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Abstract
The last decade has seen a growing interest in air quality

monitoring using networks of wireless low-cost sensor
platforms. One of the unifying characteristics of chemical
sensors typically used in real-world deployments is their
slow response time. While the impact of sensor dynamics
can largely be neglected when considering static scenarios,
in mobile applications chemical sensor measurements should
not be considered as point measurements (i.e. instantaneous
in space and time). In this paper, we study the impact
of sensor dynamics on measurement accuracy and locality
through systematic experiments in the controlled environ-
ment of a wind tunnel. We then propose two methods for
dealing with this problem: (i) reducing the effect of the
sensor’s slow dynamics by using an open active sampler,
and (ii) estimating the underlying true signal using a sensor
model and a deconvolution technique. We consider two
performance metrics for evaluation: localization accuracy
of specific field features and root mean squared error in
field estimation. Finally, we show that the deconvolution
technique results in consistent performance improvement for
all the considered scenarios, and for both metrics, while the
active sniffer design considered provides an advantage only
for feature localization, particularly for the highest sensor
movement speed.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-

tributed Systems—Distributed applications; C.3 [Special-
Purpose and Application-Based Systems]: Real-time and
embedded systems

General Terms
Data processing, Experimentation, Design

Keywords
Mobile Wireless Sensor Networks, Air Quality Monitor-

ing, Chemical Sensors

1 Introduction
In 2014, the World Health Organization singled out air

pollution as the current largest environmental health risk,
with more than 7 million deaths related to air pollution
recorded in 2012 alone [31]. This number doubled previous
estimates, and was justified by progress in understanding
diseases caused by air pollution, but also by improved
estimations of human exposure to pollution through the use
of new measurement technologies.

Our ability to measure and predict air quality parameters
at a spatial resolution relevant for human health is, however,
still very limited. Most of the information we currently
get on the state of air pollution comes from networks of
large stationary monitoring stations. The measurement
equipment employed in these networks delivers highly
accurate data, but is typically very expensive, leading to a
prohibitively high price for any significant scale-up. The
resulting monitoring networks are very sparse (e.g., the
Swiss National Air Pollution Monitoring Network - NABEL
- uses a total of 16 stations for the whole country).

The low resolution of traditional monitoring networks
limits our ability to capture the spatial heterogeneity of
the air pollution field. This is particularly significant
for urban settings, where the locality of emission sources
(e.g., industries, traffic) and the specific urban landscape
(e.g., street canyons, green areas etc.) lead to highly
heterogeneous concentration levels.

Wireless Sensor Networks (WSNs) hold the potential
to increase the currently achievable spatial density of
measurements, and, over the past decade, there has been a
growing interest in the development and deployment of such
networks that use low-cost air quality sensors. While there
are a few examples of static network deployments [5, 6],
most projects have targeted hybrid (i.e. a mix of static and
mobile sensor nodes), or fully mobile deployments. The
main reason for choosing mobility stems from economical
reasoning, as the deployment, maintenance and running
costs for covering an entire city with a network of static
nodes would still be impractically high.

In an urban scenario, there is a significant diversity
of potential mobility sources ranging from pedestrians
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and cyclists, to private vehicles and public transportation.
Examples of projects that have used pedestrian mobility are
MESSAGE [17], CitiSense [3], EveryAware [10], AIR [25],
and Common Sense [8]. Bicycles have been used in the
Copenhagen Wheel [28], and Aeroflex [9] projects. Finally,
private cars were considered in the MAQUMON project
[16], and public transportation in Citi-Sense-MOB [4], and
our OpenSense project1, within which two different sets of
assets were developed and deployed on trams in Zurich [14]
and on buses in Lausanne [23].

