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Abstract
We propose WEAVE, a geographical 2D/3D routing pro-

tocol that maintains information on a small number of way-
points and checkpoints for forwarding packets to any des-
tination. Nodes obtain the routing information from par-
tial traces gathered in incoming packets and use a system
of checkpoints along with the segments of routes to weave
end-to-end paths close to the shortest ones. WEAVE does
not generate any control traffic, it is suitable for routing in
both 2D and 3D networks, and does not require any strong
assumption on the underlying network graph such as the Unit
Disk or a Planar Graph. WEAVE compares favorably with
existing protocols in both testbed experiments and simula-
tions.
Categories and Subject Descriptors

C.2.2 [Network protocols]: Routing protocols
General Terms

Design, Measurement, Performance
Keywords

Wireless Sensor Networks, Geographical routing
1 Introduction

The paper concerns geographical routing in large-scale
networks that forward traffic in a multi-hop way and ex-
hibit dynamic behavior—links may go up and down, nodes
may join and leave the network. Good examples are Wire-
less Mesh Networks (WMNs), or Wireless Sensor Networks
(WSNs) with nodes that communicate using various wireless
technologies and know their geographical coordinates (either
2D or 3D).

In such networks, geographical greedy forwarding, in
which a node forwards an incoming packet to the neigh-
bor that is the closest to the destination, presents many ad-
vantages [10, 25]: it scales as O(1) with the network size,

there is no signalling overhead (no need for control traf-
fic) [10], and the route stretch is low [18] (we define the
route stretch as the ratio of a given route to the shortest
path), which is especially important for extending the life-
time of wireless sensor networks. However, it only works
in networks with sufficient density without coverage defects
such as voids, concave regions, or obstacles [1, 24]. Much
research effort resulted in protocols that tried to fix greedy
forwarding and guarantee packet delivery with face routing
based on the assumption of the Unit Disk Graph (UDG) [7]
through Gabriel Graph [11] planarization: Greedy-Face-
Greedy (GFG) [3, 4] and Greedy Perimeter Stateless Rout-
ing (GPSR) [12] (with many other variants GOAFR [16],
GOAFR+ [15], GPVFR [19]). However, Kim et al. [13, 14]
showed that the Planar Graph required for face routing can-
not be established locally. Their Cross-Link Detection Pro-
tocol (CLDP) requires expensive signalling for detecting and
removing crossed edges. GDSTR (Greedy Distributed Span-
ning Tree Routing) was another approach for surrounding
voids or obstacles based on convex hulls [18].

Instead of proposing a workaround in the case of prob-
lems, we adopt a radically different approach based on con-
structing segments of routes with a little stretch and com-
bining them together into end-to-end routes. In this paper,
we propose WEAVE, a geographical 2D/3D routing proto-
col that maintains information on a small number of way-
points and checkpoints for forwarding packets to any des-
tination. Nodes obtain the routing information from par-
tial traces gathered in incoming packets and use a system
of checkpoints along with the segments of routes to weave
end-to-end paths close to the shortest ones. WEAVE does
not generate any control traffic, it is suitable for routing in
both 2D and 3D networks, and does not require any strong
assumptions on the underlying network graph such as the
Unit Disk or a Planar Graph.

Geographical routing becomes increasingly important be-
cause of the advent of large scale deployments of sensors and
things in the future Internet of Things and mobile devices,
for which the knowledge of the location is required in var-
ious services. Many devices already have GPS and even in
the absence of GPS, the location information can be obtained
from relative or virtual positioning based on estimation of the
signal strength.

The contribution of this work is threefold. First, WEAVE
significantly reduces hop stretch in 2D or 3D networks and
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establishes routes with a high probability (cf. Sec. 5). It
can thus replace greedy forwarding in many previously pro-
posed protocols such as GDSTR or GDSTR-3D that guar-
antee packet delivery. Second, we prove our forwarding
scheme loop-free even if nodes only use capped partial traces
(i.e., a few next hops along the optimal route towards a des-
tination) (cf. Sec. 4). Third, we evaluate WEAVE through
measurements on a sensor network testbed in real wireless
conditions (cf. Sec. 5.1) and through simulations for vari-
ous network sizes (cf. Sec. 5.2). The results show that our
protocol only uses a very small volume of routing informa-
tion (O(logN)) and achieves high packet delivery rate (close
to 100%), low routing stretch (1.4) and energy consumption
well distributed over nodes compared to existing protocols.

