 0◦.

2. An accelerometer is a device able to measure proper
acceleration, i.e. the acceleration relative to free fall.
Accelerometers usually provide 3-axis-measurement
and therefore are suitable for usage in 3D space nav-
igation. By integrating the accelerometer measure-
ments the velocity of a moving object can be deter-
mined [21, 6].

3. A gyroscope measures angular velocity along up to
three axis. Given a certain orientation of a node,
the gyrometer can be used to calculate the relative
difference in orientation from the last known point.

The three introduced sensors are often combined on a sin-
gle chip and are very cheap as they are mass production com-
ponents which are also used in smart phones or laptops.

By combining the sensor information a mote can roughly
record the path it is traveling. If it needs to localize again and
did not receive any location announcements, it will freeze
the state of the MCL sample set by moving all samples ac-
cording to the recorded path. The procedure is illustrated in
Figure 3. At time t0 the node loses contact to all seed nodes
and needs to localize again at time t4. It is able to estimate
its movement according to the gathered sensor data at time
t1 and t2 and therefore will move all samples relatively to the
last known position at time t4.

The pseudo code of SA-MCL is shown in Figure 4. The
main difference to MCL is that SA-MCL is keeping track of
the number of observations |ot |. If no new observations are
obtained, the sensor data will be gathered instead (∆x and
∆y) and the traveled distance will be added to all samples in
Lt−1 to retrieve Lt . Otherwise, the default MCL algorithm
is executed. Since using additional sensors consume energy,
they are only activated if necessary. This will be the case
if the number of observations tends to reach 0. Once the
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t0 t1 t2 t3

Figure 3: Samples moved accordingly to the recorded path.

node receives new location announcements the sensors can
be turned off again. The important part, which is simplified
in the pseudo code for the ease of presentation, is the im-
plementation of the functions getMovementXfromSensors
and getMovementYfromSensors. Later sections describe
the process of gathering the sensor information in more de-
tail.

1: procedure SA-MCL
2: Lt ←{}
3: if |ot |< 1 ∧ sensorsActive then
4: ∆x← getMovementXfromSensors()
5: ∆y← getMovementYfromSensors()
6: ∀ lt ∈ Lt do
7: lt .x← lt .x+∆x
8: lt .y← lt .y+∆y
9: else

10: while size(Lt)< N do
11: R = {li

t |li
t from p(lt |li

t−1), li
t−1 ∈ Lt−1}

12: ∀ i,where1≤ i≤ N
13:
14: Rfiltered = {li

t |li
t where li

t ∈ R∧ p(ot |li
t )> 0}

15: Lt = choose(Lt ∪Rfiltered,N)
16: end while
17: if |ot |< 2 then
18: sensorsActive← true
19: else
20: sensorsActive← f alse
21: end if
22: end if
23: end procedure

Figure 4: SA-MCL algorithm.

5 Simulation Evaluation
Certain important metrics of WSN algorithms are difficult

to evaluate on real hardware without access to an already de-
ployed and operating network. For instance, the scalability
of an algorithm can only be tested with hundreds or even
thousand of nodes which usually goes beyond the scope of
feasibility. In these cases network simulation provides an
easy solution to do an initial evaluation which can be ex-
tended by real experiments.

Our simulation evaluation of SA-MCL is performed in
the original Java simulator provided by Hu and Evans [13].
Although the simulator lacks several basic features like path
fading models or packet collision handling, using the same
evaluation tool leads to optimal comparability. Implement-
ing our approach in network simulation software is very sim-
ple compared to working with real sensor information from

accelerometer, gyroscope and magnetometer. In the simula-
tor, the current position and the next waypoint of a node as
well as its current velocity are always known, i.e. it is very
easy to calculate the orientation of a node and the distance
it traveled. It would be unrealistic to assume that in a real
implementation the additional sensors would be able to de-
liver perfect data. Therefore, to account for imprecise sensor
data due to noise or improper hardware quality a sensor error
is introduced in our implementation. This error determines
an artificial deviation from the otherwise perfectly calculated
orientation and traveled distance.

