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Abstract
Over the past few years, many low-cost pollution sen-

sors have been integrated into measurement platforms for air
quality monitoring. However, using these sensors is chal-
lenging: concentrations of toxic gases in ambient air of-
ten lie at sensors’ sensitivity boundaries, environmental con-
ditions affect the sensor signal, and the sensors are cross-
sensitive to multiple pollutants. Datasheet information on
these effects is scarce or may not cover deployment con-
ditions. Consequently the sensors need to undergo exten-
sive pre-deployment testing to examine their feasibility for a
given application and to find the optimal measurement setup
that allows accurate data collection and calibration.

In this work, we propose a novel method to conduct in-
field testing of low-cost sensors. The algorithm proposed is
based on multiple least-squares and leverages the physical
variation of urban air pollution to quantify the amount of ex-
plained and unexplained sensor signal. We verify (i) whether
a sensor is feasible for air quality monitoring in a given en-
vironment, (ii) model sensor cross-sensitivities to interfering
gases and environmental effects and (iii) compute the op-
timal sensor array and its calibration parameters for stable
and accurate sensor measurements over long time periods.
Finally, we apply our testing approach on five off-the-shelf
low-cost sensors and twelve reference signals using over 9
million measurements collected in an urban area. We pro-
pose an optimized sensor array and show—compared to a
state-of-the-art calibration technique—an up to 45% lower
calibration error with better long-time stability of the cali-
bration parameters.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Reliability, Testing,

and Fault-Tolerance; G.3 [Probability and Statistics]: Cor-
relation and regression analysis

General Terms
Algorithms, Verification, Performance

Keywords
sensors, multiple least-squares, in-field testing, sensor

calibration, air quality

1 Introduction
Monitoring urban air quality is of great interest in modern

society. Airborne pollutants can cause various diseases, such
as respiratory illnesses, and are harmful to the environment.
Usually, air pollutants are monitored by static measurement
stations operated by governmental authorities, e.g., the Swiss
National Air Pollution Monitoring Network (NABEL) [29].
Numerous precise analytical instruments used in these sta-
tions cost several thousand dollars each [30] and require fre-
quent calibration and maintenance [31, 26, 18]. Therefore,
the number of deployed stations and, hence, the spatial reso-
lution of the gathered data is limited.

Breakthroughs in sensor technology made new genera-
tion of small, cheap and portable air quality sensors avail-
able on the market. They are usually based on electrochemi-
cal cells, e.g., [4], or semiconductor technologies, e.g., [35],
which allow a compact and inexpensive design. Researchers
and start-ups integrate these sensors in their measurement
platforms to monitor air pollution. Over the past years, nu-
merous research projects, e.g., CommonSense [7], MES-
SAGE [25], OpenSense [19], and public initiatives, such as,
Air Quality Egg [1] and Data Canvas [2], were launched to
explore opportunities of these new technologies and raise
awareness in the society. However, results of laboratory tests
and comparison against precise analytical instruments often
report insufficient sensor accuracy, sensor drift and low cor-
relation with reference measurements when trying to mea-
sure pollutant concentrations in ambient air [30, 17].

In this work, we present a novel method to quantify the
real-world usability of a low-cost sensor for monitoring ur-
ban air pollutants by splitting the sensor’s measurements into
explained, unexplained and noise components. We show that
many low-cost sensors can be used to monitor air quality, if
deployed as part of a sensor array and jointly calibrated in
combination with other low-cost sensors of the sensor ar-
ray. Furthermore, we can compute more stable calibration
parameters for a sensor array compared to a state-of-the-art
calibration technique and, hence, need to calibrate the sen-
sors less often.
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Challenges. Using low-cost sensors to monitor pollutants
in ambient air is challenging as (i) measured concentra-
tions are low and often lie at sensors’ sensitivity bound-
aries, because many sensors are primarily designed to sense
higher pollution concentrations, e.g., in the automotive in-
dustry [3]; (ii) environmental conditions—typically temper-
ature and humidity—impact the speed of chemical reactions
and, thus, the sensor output; and (iii) low-cost air quality
sensors often suffer from low selectivity and their response
is affected by a wide range of substances in the air, referred
to as cross-sensitivities. Datasheet information on a sen-
sor’s cross-sensitivities is often scarce. Sensor producers
may list measured cross-sensitivities per interfering pollu-
tant based on laboratory experiments conducted in a certain
fixed setting [4, 5] but more often provide no quantitative
cross-sensitivity evaluation at all [15, 36, 6]. Consequently,
considering only information from datasheets can limit the
sensor performance during deployment. For instance, Eug-
ster and Kling [16] use a methane (CH4) sensor for rural air
monitoring in Alaska. They derive a temperature and hu-
midity correction model from information in the datasheet.
Due to sparse testing at only three different humidity levels,
the appliance of their model is limited to situations with a
relative humidity larger than 40%.

Unless the sensors undergo extensive pre-deployment
testing, using such sensors to monitor air quality is diffi-
cult. Outdoor air composition is complex and can exhibit
notable variations over time, both daily and seasonally. Sen-
sor testing and calibration in a laboratory requires exposing
a sensor to a wide range of artificially created but feasible
gas mixtures. This is labour intensive, requires complicated
setup, e.g., environmental chambers and gas mixtures, and
assumes a very good knowledge of the air composition in the
target environment and cross-sensitivities of the sensor. In
contrast, testing and calibrating sensors in-field leverages ex-
isting high-quality measurement stations deployed outdoors
and, thus, the results are more relevant for an outdoor de-
ployment and no complex setup is needed.