2 Related work
We have already reviewed the main geographic routing

protocols in the introduction and this section describes other
approaches closely related to WEAVE. De Couto and Mor-
ris defined Intermediate Node Forwarding: they extended
DSDV to forward packets around bad geographic topologies
via intermediate locations [9]. The Terminode project de-
fined the Anchored Geodesic Packet Forwarding based on
a source path method that uses a list of fixed geographical
points called anchors [2]. Packets loosely follow the an-
chored path to reach a destination. Lim et al. developed
Landmark Guided Forwarding (LGF), a protocol that mixes
topological and geographical routing algorithms [20]. Nodes
in LGF only maintain a small amount of topological infor-
mation about their neighbors within a localized area. With
respect to destinations residing in a local area, packets are
forwarded using the shortest path algorithm. For remote
destinations, LGF forwards packets based on loose-source
routing to a geographically determined optimal Landmark
node. The authors showed that LGF is adaptive to unstable
connectivity and scalable to large networks. In our previ-
ous work [22], we proposed an initial scheme based on way-
points to improve the performance of geographic forwarding,
however the proposed protocol was unfeasible: it requires
recording entire packet traces (a trace contains all interme-
diate nodes of a given route) and relies on source routing—
each packet holds the entire route to a chosen waypoint.

Another research area was the extension of 2D protocols
to 3D spaces. Zhou et al. extended the previous 2D geo-
graphical protocols (CLDP/GPSR and GDSTR) to 3D [27].
Virtual Ring Routing (VRR) [6] is a protocol based on over-
lay routing algorithms in Distributed Hash Tables. It es-
tablishes a virtual ring, in which nodes became neighbors
based on their virtual identifiers that are independent of the
geographical positions. A node maintains forwarding en-
tries to its successor and predecessor over underlying multi-
hop physical paths. To reach their destinations, packets are
greedily forwarded towards the node with the closest ID to
the destination. VRR is resistant to network dynamics, but
results in a high hop stretch and message overhead especially
for large-scale networks. Small State and Small Stretch (S4)
aims at large static wireless networks [21]. It is based on a
random set of landmark nodes (beacons). A node maintains
a routing table to all beacons and nodes in a local cluster. S4

provides high delivery ratio and a low hop stretch. However
to operate properly, S4 requires a large number of beacons
that need to be known by all other nodes. Beacons contin-
uously flood the network, which may result in a significant
overhead and concentration of energy consumption.

GDSTR-3D adapts the classic version of the protocol to
the 3D environment and favorably compares with other pro-
tocols that may operate in 3D spaces such as CLDP/GPSR,
GDSTR, VRR [6], and S4 [21] from the point of view of
the performance, route stretch, and memory usage. The
MDT (Multi-hop Delaunay Triangulation) protocol [17] cre-
ates Delaunay Triangulation (DT) graphs and virtual links to
greedily route packets in any n-dimensional space. We com-
pare WEAVE with MDT and GDSTR-3D in the evaluation
section.
3 WEAVE Protocol

This section starts with a high-level overview of the pro-
tocol and corresponding subsections provide more details.
3.1 Protocol Overview

We adopt usual assumptions in geographical routing pro-
tocols: we assume that nodes know their coordinates and
can exchange packets with some neighbors. However, un-
like previous approaches such as face routing, we do not re-
quire any Unit Disk assumptions nor other properties of the
underlying network graph (e.g. Planar Graph). The only
requirement concerns the knowledge of neighboring nodes
with whom a node has symmetrical links. The discovery of
neighbors and symmetrical links of good quality depends on
an underlying metric at the link layer that can be based on
well studied approaches such as ETX [8]. The issue of the
most suitable metric for constructing a symmetric neighbor-
hood is out of the scope of this work.