The growing interest in mobile WSNs for air quality
monitoring is easily apparent from the number of projects
mentioned above. However, the quantity of published results
based on deployment data is still relatively low. While
in the case of ultrafine particles (UFPs), significant results
have been obtained in pollution mapping using mobile
deployment data, by Hasenfratz et al [15], Li et al [19], and
Marjovi et al [23], this has not been the case for gaseous
pollutants. The main reason for this can be found in the
significant challenge of ensuring data quality during the
whole deployment period. Chemical sensors suffer from a
list of problems that the electrical detection devices used for
measuring ultrafine particles, in the aforementioned works,
generally do not. This includes poor sensitivity, combined
with high sensor noise (i.e. low signal-to-noise ratio),
sensor instability requiring frequent re-calibration, and slow
response times, which, in the context of mobility, leads
to signal distortion. Dealing with all of these issues is a
daunting task, and while some success has been achieved for
some of them, there has been no significant work published
so far on mitigating the problem of slow sensor dynamics.
1.1 Chemical Sensors

Technological advances in the field of chemical sensors
have significantly increased the availability of small and
cheap sensors for measuring various gas-phase species.
Nevertheless, the data quality obtained from these sensors
is significantly lower than that of traditional instrumentation
(e.g., mass spectrometers).

The most commonly used chemical sensors for WSNs
applications are either electrochemical or metal-oxide. Both
classes of sensors suffer, although to different degrees, from
temporal drift, cross-sensitivity, and temperature, humidity
or pressure dependence [1, 29]. These issues imply that, even
when factory calibration is available, regular re-calibration
is necessary, in order to ensure a baseline of quality to the
data. This problem needs to be handled through online
calibration algorithms, since frequent manual offline re-
calibration would be impractical for large scale deployments.
Important results in this field are the works of Hasenfratz et
al [13] and Saukh et al [27, 26]. Furthermore, in one of our
previous works [2], we proposed a model-based rendezvous
calibration technique and studied the benefit of increasing
the complexity of the sensor model used by the algorithm.

Beyond calibration, dealing with the slow dynamics of
chemical sensors in a mobile application is a key issue.
Chemical sensors typically have long response times to
stimuli, which can range from a few seconds to multiple

1http://opensense.epfl.ch
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Figure 1. Classification of sampling system designs.

minutes. While for static deployments, this issue can
be largely neglected, for mobile platforms it can induce
significant distortion of the measured signal with respect to
the underlying concentration levels.

Within the field of mobile WSNs, the slow-dynamics
of chemical sensors has, unfortunately, so far gone unad-
dressed: most of the previously mentioned works assume
measurements to be instantaneous. This problem has,
nevertheless, been acknowledged in the field of mobile robot
olfaction. Strategies for mitigating such effect include speed
limitation of the robotic platforms [21], cycling between
movement and stationary measurement behaviors [30], and
the use of specially designed air sampling systems [18, 20,
22].

While the first two strategies cannot generally be consid-
ered in the case of mobile WSNs, which typically leverage
parasitic mobility, the design of sampling systems needs to
be investigated.
1.2 Air Sampling Systems

As represented in Figure 1, sampling system designs can
be broadly classified in the following way:
• Open passive samplers are systems that rely only on

naturally existing air flows and the relative flow induced
by locomotion for transporting the target gas molecules
towards the sensitive surface of the transducer. The
advantage of this design rests in its simplicity and low-
cost. Currently, most of the sensor nodes used in mobile
WSNs applications fall in this category [3, 25, 8, 28,
16].

• Open active samplers, also known as active sniffers,
employ devices like fans or vacuum pumps to draw
and flush air around the sensor for improving its
dynamic response. While this approach has been used
in some projects [10, 15, 4], no results analyzing
the effectiveness of the considered designs has been
published to date.