In our simulations we focus especially on low seed den-
sity situations. In contrast to Hu and Evans [13] we define a
more expressive metric for the seed density. Instead of con-
sidering only the ratio of seed nodes and simple nodes, we
take all important parameters into account which impact the
seed node coverage of the deployment area, i.e. the number
of seed nodes Nseed, the radio range r and the simulation area
Asim. Equation (3) shows how we define the seed density.

ρseed =
Nseed× (2r)2

Asim
. (3)

The basic idea is to cover the deployment area Asim with
Nseed squares with an area defined by the radio range r. Al-
though modeling the transmission coverage as a square is
an unrealistic and massively simplified model, our definition
of seed density is much more expressive than other metrics
which do not account for the dimensions of the deployment
area or different radio ranges.
5.1 Simulation Parameters

Table 1 lists the different simulation parameters and their
default values, which have been examined in order to evalu-
ate SA-MCL. The simulation software of Hu and Evans does
not provide a real unit system. All parameters are given with
regard to the radio range r. A velocity of 0.4 means that be-
tween two localization approaches the node will move by a
distance of 0.4× r. For the ease of presentation we assume r
is given in meters.

The simulation scenario consists of a square with side
length a = 500m and a total of 300 nodes including seed
nodes. Following Equation 3 a seed density of ρseed = 1.6
corresponds to about 40 seed nodes. For each simulation as-
pect one of the simulations parameters is changed while the
others maintain their default value. We are interested in eval-
uating different network sizes, radio ranges, sample set car-
dinalities and seed node densities. Furthermore, we examine
the behavior of SA-MCL assuming a certain sensor error to
account for limited resolution of the additional sensors.

Parameter Meaning Default
Nnodes Total number of nodes 300
ρseed Density of seed nodes 1.6
vmax Maximum velocity of nodes 0.4
Nsample Number of maintained samples 25
r Radio range 50
εsensor Error in sensor data 20 %

Table 1: Evaluated simulation paramters for SA-MCL.
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Figure 5: Localization error for different seed densities.

5.2 Simulation Results
The following paragraphs present the localization error

εloc in terms of r. As in [13] it is calculated as the Euclidean
distance of the real positionpreal to the estimated position pest
multiplied by r as shown in Equation (4).

εloc =
√
(preal.x− pest.x)2 +(preal.y− pest.y)2× r (4)

5.2.1 Effect of Different Seed Node Densities
The key aim of SA-MCL is to account for situations in

which the seed node density is low. In Figure 5 we show
how using the additional sensor information helps SA-MCL
to perform much better compared to MCL, especially if
ρseed < 2. For this experiment the number of seed nodes is
constantly reduced to achieve lower seed densities. It can be
found that SA-MCL outperforms MCL by up to 40 % in low
seed density situations. For higher seed densities MCL and
SA-MCL tend to converge to a single graph as there are only
few situations left where no seed information is available,
i.e. only MCL is executed. The graph can also be read in a
second way: assuming one wants to keep a certain level of
localization error, it is possible to reach this level with con-
siderably less seed nodes in SA - MCL compared to MCL.
This is an important fact for applications in which nodes are
not expected to be recovered after their mission, because the
deployment costs can be drastically reduced if it is possible
to reduce the number of costly seed nodes.
5.2.2 Effect of Different Sample Set Cardinalities

Several different sample set cardinalities, represented by
the parameter Nsample, are examined to find a suitable num-
ber of samples which need to be maintained for satisfying
results. The outcomes are shown Figure 6. Since the sample
set cardinality heavily affects the computational overhead of
the algorithms the aim is to maintain as few samples as pos-
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sible. For only 1 maintained sample the localization error
is very high, since a single sample not passing the filtering
step results in an empty sample set, which makes a location
estimation impossible. As soon as the number of samples
is increased, the localization error is drastically reduced. It
can be found that for both algorithms it is sufficient to keep
a sample set cardinality of 25 to 30 samples. In accordance
with [13] at a sample set cardinality of Nsample = 50 no more
significant improvement can be found. The reason is that the
additional samples do not provide any further information
about the location of the node.
5.2.3 Scalability in Large Networks

An important aspect for algorithms used on devices with
restricted computational capabilities is scalability. Scalabil-
ity describes the ability of an algorithm to handle a growing
amount of input while avoiding an increase of computational
power necessary to solve the task [5]. An algorithm is con-
sidered to be well scaling if it is able to handle large inputs
equally or with similar efficiency. In networking algorithms
this means that an algorithm working on tiny-sized networks
must perform equivalently good if the number of network
participants is increased to hundreds or thousands of nodes.