For simplicity, we present the routing protocol principles
for the simpler 2D case, however generalization to 3D is
straightforward. Thus, we assume that each node lies inside
a finite square address space:

A = [xmin,xmax]⇥ [ymin,ymax] (1)

and knows its geographical position an = (xn,yn), a pair of
coordinates such that xmin  xn  xmax and ymin  yn  ymax.
In the rest of the paper, we denote a node by its address an.

As shown in Figure 1, each node an builds a partition of
the address space, resulting in disjoint subsets P j

n called re-
gions. Farther regions are bigger. Nodes maintain the infor-
mation about one or several waypoints per region. A way-
point will serve as an intermediary node to reach destination
ad in a given region. Nodes choose regions and waypoints
independently so they may be different for each node in the
network.

At the beginning, routing tables are empty and nodes for-
ward packets using greedy forwarding. Every packet keeps a
trace of hl last hops (cf. routing header in Figure 1). A node
receiving the packet can take its source node as the waypoint
for the region of the source node and record its partial route
in the routing entry for the region.

Waypoints stored in the routing tables can then be used to
forward traffic. Each node sending a packet checks whether
it has a waypoint in the same region as the destination. In

90



(aw1
, hopCount)

(ac, hopCount)
partial_route (a1, a2, a3)
timestamp

dest. subset routing info.

…

aw2
: (info. 2)

aw1
: (info. 1)

node an

waypoints
destination node ad

checkpoints

routing info.

routing table for node an

(awaypoint, hopCount)
(acheckpoint, hopCount)
partial_route (a1, a2, a3)
flags

routing header

P 00n P 1n

P 1n

P 2n P 2n
P 3n

P 01n

P 02n P 03n

an

adaw1 aw2

P 03n

ac

Figure 1: Principles of WEAVE

such a case, it stores the waypoint with its partial route in
the packet header. The packet will be then forwarded us-
ing the partial route. Each intermediary node can update the
partial route or change the waypoint if it has a better one.
For instance, node an in Figure 1 sends a packet to desti-
nation ad lying in region P 1

n by using waypoint aw1 and the
routing information about partial route a1,a2,a3 towards aw1 .
Then, the packet follows the partial route and each interme-
diary node can refresh or improve the waypoint or the partial
route, so the packet gets closer to the destination. A node
uses greedy routing as a fall-back when it does not have the
information on a waypoint and a partial route. To improve
efficiency in large-scale networks, we introduce checkpoints
that act as “bread crumbs”. Checkpoints are chosen among
nodes that lie on the border between different regions.

The subsections below present the details of the proto-
col. In the description, we sometimes distinguish between
the learning and working phases: the learning phase stands
for the initial stage of the WEAVE operation when most of
routing tables are empty and nodes use greedy routing to for-
ward packets. The working phase corresponds to the later
stage when routing tables are filled and WEAVE can effi-
ciently forward packets using partial routes. Nevertheless,
there is no distinction between these phases in the proto-
col: WEAVE always uses waypoints if it finds one and never
stops learning by trying to update routing tables looking for
better routes.

3.2 Packet Structure
The header of WEAVE packets contains the source node,

a partial route (used for forwarding) and a partial trace of
the last hl hops (used for learning routes) (cf. Fig. 2). An
intermediate node that forwards a packet can use the partial
trace to fill its routing table. It fills the partial route with
the information from the routing table if available. When
the routing table of a node is empty or it does not contain a
valid waypoint for a given destination, the node leaves the
partial route field empty. Nodes also use checkpoints stored
in packets. We further explain this mechanism in Section
3.8.

Section 5.1 presents a comparison between the WEAVE
header and other protocols. For each protocol, we assume a
3B field to store geographic locations. Note that in WEAVE,
1B fields are sufficient to store the hop ID (cf. Fig. 2), as it
is a local identifier known by direct neighbors of a node.