• Closed active samplers, or closed chamber systems,
are measurement systems in which a sample of air is
drawn into a sensor chamber, usually with a pump.
The chemical sensors are then exposed to this sample
until their output signal stabilizes. Then the sampled
air is expelled, by drawing from a source of clean
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Figure 2. Top view of experimental set-up inside wind
tunnel (not to scale).

air. The sensor is left to recover, after which the
cycle restarts. The advantage of this type of system
is that, differently from the two previous classes of
samplers, it can provide absolute concentration levels.
However, in order to achieve the desired stability
inside the chamber, a practical implementation of this
measurement principle needs to consider non-trivial
aspects like the reactivity of the targeted gasses to
each other, and to contact surfaces inside the chamber
and on the air-flow path. Furthermore, such a system
is relatively more complicated and less light-weight,
making it less attractive for mobile WSNs applications.
Finally, the time needed for a complete measurement
cycle implies a low measurement frequency and leads
to a problem of time budgeting. To the best of our
knowledge, no closed-chamber sensor node designs
currently exist for mobile WSNs applications.

1.3 Our Contribution
In this paper we study the impact of mobility on

chemical sensing accuracy through a rigorous experimental
framework. For this purpose, we make use of a mobile
air sensing platform that we have developed within the
OpenSense project, for a long term real-world deployment
in the city of Lausanne, Switzerland.

We show that the effect of mobility is significant and that
it has to be taken into account when working with chemical
sensors for mobile air quality monitoring. We consider both
passive and active open sampling systems and we propose to
use a deconvolution technique for improving the quality of
our measured signals.

To the best of our knowledge, none of the previous works
has studied in detail this important problem. Moreover,
the proposed solutions have never been evaluated through
rigorous experimental trials.

2 Experimental Set-up
In order to isolate and investigate the effect of mobility

on a chemical sensing platform, we designed a controlled
experimental set-up. This task was in no way trivial, due to
the stochastic nature of gas dispersion, and the difficulty of
getting a ground-truth of the measured field.

We conducted all our experiments inside a wind tunnel,

Figure 3. One of our sensor nodes anchored to the roof
of a Lausanne bus. The gas sampling system used in this
paper is a sub-module of this real-world platform.

O3 sensor

NO2 sensor

CO sensor
CO2 sensor

Power regulator
Air Sampler

Figure 4. Closed (left) and exploded (right) views of
the gas sampler box. In its standard form it is an open
passive sampler.

and used a sensor node design which we have also
extensively tested in a real-world deployment. The sensor
node was attached to a traversing system (i.e. a cartesian
coordinate robot), which allows varying the speed of the
movement in a controlled and repeatable way. As a source
of pollution, we used a smoke machine which created a
chemical plume that our sensor node is able to detect. Figure
2 shows a schematic representation of our experimental set-
up.

2.1 Mobile Sensor Node
The gas sampling system we used in our experiments is

part of a modular mobile air quality monitoring platform
that we developed and deployed on 10 buses of the
Lausanne public transportation company (see Figure 3).
Apart from this system, all the mobile sensor nodes in
our deployment also include an ultrafine particle sampling
module, a localization module, and a data-logging and
wireless communication module. This represents a complete
mobile air quality sensor node design, which measures
carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3),
carbon dioxide (CO2), and particulate matter (PM). These
constitute the most relevant urban air pollution parameters
commonly monitored both in the U.S. [11], and the European
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Figure 5. Sensor node traversing the smoke plume inside
our wind tunnel.

Union [12]. Our mobile sensor network has been operational
and successfully gathering data for more than 2 years to date.

For the purpose of this work we focused only on the gas
sampling module, a self-contained system which measures
the aforementioned gas-phase pollutants, and transmits the
measured values over a CAN bus. The CAN data stream
was logged using a standard desktop workstation which also
controlled the motion of the traversing system, and the wind
speed inside the tunnel.

In its standard form, the gas sampling module is an open
passive sampling system (see Figure 4), but provisions have
been taken in its design for it to be easily upgradeable to both
open-active and closed-active forms (e.g., it is able to power
and control multiple valves, pumps or fans).