Contributions and road-map. In this paper, we test and
calibrate low-cost sensors in the field by conducting parallel
measurements at a high-quality reference station. By ana-
lyzing obtained data, we can (i) verify whether air pollution
monitoring with a given sensor in a given environment is fea-
sible, (ii) characterize sensor cross-sensitivities and compute
the sensor array, which can optimally monitor the specific
pollutant, and (iii) compute calibration parameters for the
sensors in the system. In this paper we make the following
contributions:

• After introducing our assumptions and models in Sec. 2
and summarizing sensor calibration using multiple least
squares [43] in Sec. 3, Sec. 4 describes our sensor test-
ing methodology to uncover sensor cross-sensitivities.
Given a limited number of references, we design an in-
dicator that allows quantifying the amounts of captured
and uncaptured cross-sensitivities and sensor noise. To
the best of our knowledge, we are the first to provide
detailed in-field characterization of low-cost sensors.
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Figure 1. Relationship between different sets introduced
in the paper.

• Sec. 5 reports the results of using the proposed test-
ing methodology on real data. We use several low-cost
sensors available on the market and previously used by
other researchers [30, 17] to show that our approach al-
lows to conclude on the feasibility of using a sensor in
a given setting. We give positive and negative examples
of sensors used for air quality monitoring in current and
past projects. Furthermore, we leverage the approach
to test and calibrate our urban air quality measurement
system [23] equipped with low-cost cross-sensitive sen-
sors.

2 Assumptions and Models
This section introduces basic terminology and discusses

assumptions and models used throughout the paper.
2.1 Observable Universe

Let Φ be a set of all sensors one can possibly build. Let
R ⊂ Φ be a set of available sensors that accurately measure
some phenomena of interest. That is, a sensor r ∈ R accu-
rately measures a single phenomenon, e.g., ambient temper-
ature. The sensors in R can be used as reference sensors to
test the quality of other sensors, such as low-cost sensors,
measuring the same phenomena.

A time-ordered sequence of discrete measurements m =
{m(t j)} taken by a sensor at times t j for j ∈ {1,2, ...,n}
within a time interval [t1, tn] is referred to as a trace. We
consider a measurement as a point measurement, that is, it
has no duration. The scenario a sensor is used in limits the
number of possible traces of that sensor, e.g., an air qual-
ity sensor reports different measurements in an automotive
industry application than in monitoring outdoor air quality.
Consider some fixed scenario of interest, let Ω and U ⊂ Ω
be sets of corresponding traces produced by the sensors Φ
and R ⊂ Φ respectively. Ω can be understood as the entire
universe of all sensor traces and U as the observable universe
determined by a set of references R, see Fig. 1.
2.2 Low-cost Sensors

Let S ⊂Φ be a set of low-cost sensors under test. We as-
sume no prior knowledge about the sensors. In order to ex-
plain a trace of a low-cost sensor y, we relate it to the traces
of reference sensors in the observable universe U , i.e., we
represent my = {my(t j)} as a function of traces in U and an
unexplained—or residual—trace in Ω \U . If my is solely
representable as an unexplained trace in Ω \U , there is no
possibility to explain measurements of sensor y with refer-
ences in the given scenario. If a trace mx ∈ Ω of a sensor
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Figure 2. Scenarios to quantify the amount of the observ-
able universe U captured by measurements Bz.

x ∈ S can be completely explained with a single reference
trace mr in U , one can compare the readings of sensor x ∈ S
to the response of a corresponding reference sensor r ∈R and
calibrate it if needed.
2.3 Cross-sensitivity

Low-cost sensors show in general a close to linear or
polynomial response to reference traces [4, 5, 35] but typi-
cally suffer from offsets and drifts that result in a substantial
deviation of their trace from a reference trace. In order to
minimize this deviation, the trace mx of a sensor x needs to
be calibrated to a reference trace mr. Calibration is usually
performed by representing the calibrated sensor trace m̂x as a
function cal of the raw trace, i.e., m̂x = cal(mx). An optimal
calibration function cal minimizes some norm of the differ-
ence between the calibrated sensor trace m̂x and the reference
sensor trace mr.

An interesting sensor testing and calibration challenge
arises if the trace of sensor z ∈ S is a function of multiple
traces Bz ⊂ Ω, also known as sensor cross-sensitivities. In
this case, calibrating a cross-sensitive sensor z to a reference
r requires to describe the calibrated trace as a function of
multiple traces, i.e., m̂z = cal(mz,ms1 ,ms2 , ...) given multi-
ple sensors si ∈Φ such that some norm of the difference be-
tween m̂z and mr is minimized. Given an observable universe
U formed by some reference sensors R and a cross-sensitive
sensor z, we distinguish three types of relationship between
U and Bz as illustrated in Fig. 2:
Inclusion: Bz ⊆U . The set of available reference sensors
R can measure all cross-sensitivities of sensor z. Hence, the
sensor response can be fully explained by the set of avail-
able references R, see also sensor x in Fig. 1. Moreover, R
can be used to calibrate the trace of sensor z to any trace in
Bz as is detailed later. In this case, we can unambiguously
conclude on sensor quality and perform best-possible sensor
calibration.
Exclusion: Bz∩U = /0. There is no relation between the
sensor response and the observable universe U . In this case,
the sensor response can not be explained by means of refer-
ence sensors R ∈Ω and hence also not calibrated, see sensor
y in Fig. 1.
Intersection: Bz∩U 6= Bz. The most common case is that
only a part of Bz can be explained by U , see sensor z in Fig. 1.
We refer to Bz∩U as to explained part of z’s response and to
Bz \U as to its unexplained part. The usability of sensor z
in a given scenario depends on whether the explained part of
the trace dominates its unexplained part and sensor noise.