Fortunately, the concept of range-free localization in as-
sociation with the broadcast nature of wireless communica-
tion allows perfect scalability. In fact, the number of simple
nodes a seed node can serve is not limited by computational
means. Since the localization algorithm is executed on ev-
ery single node, no increase of computational resources can
be noted. The computational power required is only affected
by the number of location announcements received and the
sample set cardinality. The aim of any operator of a WSN
will be to keep the number of seed nodes as low as possi-
ble. As a consequence, it is not likely to have networks with
a huge amount of seed nodes. Furthermore, as seen previ-
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ously, there is no need to increase the sample set cardinality
to more than 25-50 samples, as no further decrease of the
localization error can be expected. This means both parame-
ters affecting the computational overhead of a node are of no
consequence.

To emphasize this Figure 7 shows the localization error
for different amounts of nodes, Nnodes. The number of sim-
ple nodes is constantly increased, the number of seed nodes
remains constant. Interestingly, the localization error is even
slightly decreasing for both algorithms. The reason for that
is the two-hop approach of MCL. Every location announce-
ment of a seed node is forwarded once by all nodes re-
ceiving it. With an increased number of total nodes in the
network more location announcements will be broadcasted
again. Therefore, more nodes which would be isolated oth-
erwise are still receiving location announcements. However,
the effect of increasing the amount of nodes in the network
is only very subtle and reaches a stable level at about 1200
nodes in this scenario. Further increase of the total number
of nodes does not have any effect on the localization error.

5.2.4 Effect of Different Radio Ranges
Following the definition of the seed density given above

the radio range r is an important parameter for the seed node
coverage in the network. There is a trade-off situation be-
tween the localization error and the radio range: the smaller
the radio range is, the lower the localization error will be
given a suitable number of seed nodes to cover the network.
Unfortunately, many more seed nodes are required to cover
the whole network and to reach reasonable seed densities
with smaller radio ranges. Figure 8 shows the localization
error for MCL and SA-MCL for different radio ranges of
both seed nodes and simple nodes. To provide a sufficient
seed node coverage even for low radio ranges in this experi-
ment 200 simple nodes and 100 seed nodes are used. It can
be found that for both algorithms the localization error will
increase if the radio range increases.
5.2.5 Effect of Errors in Sensor Data

The main problem which could arise in SA-MCL is im-
precise sensor data. While all electronic sensors have a lim-
ited resolution, they might also be affected by external im-
pacts. For instance, a magnetometer is always influenced by
strong magnetic fields which even pervade possible counter-
measures like magnetic shielding. To account for imprecise
hardware a sensor error, εsensor, is introduced in the simula-
tions ranging from 0 to 40 %. The results are shown in Figure
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Figure 10: Data bus connections on the mobile node. Power
supply lines not shown.

9. MCL does not make use of sensor information, therefore
the results do not change and are given as a constant line
for reference. It can be found that even when increasing the
sensor error up to 30 % SA-MCL performs better than MCL.
6 Field Test

Going beyond simulation, we build a practical implemen-
tation of MCL and SA-MCL and experimentally evaluate its
performance in a field test. In this part of the paper, we first
describe our mobile wireless sensor network testbed which
is based on radio controlled cars (RC cars). Secondly, we
describe the implementation of our approach and particular-
ize how the sensor data is gathered. Finally, we describe our
approach of parameter optimization and present our final re-
sults.
6.1 Hardware Setup