Out of the list of available sensors we opted to focus on
the City Technology A3CO carbon monoxide electrochem-
ical sensor [7]. The reason for this choice is based on the
high selectivity and relatively good temporal stability (i.e.
low drift) of this sensor, which permit a better isolation of
the problem targeted in this study.

2.2 Wind Tunnel
We performed our experiments in a boundary layer wind

tunnel, with dimensions of 1.5×2×10 m3, and a maximum
wind speed of 24 m/s. The sensor box was attached with
the sensors facing down (similar to our bus deployment),
onto the tunnel’s traversing system. During our experimental
runs, we performed movements in the cross-wind direction
(only the Y-axis of the traversing system), while locking all
other axes (see Figures 2 and 5).

The working wind-speed for all the experiments pre-
sented in this paper was 0.5 m/s, which was selected through
manual tuning as a tradeoff between the width of the smoke
plume and its stability. We used the whole working length of
the Y-axis which is 1.4 m (smaller than the actual width of
the wind tunnel). In our experiments we varied the velocity
of the traversing system incrementally from 2.5 cm/s, and up
to 10 cm/s.

2.3 Chemical Plume Source
For generating a chemical plume we used the Pea Soup

Wind Tunnel Air Flow Tracer SGS-90 [24], which produces

Position [cm]

Figure 6. Cross-wind plume profile ground-truth estima-
tion. The boxplots of the data acquired at each location
illustrate the local distribution of the gas concentration.
The structure of the plume was kept stable throughout
all experiments.

smoke by heating a white mineral oil flowing through a
diffuser. The quantity of smoke can be controlled by tuning
the oil flow and heating voltage, and was set to be consistent
over our different experiments. A great advantage when
using a smoke machine as plume generator is that this
permits a direct visualization of the shape and stability of
the plume (see Figure 5).

In order to get a good estimation of the plume ground-
truth, we designed and conducted the following experiment:
we commanded the traversing system to move at regularly
spaced positions on the Y-axis, with a 5 cm increment. At
each of these positions 130 s of data were acquired (i.e. more
than the manufacturer stated response time of maximum
40 s). We used a sampling period of 60 ms, which was kept
constant also for the rest of the experimental work presented
in this paper. After each interval of static data acquisition,
the sensor was moved out of the plume (at the zero position),
and left for 120 s to ensure its full recovery, before moving
to the next 5 cm increment. The data was then processed by
clipping the first 40 s of data for each position.

The resulting estimation of the plume profile is repre-
sented through a collection of boxplots in Figure 6. In
this paper we assume the convention of extending boxplot
whiskers up to 1.5 of the interquartile range. The resulting
graph shows that, in spite of an important variability of the
concentration level within the plume, our experimental set-
up is able to maintain its overall structure and position. The
distinct two-peak concentration profile is most probably due
to the fact that, at the considered wind speed, the smoke
diffuser induces a ring-like cross-section to the plume. This
effect can be directly observed in the shape of the smoke in
Figure 5.
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Figure 7. Average measured signal (red) over 10 runs
at different speeds of the traversing system versus the
reference plume profile (black). Dotted lines represent
2σ confidence intervals. The green dashed line marks the
end of each run where the sensor node stops moving. For
visual clarity, we unfold the data recorded at this position
as if the movement would have continued with the same
velocity.

3 Mitigating the Slow Sensor Dynamics
After obtaining a good estimate of the underlying signal,

we proceeded with a series of repeated dynamic scans of
the plume at several constant speeds. Once the sensor node
reached the end of a run, we continued logging the data until
the sensor recovered its baseline reading. We considered
movement speeds of 2.5 cm/s, 5 cm/s and 10 cm/s, and
performed 10 runs for each setting.

The results of this set of experiments are presented in
Figure 7. These clearly show that, even for relatively low
speeds of the sensor node, the signal distortion is significant.
Due to its slow response time, the chemical sensor appears
to perform largely as an integrator of the underlying signal
over time, leading to a larger distortion when the speed of
the node is increased.