Low-cost gas sensors are often cross-sensitive, because
their small sensing surface area and low power consumption

requirements limit the selectivity [40]. Moreover, environ-
mental parameters, such as ambient temperature and humid-
ity, influence the speed of chemical reactions and, thus, often
affect the sensor response [21]. We assume that a measure-
ment of a cross-sensitive sensor is an additive combination of
different, possibly non-linear effects describing the impact of
different phenomena, e.g., interfering gases or meteorologi-
cal effects [11].
2.4 Sensor Array

Ignoring sensor cross-sensitivity or environmental param-
eters leads to poor sensor calibration. Cross-sensitive sen-
sors are usually augmented with collocated sensors to a set
of sensors M ⊆Φ, called sensor array throughout this paper.
Sensor arrays are used to compensate for cross-sensitivities.
A cross-sensitive sensor z can be calibrated to a reference
sensor r using a multiple regression method, given low-cost
sensors in M that cover all phenomena in Bz. These multiple
regression methods can find the function of pre-processed
and aggregated measurements from sensors in M that mini-
mizes its deviation from a reference r. However, the knowl-
edge of Bz is often incomplete or unknown due to scarce
datasheet information obtained through basic tests conducted
in the laboratory, or there is no information at all. Even if Bz
is known (it might consist of multiple relevant phenomena
[5]), the quality of sensor tests and calibration of sensor z is
limited by the set of available reference sensors R. In this
work, we give answers to the following questions: (i) Given
a cross-sensitive sensor z and references R, how can we iden-
tify cross-sensitivities Bz∩U of sensor z? (ii) How should z
be augmented to a sensor array M when using it in a mea-
surement system to improve the measurement quality? (iii)
If sensor z is sensitive to phenomena not covered by U i.e.,
Bz ∩U 6= Bz, can z still be reasonably calibrated and used
in a given scenario? Since the list of cross-sensitivities is
typically long, Bz ∩U 6= Bz presents a common case when
dealing with gas sensors.
2.5 Test Deployment Conditions

Testing a cross-sensitive sensor z in a laboratory requires
simulating common deployment conditions and varying con-
centrations of every substance in Bz. This is expensive, time
and labour-intensive if the list of sensor cross-sensitivities is
long. For instance, the datasheet of the Alphasense NO2−B4
sensor [5] lists 11 possible cross-sensitivities, whereof at
least four can have a considerable impact on the sensor re-
sponse depending on the scenario. In contrast, in-field sensor
calibration with parallel measurements with reference sen-
sors R is an alternative and gives the advantage that sensor
packaging and deployment conditions are similar to those of
the target deployment and environment. The latter is crucial
when testing and calibrating low-cost sensors, which often
measure at their sensitivity boundaries. In this work, we as-
sume that the data collected for sensor testing and calibration
is gathered under similar conditions as on the target deploy-
ment.

3 Sensor Calibration
Sensor calibration is necessary to maintain sensor data

quality. Since the sensor response can be affected by mul-
tiple factors, a large body of work tackles the task to com-
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pensate for these factors. This section recapitulates sensor
calibration based on multiple least-squares [43]. Further, we
discuss an application example for a cross-sensitive gas sen-
sor.
3.1 Ordinary Least-Squares

Regression analysis is often used to calibrate sensor mea-
surements according to a reference trace [8, 18]. The com-
mon approach is to calibrate a raw sensor measurement m(t)
at time t to a given reference sample mr(t) such that

mr(t) = β0 +β1 ·m(t)+ ε(t), (1)

where β0 and β1 are calibration parameters describing inter-
cept and slope of a calibration line, and ε is a regression error
component with zero mean. Ordinary Least Squares (OLS)
regression is typically used to compute estimates of the cal-
ibration parameters β̂0 and β̂1. A raw sensor measurement
m(t) can then be converted to its calibrated version m̂(t) as
follows

m̂(t) = β̂0 + β̂1 ·m(t). (2)

3.2 Multiple Least-Squares
The measurements of cross-sensitive sensors are aggre-

gated measurements of multiple phenomena. Consequently,
the measurements correlate poorly to measurements of a
single reference. Using the one-dimensional regression
model described above to calibrate cross-sensitive sensors
leads to poor calibration accuracy. The standard solution—
also known as multiple regression [43]—is to include ad-
ditional regressors ml ∈ M, l ∈ {1,2, ...,k} into the model.
The goal of multiple regression is to find coefficients βi,
i ∈ {0,1, ...,k} of the linear combination of different sensor
measurements and compositions thereof ml(t) that best fits a
reference measurement mr(t) as follows

mr(t) = β0 +β1 ·m1(t)+ ...+βk ·mk(t)+ ε(t) (3)

and accordingly in matrix form

mr = M ·βββ+ εεε, (4)

where mmmr ∈ Rn×1, M ∈ Rn×(k+1), βββ ∈ R(k+1)×1, εεε ∈ Rn×1

and n is the number of samples at times t j, j ∈ {1,2, ...,n}.
The estimates of the regression parameters β̂ββ ∈ R(k+1)×1 are
calculated by multiple least-squares (MLS) [43] and the set
of raw sensor traces M is calibrated by applying

m̂ = M · β̂ββ. (5)

Calibration quality. The goal of least-squares based regres-
sions is to minimize some norm of the regression error εεε with

εεε = m̂−mr. (6)

We use the root-mean-square error (RMSE) between mr and
m̂ to evaluate calibration accuracy. RMSE is a standard met-
ric [34, 8, 13, 14] to quantify calibration quality and is com-
puted as follows

RMSE(m̂,mr) =

(
1
n

n

∑
j=1

(m̂(t j)−mr(t j))
2

) 1
2

. (7)

(a) NABEL air quality measurement
station.

(b) Air-inlets of the NABEL mea-
surement station and our sensor test-
ing box.

Figure 3. Sensor box deployment at the NABEL mea-
surement station.
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Figure 4. Ordinary least-squares calibrated m = NO∗2
measurements and r =NO2 reference measurements over
time. The calibrated measurements do not correlate to
the reference.

3.3 Application Example: NO2 Sensor
When calibrating a cross-sensitive sensor, OLS is usually

not suited. For instance, when calibrating a nitrogen dioxide
(NO2) sensor from AlphaSense [5], we use OLS to calcu-
late the calibration parameters based on a training dataset
of two weeks gathered in February 2014. As reference we
use NO2 measurements from a static, high-quality NABEL
reference station (see Fig. 3) in an urban area, where our
sensors are installed on the roof of the station to ensure col-
located measurements. The outcome of the calibration for
a test dataset of two weeks during March 2014 is presented
in Fig. 4, which shows the calibrated measurements and the
corresponding NO2 reference over time. The calibrated mea-
surements remain nearly constant over the whole calibration
period. Due to sensor cross-sensitivities there is no correla-
tion between uncalibrated sensor measurements and the ref-
erence. As a result the slope of the calibration line has a
strong bias towards zero and the overall RMSE of the cali-
bration is 12.4 ppb.