The hardware platform used for the field test is comprised
of a small radio controlled electric vehicle carrying a sen-
sor mote connected to a GPS receiver, accelerometer, gy-
roscope (angular rate sensor) and magnetometer. The sen-
sor mote is an IRIS Wireless Measurement System man-
ufactured by MEMSIC Inc. The mote’s main board con-
tains an Atmel ATmega1281 MCU, an 802.15.4/ZigBee-
compliant 2.4 GHz radio and a 512 kB flash ROM for stor-
ing measurement results [18]. It also includes an ex-
pansion connector for connecting additional sensor boards.
GPS functionality is provided by the Crossbow Technol-
ogy MTS420CC sensor board (Figure 11a) which contains
a LEA - 4A GPS receiver module by uBlox AG which is
connected to the mote’s UART1 serial port through the ex-
pansion connector (Figure 11c)[9]. As the flash chip and the
GPS module are connected to the same UART, bus arbitra-
tion is necessary. This is done via a separate chip-select line
for the flash chip [8] and via I2C-controlled ADG715 switch
ICs for the GPS board (see Figure 10 for an overview).

An Invensense MPU9150 9 - axis motion sensor as shown
in Figure 11a provides accelerometer and gyroscope sensors
as well as the AKG8975 magnetometer which is included
on-chip [14]. A breakout board containing the MPU9150
is mounted on a vertical plastic spacer giving about 20 cm
of clearance from the vehicle’s body using non-magnetic
(brass) screws to minimize magnetic interference originat-
ing from the frame and motor. It is connected to the mote’s
I2C-bus through wires and an interface board plugged into
the expansion connector. The completed sensor mote stack
including the mote itself, the GPS board and the expansion
board is shown in Figure 11d.
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(a) GPS module (b) MPU-9150 (c) Expansion board (d) Full mote stack

Figure 11: Mobile node hardware components.

Power is supplied to the mote and all sensors from
the vehicle’s 7.2 V NiMH-battery through a LM2596-based
DC-DC step-down circuit, whose output has been manu-
ally adjusted to be in between 3.290 V and 3.300 V using
a MASTECH M9803R multimeter [17].

The final car assembly is shown in Figure 12.

6.2 Motion Sensing
While estimating the compass heading of a sensor node

by employing a simple approach that uses only a magne-
tometer, several challenges arise. Sensor noise leads to un-
steady, fluctuating sensor data even at rest. Magnetic inter-
ference both from the RC car and the environment can lead to
flawed magnetometer data. Finally, tilting the magnetometer
introduces noticable errors and can easily occur while driv-
ing.

Sensor noise can, to some degree, be suppressed by means
of low pass filters. Magnetic interference from the RC car is
compensated by mounting the magnetometer on a spacer, as
seen in Figure 12, keeping it away from the magnetic fields
originating from the RC car. To mitigate magnetic interfer-
ence from the environment and situations in which the mag-
netometer is tilted, accelerometer and gyrometer data is em-
ployed. Additionally, the accelerometer is used to determine
if the sensor node is moving, which is important for running
SA-MCL.

The gyrometer sensor provides angular velocity data, rel-
ative to the local orientation of the sensor node. This makes
it possible to update a known orientation estimate using gy-
rometer data. To do this, the relative orientation offset has
to be rotated to an absolute orientation offset and added to a
previous estimate.

By measuring the vector of gravity using the accelerom-
eter, it becomes possible to calculate pitch and roll of the
sensor node while at rest. Together with the yaw reading

Figure 12: Fully assembled RC car mobile node.
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Figure 13: Motion sensing overview.

from the magnetometer, these values provide a base orien-
tation of the sensor node that can be updated using the gy-
rometer. Since the gyrometer’s accuracy is not impacted by
acceleration, magnetic fields or tilt, a weighted average of
the gyrometer’s yaw estimate and the magnetometer yaw es-
timate provides a robust estimate of the sensor node’s com-
pass heading.

The weights are adjusted according to which adverse con-
ditions are detected. If the sensor is moving or tilted, ac-
celerometer and magnetometer receive lower weights. When
not tilted or in motion, the gyrometer is aggresively weighted
less and the magnetometer is used to reset the orientation,
eliminating accumulated sensor drift.

In addition to the situational weighting approach, low
pass filters are employed to reduce the noise of sensor data.