The effect can be seen as analogous to motion-blurring
in photography, which happens when the exposure time of
a camera system is long relative to its movement speed. A
typical signal processing approach for reducing the effect of
motion-blurring is through deconvolution.

In the next subsection, we first consider a mechatronic
approach for improving the dynamics of the chemical sensor:
the use of an open active sampler. We then propose a
deconvolution filter in order to estimate the true underlying
signal.

3.1 Active Sniffing
In order to investigate the opportunity of using an active

sniffer, we have developed and evaluated a simple design,
using a small axial fan rated for an air-flow of up to
0.034 m3/min. Since the benefit of active sniffing stems
from the ability to increase air flow around the chemical

wind direction

CO sensor opening

Sniffer enclosure Axial fan 

Flow-directing wedge 

Figure 8. Main steps of active sniffer design: evaluation
of velocity profile of the air flow for the open passive
design (top), and for the active design without (middle)
and with (bottom) flow-directing wedge. Because the
air flow for the passive design is significantly lower, the
maximum of the colormap was decreased, for visibility.

Figure 9. Final design of active sniffer, mounted above
the CO sensor opening.
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Figure 10. A deconvolution procedure convolves a
distorted signal with a filter G(s), in order to obtain an
estimation of the original signal.

sensor, we made use of Computational Fluid Dynamics
(CFD) simulations in the design process, to ensure that this
goal is indeed achieved.

These were performed using an accurate 3D mechanical
model of the sensor box and the SolidWorks Flow Simu-
lation package. We considered a laminar background flow
set to match the one used in the wind tunnel experiments
(i.e. 0.5 m/s), and a simulation model of the axial fan
was produced using the performance curve supplied by its
manufacturer. The main steps of this design process are
presented in Figure 8, which shows the velocity profile in
a vertical plane, defined by the wind direction vector and the
axis of symmetry of the chemical sensor.

Already the first step, of adding a small enclosure with
a fan, significantly increases the air flow in the vicinity of
the chemical sensor. The use of an additional down-pointing
wedge-shaped feature on the interior of the enclosure helps
in directing the flow towards the sensor, further increasing
the air velocity close to its surface. An overview of the final
CAD design of the sniffer can be seen in Figure 9. Based on
this design, we 3D printed a sniffer prototype which we used
in our subsequent experiments.

3.2 Deconvolution
We adopt the following formalism: Let s(t) be the

underlying carbon monoxide concentration level that we
would like to measure, and h(t) the impulse response of the
electrochemical sensor we are using, and S(s) and H(s), their
respective Laplace transforms. The sensor reading r(t) can
then be expressed as:

r(t) = (s∗h)(t)+ ε(t) (1)

where the symbol ∗ denotes the convolution operation, and
ε(t) represents an additive noise signal.

The goal of a deconvolution algorithm is to find a filter
g(t) (G(s) in frequency domain), which applied to the
measured signal, can achieve a good estimation of the
original signal:

ŝ(t) = (g∗ r)(t) (2)

A schematic representation of the principle of deconvolution
is shown in Figure 10.

Depending on the choice of the independent variable for
our signals, the measurement distortion and dencovolution
filter can be studied either through space, or through time.
These approaches are equivalent as long as the sensor node
moves at a constant speed. However, since this is not a valid
hypothesis for real-world mobility, we opt to conduct our
analysis of the signals as functions of time. This allows

Selected threshold

Higher threshold

Figure 11. Threshold segmentation. The number of
resulting features depends on the choice of threshold
level. Our selected level (blue) generates a single feature,
while a higher level of 600 mV (red), would generate two.

us to have a single model of the sensor’s distortion process,
independent of changing velocities.

A popular method for performing deconvolution is
through the use of the Wiener filter, which minimizes the
mean squared error between the estimated and the desired
signals. The Wiener deconvolution filter is most easily
described by using the Fourier transform:

G( f ) =
H∗( f )

|H( f )|2 +1/SNR( f )
(3)

where the superscript ∗ symbol represents complex conjuga-
tion, H( f ) is the Fourier transform of h(t), and SNR( f ) is the
signal-to-noise ratio. In the ideal case, when noise is absent,
the Wiener filter becomes the inverse of H( f ).