In order to improve the calibration quality, we apply
MLS on measurements from multiple sensors M, measur-
ing phenomena to which our sensor to be calibrated is cross-
sensitive to. However, the calibration quality heavily de-
pends on the choice of the sensors in M. We choose a sensor
array consisting of M = {NO∗2,H

∗,T ∗}, where NO∗2, H∗ and
T ∗ are low-cost nitrogen dioxide, humidity and temperature
sensors. In the reminder of this paper, we denote all low-
cost sensors that need calibration with an asterisk (∗). The
grey line in Fig. 5 shows the calibration outcome of MLS
during the same two weeks in March. The calibrated mea-
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Figure 5. Multiple least-squares calibration with differ-
ent sensor arrays M and r = NO2 reference measure-
ments over time. The calibration quality heavily depends
on the choice of traces in M.

surements still correlate poorly to the reference and have a
notable RMSE of 12.8 ppb. The reason for the poor perfor-
mance is the cross-sensitivity of the NO2 sensor to ozone
(O3).

The calibrated measurements when a collocated O3 sen-
sor is added to M, i.e., M = {NO∗2,O

∗
3,H

∗,T ∗}, is plotted
in Fig. 5. The calibration quality is improved significantly.
There is a clear correlation between calibrated measure-
ments and reference and an almost 3 times smaller RMSE of
4.6 ppb. We conclude that MLS is able to calibrate a cross-
sensitive sensor when augmented with appropriate sensors to
a sensor array M. However, due to scarce or no information
about cross-sensitivities, the set of sensors in M and their re-
spective impact on the measurements of the cross-sensitive
sensor to be calibrated is often unknown.
3.4 Discussion

The example of the low-cost NO2 sensor in Sec. 3.3 em-
phasizes the need of a pre-deployment testing methodology.
The calibration accuracy of a cross-sensitive sensor z is lim-
ited without the thorough knowledge of the phenomena Bz
to which the sensor is sensitive. If a sensor trace is an addi-
tive combination of multiple phenomena, it correlates poorly
to a single reference trace. In order to calibrate the sen-
sor measurements to a reference, the phenomenon of inter-
est needs to be segregated from the measurements. This is
only possible, if all remaining phenomena in the measure-
ments can be compensated for. A sensor may not be sen-
sitive to the same extent on the individual phenomena and
it is possible—depending on the scenario—that some cross-
sensitivities have minor impact on the sensor behaviour. It
is therefore important to identify, which phenomena need to
be measured and their individual impact on the sensor trace
under application-related circumstances.

The sensitivity list of a cross-sensitive sensor allows to
augment it with additional sensors to a sensor array M. Hav-
ing measurements from sensors in array M, which measures
all phenomena in Bz, it is possible to accurately calibrate
the measurements using multiple least-squares to the corre-
sponding reference trace, as described in Sec. 3.2. The fit of
the linear combination in Eq. (3) can then be seen as the seg-
regation of the part in a cross-sensitive sensor trace mz ∈M
that is induced by the phenomenon of interest by compen-
sating for the other measured phenomena and fitting it to a
reference.

4 Testing Methodology
Datasheet information on sensors’ cross-sensitivities and

their dependency on meteorological parameters is often
scarce [16]. Even though all sensors undergo laboratory test-
ing and calibration, test settings only cover a few points in
the sensing range. Given the usually long list of sensor cross-
sensitivities, extensive tests and sensor calibration is highly
time-consuming and is, therefore, hardly possible. To solve
the problem, we propose a novel method that uncovers sen-
sor dependencies under deployment-related conditions. We
ignore any prior knowledge about the sensor, i.e., do not rely
on any information given in the datasheet, and treat the sen-
sor as a black-box. We choose the observable universe U as
a set of all relevant phenomena for a given application.

Our testing methodology consists of three steps depicted
in Fig. 6:
Standardization. All input traces are converted to a stan-
dardized representation with zero mean and unit variance in
order to get scale-invariant sensor traces and thereby scale-
invariant cross-sensitivity factors.
Inverse calibration. Multiple least-squares is used to
regress the standardized measurements from the phenomena
in the observable universe U on the measurements of low-
cost sensor z. The resulting regression parameters give in-
sights about the composition of the sensor measurements,
i.e., identifies cross-sensitivities of the sensor.
Error decomposition. The regression error εεε is used as an
indicator for missing phenomena in U and substantial sensor
noise of z. We distinguish the latter on the frequency charac-
teristics of physical phenomena and, therefore, can decom-
pose the error by applying a low-pass filter.

We explain the three steps in more detail below.
4.1 Standardization

The measurements we use for testing can be any pollutant
concentration, temperature, and relative humidity and, thus,
all these measurements have different scales and units. In
order to get scale-invariant results, all variables need to be
standardized [10], i.e., they need to be centred and have unit
variance. We denote in the reminder of this paper the stan-
dardized form of a vector x ∈ Rn×1 as x = x−µx

σx
, where µx

and σx are mean and standard deviation of x, respectively.
4.2 Inverse Calibration

The primary goal of the testing procedure is to uncover
the explained part Bz ∩U of a low-cost sensor z ∈ S, i.e.,
expose the physical phenomena Bz the sensor is sensitive to
(see Fig. 1). This is achieved by decomposing the sensor
measurements into single phenomena of the observable uni-
verse U . In contrast to calibration, where usually multiple
sensors are regressed on a reference, we reverse the process.
Hence, given collocated measurements z ∈ Rn×1 of sensor z
and references traces U ∈ Rn×|U | of multiple reference sen-
sors in U , the standardized regression equation is

z = U ·βββ+ εεε. (8)

The estimated regression parameters β̂ββ will give insights
about the extent of any cross-sensitivities or dependency on
meteorological effects of sensor z. With that knowledge it
is possible to determine, whether additional sensors need to
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Figure 6. Sensor testing methodology.
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augment z forming a sensor array to accurately measure the
target phenomenon. For instance, whether we need temper-
ature and humidity values to compensate for meteorological
dependencies.
4.3 Error Decomposition

It is possible that a sensor measures a phenomenon not
captured by the observable universe U . In this case, we are
not able to explain a certain part of the sensor trace with U ,
limiting the benefit of using the sensor in the given applica-
tion. Hence, it is important to determine the fraction of the
explained and unexplained parts of z given U .