Waypoint 
position

Hop 
count

Checkpoint 
position

Hop 
count

Hop +1 Hop +2

3B 1B 1B

Partial route - 
forwarding

Partial trace - 
learning

1B3B 1B

Waypoint 
position

Hop 
count

Checkpoint 
position

Hop 
count

Hop -1 Hop -2

3B 1B 1B1B3B 1B

Figure 2: WEAVE packet structure for hl = 2.

3.3 Principles of Packet Forwarding
Algorithm 1 defines the operation of a node that forwards

packets. When the node receives a packet, it first looks up its
routing table for a better waypoint (closer to the destination)
to replace the one included in the packet. If it does not find
such a waypoint, it looks up for a checkpoint present in the
packet to replace the partial route that runs out with a longer
one heading in the same direction. If it is unsuccessful, the
node uses greedy routing to forward the packet towards its
checkpoint, its waypoint, or the destination node. Finally, if
the node still cannot forward the packet, it uses path explo-
ration and backtracking that are detailed later on.

if better waypoint found in routing table then
update the information in the routing header:
(waypoint, checkpoint, partial_route);

else if the same checkpoint found in routing table then
update partial_route in the routing header;

end
if partial_route is not /0 then

next_hop � first node in partial_route;
else if packet has checkpoint then

next_hop � greedy(checkpoint);
else if packet has waypoint then

next_hop � greedy(waypoint);
else

next_hop � greedy(destination);
end
if next_hop is /0 then

pathExploration();
backtracking();

end
Algorithm 1: WEAVE forwarding algorithm

Fig. 3 illustrates the principle of packet forwarding. A
node maintains one or several waypoints as representatives
of regions in the address space. When a node has a packet
to forward to destination ad , it determines which of its way-
points is the closest one to ad . In our example, source as
knows aw1 as the waypoint to reach ad , so it sends the packet
towards aw1 along the stored partial route. Intermediate node
ai1 knows waypoint aw2 as a representative of the region
where the final destination ad lies, and since it is closer to
ad , it changes the packet direction to aw2 . The same opera-
tion happens at intermediate node ai2 , and finally, the packet
reaches the destination.
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Figure 4: Learning partial routes

3.4 Learning Partial Routes
Fig. 4 illustrates the principle of learning partial routes.

When nodes do not have yet sufficient information on way-
points (e.g. at the beginning of their operation), they use
greedy geographical forwarding.

Each packet registers a partial trace r: a list of nodes
limited to the last hl hops. hl is a protocol parameter set
to a small value (e.g. it varies from 3 to 5 in our simula-
tions). A packet also contains counter hc strictly increasing
at every hop alongside the route. Consider an example of a
packet sent from aw1 that reaches as at some point after go-
ing through six intermediate nodes ai, i = 1, . . . ,6. Assume
that hl = 3. The partial trace is (aw1) at a1, (aw1,a1,a2) at
a3, and (a1,a2,a3) at a4. Note that node a3 has deleted aw1
from the trace and added itself, because the trace size is lim-
ited to 3 nodes. as may choose aw1 as a waypoint for the
region in which aw1 lies and stores the trace contained in the
packet. The fact that as receives the packet guarantees that
it can reach aw1, because we only use symmetric links for
packet forwarding: if a node receives a packet from aw1, it
can reach aw1 on the reverse route.

Note that storing only the last hop in the a partial trace can
be insufficient. It is possible that the previous node already

had another waypoint for a given subspace and did not reg-
ister the one a node puts in its routing tables. Storing several
last hops does not introduce significant overhead and greatly
increase routing efficiency (cf. Sec. 5).

3.5 Address Space Partitioning
To manage waypoints, nodes split the address space into

regions and assign waypoints to every region. In 2D, every
node ai applies a quadtree partitioning process Pquadtree to
partition the address space A into a set of disjoint subsets
P j

i :

Pquadtree (A)!

0

BBB@

P 1
i ,P 2

i ,P 3
i

P 01
i ,P 02

i ,P 03
i

...
P 0...0

i

1

CCCA
(2)

These subsets cover the whole address space:
S

j P j
i = A . To

extend our protocol to 3D case, we only need to use octree
partitioning in which subsets P j

i are cubes and add z coordi-
nate to node positions. The partitioning scheme is essential
for forwarding to checkpoints (cf. Sec. 3.8).