In order to use the Wiener filter, a model of the chemical
sensor is required, and also an estimation of the noise present
in the measured signal. We assume a second-order filter
model for the chemical sensor, of the form:

H(s) =
K

(s+ c0)(s+ c1)
(4)

where K is a constant parameter of the model, and c0 and
c1 are its two poles. This model was selected, after multiple
trials with other filter orders, as it provided a good balance
between complexity and data-fitting performance.

We estimate the model parameters through system iden-
tification, by using the reference average plume profile as
system input data, and the set of measured signals over the
dynamic experiments as system output. The amount of noise
present in the measurement process is estimated by using the
sensor readings outside of the plume, where we assume that
the variation of the sensor reading is caused only by additive
noise.

4 Results
In evaluating the performance of our proposed methods

for reducing the effect of the chemical sensor’s slow
dynamics, we have used the following two metrics:
• Feature localization accuracy - This metric quantifies

the ability of the system to estimate the position of
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Figure 12. Signal deconvolution example. The measure-
ment data was gathered using the active sniffer during a
run at 2.5 cm/s. By using the Wiener deconvolution, for
this experiment, the localization accuracy improved from
a value of 27.7 cm to 6.3 cm, while the RMSE dropped
from 0.42 V to 0.20 V.

discrete features in the measured field (e.g., chemical
leaks, pollution hot-spots). It implies a threshold
segmentation of the measured and reference signals, to
define what constitutes a feature (see Figure 11). For
a pair of features from the reference signal, s, and the
estimated signal, ŝ, denoted by their respective areas
(or volumes for a 2D signal) A1 and A2, we define the
feature localization accuracy metric as the Euclidian
distance between the orthogonal projection of their
centers of mass (CoMs) on the space axis (or plane for
a 2D signal). An investigation of feature discrimination
is beyond the purpose of this paper, and consequently
we selected a low threshold of 300 mV that yielded a
single feature, representative of the entire plume.

• Root mean squared error (RMSE) - Differently
from the previous metric, the RMSE quantifies the
system’s ability to estimate the continuous shape of the
underlying signal, and is computed as:

RMSE =

√
1
N ∑

k
(ŝ(k)− s(k))2 (5)

where k represents the discrete space index, and N is the
total number of discrete samples.

We performed the same type of experiments with the
active sniffer as for the passive set-up: sets of 10 runs
for each traversing system movement speed considered. In
order to identify the sensor model, the experimental data
was divided into model training and evaluation sets, through
a leave-one-out cross-validation scheme. Each training
set contained measurement data for all of the considered
speeds. After training all the models, we applied the Wiener
deconvolution to each experimental run, using the model for
which the respective data was not included in its training set.
Figure 12 shows an example of the signal estimation through

Figure 13. Performance evaluation for each of the
considered scenarios: accuracy of feature localization
(top), and root mean squared error (bottom).

deconvolution for one of the experiments.
Finally, using the two metrics, we evaluated the perfor-

mance of the passive and active systems, with and without
the Wiener deconvolution, for each experimental run. The
results we obtained are presented in Figure 13.

The use of the Wiener deconvolution resulted in con-
sistent performance improvement for all the considered
scenarios, and for both metrics. Nevertheless the gain in
RMSE quality drops significantly as the movement speed
increases. We believe that this is mainly due to the lower
signal-to-noise ratio of the more damped signals measured
at higher velocities. The feature localization metric does not
appear to be affected to the same extent.