The unexplained part of z depends on the performance of
the inverse calibration, defined as regression error εεε, i.e., the
root-mean-square error

RMSE(z, û), (9)

where û = U · β̂ββ is the regression estimation solved by MLS.
The larger the RMSE, the larger is the unexplained part of
the sensor measurements.

The contribution of the unexplained part is often two-fold,
(i) the sensor is impacted by physical phenomena, such as
interfering gases, which can not be explained with the cur-
rent universe U , and (ii) the measurements suffer from sensor
noise.

In order to distinguish between these two cases, we ex-
ploit that the underlying phenomena and noise differ in their
frequency representations. Sensor noise is often a high-
frequent signal, whereas physical phenomena show distinct
low-frequent variation patterns. For instance, the concentra-
tions of primary air pollutants usually reach their maxima
during the day and drop in the night [33], which is based
on the increased activity of pollutant sources such as traffic
or industrial plants during daytime. We exploit this daily
periodicity by using it as indicator for any possible miss-
ing phenomena in U , indicated by a substantial low-frequent
part (e.g., with frequency ≥ 1

24h ) in the error εεε induced by
the missing phenomenon. For instance, Fig. 7 shows the
frequency spectrum of O3 reference measurements recorded

during April 2014. We observe substantial frequency com-
ponents at frequencies larger or equal than 1

24h . Conse-
quently, the unexplained part of any sensor that is sensitive
to O3 will contain a notable low-frequent part, if O3 is not in-
cluded in universe U during the inverse calibration step. We
use a low-pass filter to decompose εεε in a low-frequency part
εεεP, which represents uncaptured periodic phenomena, and
in a high-frequent part εεεN , which we treat as the noise com-
ponent of the sensor. For simplicity, we use 1

24h as cut-off
frequency.

To quantify the impact of each error component, we
compute the root-mean-square of a time-series signal. The
RMS(εεεP) ∈ [0,1] serves as a measure for uncaptured phe-
nomena in our model. High RMS(εεεP) indicates that it is
likely that the sensor is cross-sensitive to a phenomenon not
included in U but still related to a relevant phenomenon. By
contrast, high RMS(εεεN) ∈ [0,1] is attributed to high sensor
noise. Finally, the amount that can be explained with U is
measured with RMS(û) ∈ [0,1].

Depending on the decomposed errors, we can draw con-
clusions about the feasibility of deploying the sensor under
test in a given environment. Assuming a sensor z can be fully
explained with reference variables in U and is not affected
by noise, i.e., Bz ∩U = Bz, the regression estimation equals
to the sensor measurements, i.e., û = z. Consequently, both
RMS(εεεP) and RMS(εεεN) are zero and RMS(û) corresponds
to the standard deviation of z, i.e., equals one. We can ex-
pect values close to zero and one respectively for any good
low-cost sensor given an adequate observable universe.

4.4 Sensor Signature
The determined error components RMS(εεεP) and

RMS(εεεN) and the explained part RMS(û) of a sensor z with
a given observable universe U describe a sensor signature.
Based on the sensor signature it is possible to determine
the sensor array that can be used for compensating cross-
sensitivities. If the testing methodology for sensor z is
conducted multiple times with different compositions of
universe U , the universe U that optimizes the sensor signa-
ture, i.e., minimizes RMS(εεεP) and RMS(εεεN) and maximizes
RMS(û), best describes the set of phenomena Bz the sensor
under test is sensitive to. If h ∈ Bz is a phenomenon of
interest, then the necessary sensor array M to measure h is
created by augmenting sensor z with low-cost sensors that
measure phenomena Bz \h.

5 Experimental Evaluation
In this section, we apply our testing methodology to dif-

ferent types of low-cost sensors. In Sec. 5.1 we test three
sensors, which have different sensitivity profiles, i.e., have
different cross-sensitivities to different extents. We ana-
lyze their cross-sensitivities and meteorological dependen-
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Figure 8. Low-frequent error component εP for different
observable universes U and z = {NO∗2} over time. Includ-
ing O3 in U lowers the amplitude of εP, which highlights
the sensor’s cross-sensitivity to O3.

cies and show how collocated measurements of multiple sen-
sors in a sensor array can be used to accurately calibrate the
measurements to references gases. Further, we investigate
the stability of the calibration parameters over time. Finally,
in Sec. 5.2, we present results from two sensors, which are
not suitable for air quality monitoring in our setting. For
these sensors we were not able to explain the sensor mea-
surements with reference variables to an adequate extent.
5.1 Sensor Array Testing and Calibration

Our goal is to use low-cost sensors for monitoring major
pollutants, namely O3, CO and NO2, in an urban environ-
ment. To achieve this goal, we build a measurement sys-
tem consisting of multiple low-cost sensors. In order to find
the optimal sensor array that ensures accurate measurements,
we apply the presented testing methodology. We deploy
three sensors at a station of the Swiss National Air Pollu-
tion Monitoring Network (NABEL) in Duebendorf, Switzer-
land, depicted in Fig. 3. The sensors are an electrochemical-
based NO2 sensor1, a metaloxide-based O3 sensor2 and an
electrochemical-based CO sensor3. The sensors are placed
inside a box, which is mounted on the roof of the station
next to the air inlets of the highly accurate devices. There-
with we ensure collocated measurements of low-cost sensors
and reference devices.