An overview of the approach can be seen in Figure 13.
6.3 Software Implementation

Due to the limited processing power and working mem-
ory, care has to be taken to avoid the use of expensive float-
ing point calculations as much as possible. While anchor
nodes receive their location information from GPS sensors
attached to the extension connector, the longitude and lati-
tude information is projected into a cartesian coordinate sys-
tem by means of the Universal Transverse Mercator (UTM)
map projection. The coordinates are centered around those
of the site where the experiment takes place and stored in a
16 bit fixed point format with a resolution of approximately
3 mm. This allows relatively efficient computation of dis-
tances even within the limits of an 8 bit microcontroller with-
out any significant loss in precision.
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Figure 14: Screenshot of live view mode.

Our implementation is able to complete one run of MCL
with fifty samples within 70 ms to 80 ms on IRIS sensor
motes. When running SA-MCL and using the previously
described dead reckoning approach, the runtime is reduced
even further to 6 ms to 7 ms, as no resampling of samples
has to be performed. Both algorithms are executed directly
on the hardware platform.

MCL and SA-MCL are both run once per second after
which an announcement message is broadcast, containing
anchor node information. GPS readings are also taken at a
rate of one per second, while motion information, i.e. com-
pass heading and a flag that determines if the sensor is mov-
ing at all, is measured about five times per second. All events
such as measured sensor data and received or sent messages
are logged to flash memory to allow for detailed analysis of
everything that happened during the experiment.

Furthermore, our implementation features a live view
mode which displays the positions of all sensors in the
testbed as show in Figure 14. The live view mode is not re-
quired for determining the performance results of our evalu-
ation, but provides a comfortable way to quickly detect prob-
lems.

6.4 Methodology
The following paragraphs describe how our field test is

carried out.
6.4.1 Field test setup

Ten remote controlled cars, which are configured as de-
scribed above, are driven over a flat sports field, controlled
by volunteers. The dimensions of the experimental area are
100m× 50m. The drivers of the cars are instructed to imi-
tate the random waypoint mobility model. This means a car
is supposed to drive a more or less straight line, pause for a
short time, change direction and start over. To maintain con-
trol of the car and ensure safe driving the maximum velocity
is limited to vmax ≈ 6km/h. Data is collected over a period
of about 18 min to 20 min.

To enable the live view mode it is necessary to forward the
positioning information, which otherwise is stored only in
every motes’ flash memory, to a central base station. There-
fore, a grid of relay nodes is required. These relays do not
have any other functionality than forwarding packets to the
base station. Figure 15 shows the field test setup with the
base station located in the center, eight relay nodes arranged
in a grid and the mobile nodes are allowed to move arbitrarily
on the field.

Figure 15: General field test setup.

To allow fine grained control of the nodes’ radio ranges,
an artificial limit is introduced by means of an RSSI cut-off
value. If a node receives a location announcement, it will al-
ways record it in its flash memory log. However, if the RSSI
is below a certain, configurable threshold, the announcement
will not be processed further by MCL. Experimentally deter-
mined RSSI values for different ranges are given in Table 2.
We are aware that this mapping is only a very rough esti-
mation and does not hold true in general. However, packets
misjudged based on this method are considered to be a con-
sequence of the varying antenna characteristics on real hard-
ware. To provoke many situations without seed information,
the RSSI cutoff is set to 29, which corresponds to a radio
range of ≈ 5m according to our provided table.

To maximize the usable data gained from the experiment,
all seed nodes also run both MCL and SA-MCL, i.e. every
seed node is a simple node at the same time. To avoid a car
localizing itself based on its own location announcements,
announcements originating from itself are ignored.
6.4.2 Ground truth

All cars are equipped with GPS sensors to allow deter-
mining the localization error with respect to the reference
value provided by the GPS readings. We are aware of the fact
that GPS introduces a localization error on its own. How-
ever, more precise reference systems usually involve mul-
tiple cameras and are beyond our budget. Seed nodes will
announce their position also based on their current GPS in-
formation.
6.4.3 Data logging

All data collected during the field test, including GPS
data, sent and received location announcements and loca-
tion estimations of MCL and SA-MCL are stored in the flash
memory of each node. Using the logs gained from the field
experiments, it becomes possible to run further simulations
with very high fidelity based on the collected data afterwards.