The effect of the active sniffer is mostly significant
for the feature localization metric, providing a particularly
large improvement for the highest speed we considered.
In fact, when not used in conjunction with the Wiener
deconvolution, no significant advantage can be seen at the
lower speeds. Looking at the root mean squared error, no
advantage was observed for this active sniffer design.
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5 Discussion
The experimental results of this paper show that mobility

has a significant effect on the chemical sensor readings. The
integrator effect of the slow sensor dynamics was clearly
observed at the relatively low movement speeds considered
in our experiments, and would certainly be very severe for
more realistic mobility speeds. In the future, we plan to
get our experimental set-up closer to the mobility conditions
experienced in our real-world deployment. In particular,
we will be experimenting in a significantly larger testing
section of our wind tunnel facilities (2× 4× 20 m3), with
a correspondingly larger traversing system, enabling us to
increase the sensor mobility.

The results we obtained with our basic active sniffer de-
sign were mixed. While it improved the feature localization
accuracy, particularly at the highest speed, its impact on the
RMSE was not significant. Although it did not deliver the
desired performance improvement, experimenting with this
simple sniffer enabled us to gain an insight into the non-
trivial process of its design. Compared with the passive
sampler scenario, the enclosing structure of the sniffer forms
a mechanical barrier, which has an important impact on
air flow properties around it at different wind and motion
speeds (e.g., air turbulence, velocity, density and pressure).
The increased performance of the sniffer for the highest
considered speed suggests a significantly different flow
condition, as the wind angle changes relative to the frame of
the sensor node. In this context, the opportunity of using an
axial fan for the sniffer needs to be reconsidered. The main
advantage of axial fans is their ability to move large volumes
of air, but their actual flow rate depends significantly on the
background flow conditions. The use of centrifugal fans or
positive displacement pumps (e.g., diaphragm pumps) may
be an interesting alternative, as they are much less influenced
by the background flow. However, they typically supply a
significantly lower air throughput.

One of the future research directions we are pursuing is
to improve the design of both the shape of the sniffer and
its actuation in order to maximize its benefits. We believe
that this effort is worthwhile, considering the fact that the
ability to produce a higher quality raw measurement signal
(i.e. with better signal-to-noise ration), will be beneficial to
any deconvolution technique subsequently applied, allowing
for a better signal reconstruction.

Although the Wiener deconvolution consistently pro-
duced positive results, there is still room for improvement.
One direction that would be useful to investigate is the
refinement of the assumed sensor model. One option is
the use of a two phase model, with different dynamical
properties for the rise and recovery behavior of the sensor,
which have been reported to be asymmetrical in previous
works [20].

In this work we used the data measured at different
sensor movement speeds to derive a single linear model
for the distortion of the signal. This is an appropriate
approach as long as the distortion is caused exclusively (or
predominantly) by the sensor dynamics in conjunction with
the platform kinematics. As we plan to expand the range
of considered speeds, going towards urban vehicle levels,

we expect that flow perturbation induced by the platform
mobility will play a larger role. In this context, a single
linear distortion model, independent from platform speed,
will probably not be sufficient, and might need to be replaced
by either a piece-wise linear model or a nonlinear model.

6 Conclusions
Developing the appropriate techniques for mitigating the

effect of slow-dynamics of low-cost chemical sensors is
essential for the real-world success of mobile WSNs for air
quality monitoring.

In this paper we experimentally analyzed the effect of
mobility on readings of a chemical sensor in a controlled
environment. Considering three different speeds for the
mobile sensor, we showed that the impact of sensor
dynamics is not negligible in the experiments. To increase
the quality of measurements we proposed and studied two
different solutions; (i) using an active sniffing system to
augment the flow on the sensor and decrease the sensor
response time, and (ii) through a deconvolution technique
for reducing the effect of motion blur.

We considered two metrics for evaluation of our proposed
techniques; feature localization accuracy and the RMSE. We
conclude that the deconvolution process results in consistent
performance improvement for all the considered scenarios,
and for both metrics. The effect of the active sniffer is mostly
significant for the feature localization metric, providing a
particularly significant improvement at the highest speed we
considered.
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