The following evaluations are based on over 9 million
measurement samples gathered during 15 months from Jan-
uary 2014 to March 2015. We use all sensing modalities
measured by the official air quality measurement station as
reference variables to build our observable universe. Further,
we use temperature and humidity reference measurements
to gain insights about the meteorological dependencies of
the low-cost sensors. Because low-cost sensors usually do
not show a completely linear dependency to phenomena, the
samples of all references in U have additionally been in-
cluded in quadratic and cubic form in the regression Eq. (8).
Sensor testing. In order to show the feasibility of our test-
ing methodology, we start with an observable universe U ,
which consists only of the reference corresponding to each
sensor. For example, the universe U = {NO2} is used to

1AlphaSense NO2-B4 [5]
2SGX Sensortech MiCS-OZ-47 O3 [35]
3AlphaSense CO-B4 [4]

initially perform the testing methodology for the low-cost
sensor z = {NO∗2}. The universe is then gradually extended
with further references and the testing methodology repeated
to highlight the impact of adding references to universe U .

Fig. 9(a) shows the evolution of RMS(εεεP), RMS(εεεN) and
RMS(û) for the NO∗2 low-cost sensor, where each set of bars
corresponds to a different U . The values are calculated in
steps of two weeks over the whole measurement period and
the height of the bars and the whiskers indicate the average
and standard deviation respectively over all tests.

We make the following observations:

• The results for the initial U = {NO2} show a remark-
ably larger periodic error RMS(εεεP) and noise compo-
nent RMS(εεεN) than the explained part RMS(û). This
finding points out that the sensor is to a large extent
cross-sensitive to some phenomena beyond NO2 and is
affected by noise.

• The second set of bars shows the results when humidity
and temperature measurements including their squared
and cubed versions are added to U = {NO2,H,T}.
Although we observe an increase of the explained
part of the sensor measurements, the unexplained
low-frequency estimate RMS(εεεP) remains dominant.
Though the sensor is influenced by meteorological ef-
fects, it still is sensitive to other phenomena, which are
not included in U yet.

• Extending the observable universe U =
{NO2,H,T,O3} with O3 modality decreases the
unexplained part of the sensor measurements by
roughly 35% and confirms the sensor’s strong cross-
sensitivity to O3. This result is reflected in Fig. 8,
where we observe a smaller amplitude of εP compared
to the initial universe U = {NO2}.
• We fail to improve the sensor performance with

the addition of CO modality to the universe U =
{NO2,H,T,O3,CO} and, thus, conclude that our NO∗2
sensor is not impacted by a change of CO concentration
in the ambient air.

In contrast to the cross-sensitive NO∗2 sensor, the results of
the O∗3 (Fig. 9(b)) and CO∗ sensor (Fig. 9(c)) are different.
Both sensors are highly sensitive to their target gases and,
hence, the initial U suffices already to explain sensor mea-
surements to a great extent. In fact, only including tempera-
ture and humidity references in the regression lessens the un-
explained part of the error. Introducing additional references
does not improve the outcome of the testing procedure, be-
cause both sensors are not cross-sensitive to any of the tested
interfering gases.

The above findings show that the NO∗2 sensor can be used
to monitor air quality in our setting only if the measurement
system additionally acquires collocated O3 measurements to
compensate for the sensor’s cross-sensitivity to O3. More-
over, all gas sensors (O∗3, NO∗2 and CO∗) depend on mete-
orological conditions and, thus, should be augmented with
temperature and relative humidity sensors to achieve accu-
rate calibration.
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Figure 9. Average root-mean-square value of the periodic (low-frequent) part εP, noise (high-frequent) part εN of the
regression error and the regression estimation û for three low-cost sensors. The x-axis shows the evaluation for different
observable universes U .

Table 1. Comparison of calibration accuracy (mean
RMSE ± standard deviation) between OLS and MLS
and the 75th percentile of the actual pollutant concentra-
tions. MLS outperforms OLS for all three target pollu-
tants.

NO2 [ppb] O3 [ppb] CO [ppm]
OLS 9.45±2.74 4.9±1.68 0.051±0.018
MLS 5.13±1.05 2.8±0.96 0.048±0.019
75th perc. 22.3 30.8 0.338

Sensor array calibration. Our novel testing methodology
allows revealing cross-sensitivities and their extent for every
sensor under test. These results immediately suggest the nec-
essary measurement system augmentation to segregate mu-
tual dependencies between cross-sensitive sensors. In the
next step, the measurement system can be calibrated using
MLS to measure the desired physical phenomena. There-
fore, we construct a sensor array, which features the tested
NO∗2, O∗3 and CO∗ low-cost sensors as well as a temperature
and a relative humidity sensor. In this section, we investigate
the calibration accuracy of this sensor array and compare the
performance of the multiple least-squares (MLS) and ordi-
nary least-squares (OLS) approaches. Measurements from
all five sensors as well as the quadratic form of the samples
are used to build M and calibrate the sensor array to the O3,
CO and NO2 references using MLS4. For the OLS approach
we use the sensor measurements corresponding to the ref-
erence, i.e., the O∗3 sensor measurements are calibrated to
the O3 reference using OLS. The calibration parameters have
been repeatedly trained with data over four weeks and used
to calibrate the consecutive four weeks. The average RMSE
for the OLS and MLS calibration over the whole deployment
period of 15 months is summarized in Table 1. As already
seen in Sec. 3.3, MLS manages to achieve accurate calibra-

4In contrast to the sensor testing, we do not standardize the variables for
calibration.

tion of the cross-sensitive NO∗2 sensor and outperforms the
OLS approach by up to 45%. Further, the sensor array cal-
ibration to O3 and CO references is beneficial as well. Al-
though both sensors have no significant cross-sensitivities to
interfering gases, MLS compensates for the meteorological
influences resulting in a lower calibration error compared to
OLS.