6.5 Results
After performing the field test, we evaluate the perfor-

mance of SA-MCL and MCL according to various error met-
rics.

RSSI 50 33 26 12 9 6
Dist. 1 m 4 m 8 m 16 m 22 m 26 m

Table 2: Mapping of RSSI value to distance.
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Figure 16: Absolute Localization Error.

6.5.1 Absolute localization error
Again, the absolute localization error is calculated as the

Euclidean distance between the estimated position and the
real position given by our GPS ground truth data. Our field
test clearly shows that the performance of SA-MCL is su-
perior to that of MCL. A per-car breakdown of the absolute
localization error is given in Figure 16.

The average absolute localization error of SA-MCL dur-
ing this experiment is 11.37 m, while the average absolute
localization error for MCL is 27.1 m, which corresponds to
an average improvement of 58 %. The maximum improve-
ment is as high as 66 %, while even in the worst case there is
still an improvement of 46 %.

6.5.2 Grid localization error
Intuiting that SA-MCL and MCL performance is different

in different regions of the field test area, besides the abso-
lute localization error another type of metric is developed,
called grid error. For this error measure, the test field is
subdivided into cells on a grid. The cells have a dimension
of ≈ 3m × 3m. For each cell the average error at the times
that the GPS coordinates are within the given cell is deter-
mined.

The resulting grid is then plotted with color coded errors
in the style of a heat map. The grid error plot showing the
averages of all ten cars can be seen in Figure 17, with the
average error given in meters according to the scale. At a
glance, it becomes obvious that especially at the outskirts of
the field test area, SA-MCL outperforms MCL. This is likely
due to a lower seed node density in those regions, which re-
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Figure 17: Average grid error over all cars.

sults in MCL’s location estimates rarely entering those areas.
The effect would be even more drastic on a larger test field.
6.5.3 Optical trace

Figure 18 shows a partial plot of the path taken by one
of the RC cars overlayed on a satellite picture of the ex-
periment’s locale over a period of 3.5 min. The figure il-
lustrates a period in which no seed information is available
to the node. The yellow line corresponds to the location pro-
vided by the GPS sensor, while the red line gives the location
estimate of SA-MCL and the green line shows the estimate
calculated by MCL. Only a part of the full path is given, as
a plot of the full path would make it hard to visually discern
details due to its complexity.

It can be found that SA-MCL is almost perfectly imitating
the real path of the car as given by the GPS data. Using the
combined data of all sensors to determine the new heading
SA-MCL is able to react immediately to changes in orien-
tation. MCL on the other hand is unable to account for the
missing seed information and therefore jumps from its last
known location at the top left corner directly to the next de-
termined location after receiving seed information again at
the bottom of the test field.
6.5.4 Current Draw

One of the most quoted reasons for justifying the usage
of localization algorithms instead of GPS is the high current
draw of the latter. However, only few researchers provide a
study of the energy consumption of their algorithms, often
due to a missing real implementation. We measured the cur-
rent flow of the fully assembled node when executing MCL,

Figure 18: Path taken by RC car during experiment.
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Figure 19: Current draw for MCL, SA-MCL and GPS.

SA-MCL and when using GPS with a MASTECH M9803R
multimeter [17]. The current draw is measured over a pe-
riod of 1 min with a frequency of 4 Hz. The gathered values
are averaged to produce the final results which are shown in
Figure 19. It can be found that the GPS device indeed is con-
suming a lot of power while the current draw introduced by
our additional sensors is reasonably low. To be precise, the
power consumption overhead of SA-MCL is about 8.6 mA
compared to 55.38 mA for the GPS device. All in all, the
total current draw for a node running MCL is about 20 mA
which includes powering the mote itself. For SA-MCL the
current draw is about 28.59 mA and 75.38 mA for a mote
equipped with GPS respectively. This means, the consumed
power of a node localizing using GPS is about 3 times higher.

6.6 Further evaluation
Based on the data and GPS traces collected in the field

test, we are able to run further offline experiments to ana-
lyze the performance of SA-MCL and MCL with different
parameters. The logs stored in the nodes’ flash memory are
fed into an especially designed simulator based on the code
running on the actual sensor nodes. In this way, it becomes
possible to evaluate the performance of the algorithms when
configured with different parameter sets.