These results emphasize the necessity of uncovering the
sensitivity profiles of low-cost sensors by our pre-testing
methodology and then augmenting the measurement system
with appropriate sensors.
Calibration stability. Various works, which use an uni-
variate calibration approach such as OLS [42, 31, 8] or
calibration techniques based on artificial neural networks
(ANN) [20] emphasize that low-cost sensors need frequent
re-calibration, e.g., in the range of one to every four weeks.
We show that if our measurement system is augmented with
appropriate sensors and then calibrated with MLS, it needs
less-frequent re-calibration than reported above.

We compare the calibration error of MLS and OLS
with different re-calibration frequencies over a period of 12
months. We calculate the regression parameters for both
techniques using a training dataset of four weeks. The re-
sulting parameters are then used to calibrate and evaluate a
testing dataset between the end of the current training dataset
and the end of the consecutive one. The individual training
intervals are uniformly spread over a period of 12 months,
i.e., a calibration frequency of four re-calculates the calibra-
tion parameters every three months. The procedure is per-
formed 12 times for each re-calibration frequency setting,
where each time the start of the initial training dataset is in-
creased by one week starting at January 10th 2014. Fig. 10
shows the average RMSE for the MLS and OLS calibration
to NO2, O3 and CO references. We observe a decreasing er-
ror with an increasing calibration frequency for all three ref-
erences and both techniques. As shown before, OLS is not
suited to calibrate the cross-sensitive NO∗2 sensor and conse-
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Figure 10. Average RMSE over 12 months with different calibration frequencies of multiple least-squares and ordinary
least-squares. Calibrating a sensor array with multiple least-squares needs less frequent re-calibration than ordinary
least-squares.

quently MLS clearly outperforms OLS for all calibration fre-
quency settings in Fig. 10(a). Of more interest are the results
of the sensor array calibration to O3 and CO references. In
Fig. 10(b) we reveal a similar error for both MLS and OLS
when the calibration to the O3 reference is only performed
once at the beginning of the year. However, already cali-
brating twice during 12 months using MLS achieves a lower
average RMSE compared to the case when OLS is used to
calibrate four times in the same period. Further, calibrating
four times during 12 months using MLS always outperforms
OLS. We reveal a different behaviour when calibrating to
the CO reference. For both techniques the average error in-
creases when calibrating twice during 12 months. The reason
for this behaviour are unstable regression parameters calcu-
lated during summer. However, OLS is never able to out-
perform MLS. It is necessary to re-calibrate more than four
times using OLS in order to achieve the same performance
when MLS is used to calibrate three times.

In conclusion, we can see that calibrating our sensor array
with multiple least-squares needs less frequent re-calibration
to achieve the same performance when compared to the
state-of-the art ordinary least-squares based calibration.

5.2 Unqualified Sensors
Low-cost sensors available on the market may fail under

certain application conditions. Fig. 11 shows test results
for two sensors that can not be used to monitor air quality
in our setting. The Air quality sensor [15] from Shenzhen
Dovelet Sensors Technology is a metaloxide sensor, which
is—according to its datasheet—sensitive to a long list of pol-
lutants even at low concentrations. Unfortunately, no infor-
mation about the extent of each sensitivity is provided. The
Particle sensor [36] from Shinyei is a sensor that measures
the concentration of particle matter, i.e., dust particles with
diameter larger than 1µm (PM1).

In Fig. 11, we observe for both sensors and each observ-
able universe that the error components dominate and the ex-
plained part RMS(ûuu) does not exceed values above 0.6. Be-
sides temperature and humidity references we used all pol-
lutants measured by the static measurement station to con-
struct the universe for testing the Air quality sensor. We ob-
serve that the sensor is sensitive to meteorological influences
but not to any pollutants, which are helpful to explain sen-
sor measurements. We suspect that reasons for the negative

result might be the sensors’ low accuracy and its design for
higher pollution concentration.

On the contrary, even though the measurements of the
Particle sensor can be partly explained with PM1, temper-
ature and humidity, it has still a remarkable periodic error
component with a RMS(εεεP)≈ 0.65. The result indicates that
the sensor is impacted by a phenomenon that we failed to
identify. The sensor may be useful to measure PM1 if one
can find and compensate for that phenomenon in question.

6 Related Work
This section summarizes existing work on sensor selectiv-

ity, testing and calibration. We list techniques that are often
used on cross-sensitive sensors to split and filter measure-
ments, and discuss how this work advances state-of-the-art.

6.1 Testing Cross-Sensitive Sensors
Sensors are traditionally tested in a fully controlled en-

vironment in a laboratory [27, 24, 44]. This type of testing
allows for (i) fast sensor characterization (ii) for a given in-
terval of interest and (iii) under controlled value changes of a
few parameters of interest (e.g., temperature and humidity),
but fixed values for all other parameters (e.g., interfering pol-
lutants) [22, 39].

Martin et al. [24] and Vaughn et al. [44] characterize the
response of various air quality sensors by exposing them to
different target gas concentrations under a limited number of
ambient temperature and humidity settings. Although both
works are able to uncover cross-sensitivities of their sensors
under test, they are not able to guarantee that the list of cross-
sensitivities is complete and, hence, that the sensor performs
well under deployment conditions.

Morsi [27] conducts testing with the same CH4 sensor
used by Eugster and Kling [16] under laboratory conditions.
Morsi uncovers various sensor cross-sensitivities—in par-
ticular to CO2—which are not mentioned in the datasheet.
These sensor cross-sensitivities are however not affecting the
sensor behaviour under the specific deployment conditions in
[16].

The examples above motivate the need of testing a spe-
cific sensor on its feasibility in a given scenario. We need to
uncover the sensor’s sensitivity, environmental dependency
and operating range and test whether these match applica-
tion requirements. Consequently, latest works on air quality
monitoring favour in-field sensor testing against reference
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Figure 11. Average root-mean-square value of the periodic (low-frequent) part εεεP, noise (high-frequent) part εεεN of the
regression error and the regression estimation û for two unqualified low-cost sensors. The x-axis shows the evaluation
for different observable universes U .

sensors over laboratory tests [37, 41, 30]. In-field sensor
testing allows sensor evaluation at a wide range of varying
environmental conditions and pollutant concentrations under
deployment conditions.