The main parameters of interest are the radio range, which
is represented by the RSSI cut-off value, and the speed value,
which describes how fast the samples are moved in SA-MCL
when no seed information is available. The quality of this
parameter is crucial for the performance of SA-MCL. The
value of vmax also depends on this parameter and should be
set to twice the value of the speed parameter, to ensure that
the randomly resampled particles in the particle filter on av-
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Figure 20: Absolute MCL error with varying parameters.

erage spread with a speed corresponding to that of the speed
parameter.

Figures 20 and 21 show the absolute localization error in
meters for both algorithms with different parameters. SA-
MCL is examined with speed values in the range 0.075 m/s
to 3 m/s with a step size of 0.075 m/s and RSSI cut-off values
in the range [0,40]. It can be found that SA-MCL is robust
against a decrease in radio range as long as its speed value
is configured to match the average speed of the sensor node
while in motion. In contrast, the localization error of MCL
strongly increases if the radio range and thus the seed density
decreases.

Figure 22 shows the performance of SA-MCL in compar-
ison to MCL. This comparative error is calculated as the ratio
between the average absolute error of SA-MCL and MCL as
given in Equation(5). Here, it can be seen that speed settings
below the optimal value still at worst make SA-MCL’s per-
formance approach that of MCL, but do at no point make it
perceivably worse, while well calibrated values lead to con-
sistently superior performance.

εloc % =
εloc SA-MCL

εloc MCL
×100% (5)

7 Conclusions
In the final section of this work we would like to sum-

marize the contents of this paper and list some possible im-
provements and extensions for future work. Supplemental
material including the source code of our implementation
and videos of the field test can be downloaded1.
7.1 Summary

In this paper we presented our approach of using addi-
tional sensor information to implement a dead reckoning lo-
calization extension for the Monte Carlo Localization (MCL)
algorithm. Our solution called Sensor-Assisted Monte Carlo
Localization (SA-MCL) accounts for temporary situations
without seed information due to connection loss caused by
changing network topologies in mobile WSNs. By freezing
the MCL sample set and moving all samples according to the
motion information gathered from accelerometer, gyroscope
and magnetometer we are able to localize a node relative to
its last known position. Extensive simulation studies showed
that our approach performs well even in large networks of
hundreds of nodes. More importantly, the simulations indi-
cate that we are able to reduce the localization error drasti-
cally in low seed density networks.

1http://filepool.informatik.uni-goettingen.de/
publication/tmg/2016/material_ewsn2016.zip.
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Figure 22: SA-MCL error percentage compared to MCL.

Our main contribution is to provide a real implementation
of SA-MCL on mobile sensor motes which are mounted on
radio controlled cars. According to our initial simulations
the experimental results confirm that SA-MCL outperforms
MCL in low seed density situations. Our approach can be
used to either reduce the localization error drastically or to
save costly seed nodes while maintaining the same level of
localization error. The detailed logs of our field test can be
used to run further simulation based on real GPS and net-
work traces.
7.2 Future Work

In future research we would like to extend our work on
mobile WSN testbeds. We believe that conducting experi-
ments on real hardware is much more expressive compared
to other studies conducted using simulation software only.
The main problem in our testbed is the manpower required
to drive the cars. We are interested in an autonomously op-
erating system which controls the car without a real driver.
Such a system could provide the basis not only for evaluat-
ing localization algorithms, but for all algorithms in mobile
WSNs including routing, data aggregation, etc. which could
encourage researchers to test new proposals and solutions
more often on real hardware.

Besides our mobile WSN testbed in general, we are in-
terested in combining our approach with previous works on
improving MCL, which focus mainly on improving sample
filtering as described in Section 3. None of the mentioned
works was evaluated in a mobile sensor network testbed.
Therefore, comparing them against each other and further
improving them using SA-MCL can be a future contribution.

Additionally, SA-MCL could easily be extended to work
in 3D space. The main challenges for validating such an
extension in the real world would be measuring the ground
truth locations and the a more complex experimental setup,
replacing cars with flight capable vehicles.
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