Spinelle et al. [37] test different low-cost sensors with
collocated measurements at an official reference station by
applying MLS. They use sensor and additional reference
measurements as regressors to regress the targeted reference
trace. They infer sensor feasibility from the coefficient of de-
termination (R2) of the regression. However, they do not in-
vestigate the reasons for low R2 values. Our testing method-
ology finds all sensor cross-sensitivities given a set of ref-
erence measurements and clearly indicates if the sensor is
cross-sensitive to phenomena, which are not included in the
reference traces.

Traversa et al. [41] build their own metaloxide gas sen-
sor and use in-field testing to show preliminary feasibility of
their sensor for air quality monitoring.

Piedrahita et al. [30] test various low-cost gas sensors us-
ing measurements collected in a laboratory and collocated to
an official air monitoring system. They were able to detect
different sensor responses between tests during winter and
summer and point out the advantages of in-field testing over
laboratory testing. Although they use a multiple regression
approach, they only consider temperature and humidity and
neglect any possible cross-sensitivities to pollutants.

This paper advocates in-field sensor evaluation at refer-
ence stations located at the deployment site or featuring close
to deployment environmental conditions and air composi-
tion. We use multiple least-squares (MLS)5 to decide on
sensor qualification for the environment of interest. Further,
we draw conclusions about the unexplained part of the sen-
sor measurements by leveraging frequency characteristics of
physical phenomena.

5Multiple least-squares is sometimes referred to as multivariable least-
squares or multivariate least-squares in the related literature.

6.2 Calibrating Cross-Sensitive Sensors
Low-cost sensors usually suffer from substantial devia-

tion when compared to highly accurate references. In or-
der to minimize this deviation sensors need to be calibrated.
Under the assumption that there is a linear relationship be-
tween sensor and reference measurements a widely used ap-
proach is to apply univariate linear regression techniques,
such as OLS [18]. These techniques, however, only per-
form well if the low-cost sensor is highly selective to the
target gas. If the sensor is affected by cross-sensitivities
to interfering gases or depends on meteorological condi-
tions a multiple model should be used instead [11]. These
models, however, require collocated measurements of addi-
tional sensors—often referred to as sensor array—to com-
pensate for sensor cross-sensitivities. Popular approaches
to calibrate a sensor array to reference measurements can
be classified into multiple linear regression techniques, such
as MLS [20, 28, 47, 9, 43], and artificial neural networks
(ANN) based techniques [46, 45, 38, 12, 32]. Calibration
can either be conducted in a laboratory setup or in-field un-
der deployment related conditions.
Multiple regression. Kamionka et al. [20] simulate typical
urban air compositions, e.g., automotive traffic pollution, in
a laboratory setup and apply a multiple regression approach
to calibrate a metaloxide sensor. Although the calibration
performs good, the results are not representative for outdoor
applications. This is a common problem with laboratory cal-
ibration approaches due to a complex urban air composition.
Consequently, a large body of work tackles the problem of
calibrating sensors under real application conditions during
deployment.

Morsi [28] uses MLS to calibrate gas sensor readings
for meteorological effects with collocated measurements of
temperature, humidity and wind speed. Due to a possible
non-linear response to the meteorological effects, Morsi also
includes quadratic values of the samples in the regression
equation.

Zhang and Wang [47] use a sensor array consisting of
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eight different gas sensors to derive the quality of peaches.
The sensor array is monitoring the air in a storage. They
apply MLS to calibrate the sensor array on a set of quality
characteristics including sugar content and pH.

Bayer et al. [9] derive a large feature set of spectral char-
acteristics of soil using spectroscopy and apply a multiple re-
gression approach to calibrate the feature set on typical soil
constituents such as organic carbon or iron oxides. The pre-
sented problem is tightly linked to sensor cross-sensitivities,
because the derived spectral features usually overlap and are
influenced by a variety of physical soil properties.
Artificial Neural Networks. The increasing popularity of
ANNs in the last few years is responsible for a large body
of work that tackles the challenge to calibrate cross-sensitive
sensors using different types of ANNs. Calibration based
on back-propagation ANNs [46, 45] and multilayer percep-
trons [38, 32] successfully solve the cross-sensitivity issue
and accurately calibrate sensor arrays. Hence, it is possible
to use ANNs instead of MLS. However, the link between
sensor calibration and the inverse calibration used for our
testing methodology is easier to interpret with MLS.
7 Conclusions

Nowadays, low-cost air quality sensors are integrated
in an increasing number of measurement platforms for air
quality monitoring. Calibrating these sensors to reference
measurements is however challenging. These sensors typi-
cally suffer from cross-sensitivities, poor stability and sen-
sor noise. Information about these limiting effects is often
not provided by the manufacturers. Even if the information
is given in a datasheet, it is often scarce and reflects sensor
performance under laboratory conditions. Neglecting sensor
cross-sensitivities and deployment settings usually results in
poor sensor performance, frequent calibration necessity and
calibration failures. This arises the need for pre-deployment
sensor testing under application conditions.

In this work, we present an in-field sensor testing and aug-
mentation methodology and calibration for low-cost possi-
bly cross-sensitive sensors. Our novel algorithm is based on
multiple least-squares and uses collocated measurements of
low-cost sensors and various reference sensors to quantify
the amount of captured and uncaptured cross-sensitivities,
and substantial sensor noise. With the obtained testing re-
sults we are able (i) to conclude about the usability of a given
sensor under test in the given setting, (ii) identify fundamen-
tal cross-sensitivities and compute the sensor array, which
can optimally measure a specific pollutant and (iii) compute
calibration parameters that provide accurate measurements
with long-term stability. We extensively evaluate our algo-
rithm with various low-cost sensors using a dataset of 9 mil-
lion sensor measurements and show the improved accuracy
and long-term parameter stability when calibrating an aug-
mented sensor array to reference measurements. We believe
the proposed algorithm can be an essential step in the de-
sign of measurement platforms with low-cost cross-sensitive
sensors.
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