At the beginning, each node ai discovers its neighbor-
hood denoted as Nbrhood[ai]—a set of all directly reachable
neighbors—and estimates its neighborhood diameter dl used
as the termination criterion. dl is defined as twice the geo-
graphical distance to the farthest neighbor or • if the neigh-
borhood is empty (the node does not have any neighbor):

dl =

⇢
2 max

a j

��ai,a j
�� , a j 2 Nbrhood [ai]

•, Nbrhood [ai] = /0 (3)

P 3

P 1

P 2

P 0

ai

A

(xl,yl) (xm,yl)

(xm,yl) (xm,ym)

i i

ii

Figure 5: Quadtree address space partitioning

Fig. 5 illustrates the first step of the partitioning process in
which node ai divides A into four regions: P 0

i that contains
node ai and three other regions P 1

i ,P 2
i , and P 3

i . Next, the
node repeats partitioning of P 0

i , if Edge
⇥
P 0

i
⇤
> dl , which

results in P 00
i and P 01

i ,P 02
i ,P 03

i , and so on. The process
continues until Edge

⇥
P 0...0

i
⇤
 dl .

Note that every node has its own view of the address
space: although the symbolic hierarchy is the same, the
physical regions assigned to the Pquadtree (A) hierarchy may
be different for every node ai. Node ai will consider all nodes
outside P 0

i as reachable through waypoints in each region
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P 1
i , P 2

i , P 3
i . Nodes inside P 0

i , will be reachable through way-
points in subregions at the lower level, recursively, e.g. P 01

i ,
P 02

i , P 03
i , and so on.

With this construction, every node builds a scalable rep-
resentation of the geographical address space, has a coarse
grain representation of distant regions, more precise infor-
mation of the regions that are closer, and a fine grain repre-
sentation of its surroundings. Note that this representation
is different from approaches taken by hierarchical protocols
that build a single common global hierarchy for the whole
network.
3.6 Constructing Routing Tables

To forward packets, each node maintains a routing table
containing up to L waypoint routing entries per region—
node ai has to know the waypoint to use for destination ad-
dress ad that lies in a given region P ?

i . When node ai receives
a packet from source as 2 P ?

i with partial trace r, checkpoint
ac, and hop counter hc, it creates a waypoint routing en-
try w = (aw,Hw,hc,rw,ac) containing five fields: waypoint
address aw = as, waypoint metric Hw = |ai, aw|/hc, partial
route rw = r�1, and checkpoint ac described later on.

Metric Hw reflects the “quality” of a waypoint: we want
to keep a set of waypoint entries with the largest Hw, because
in this case, packets cross long distances per hop count. Note
that the shortest path between as and ad computed by OSPF
would have the maximal value of Hw for this pair of nodes.
The metric allows to memorize and route along OSPF-like
paths, which is good, because it improves the routing perfor-
mance, i.e. route stretch is small. We have tested other way-
point metrics such as: min |ai, aw|, max |ai, aw|, no metric
(we just store last L entries). In all cases, we have obtained
a lower reachability ratio and longer routes than for Hw.

Note also that maximizing Hw does not mean that nodes
will suffer from poor performance due to long wireless links
of low quality [23]: in our case, metric Hw is only applied to
routes and not to links—nodes discover their neighbors using
a link layer metric and choose only good quality symmetrical
links.

A node may store several waypoint entries WP ?
i
=

{w1, . . . ,wk}, k  L for each region P ?
i and we have 8w j 2

WP ?
i

: aw j 2 P ?
i . The number of waypoint entries to store

for each region is a protocol parameter L . Each node may
store up to L best waypoints with maximal Hw values and it
discards other potential waypoint entries. Only one entry per
aw may exist in the node routing table. A packet forwarded
more than once by a node can only generate a single entry at
this node the first time it crosses the node, when its hc value
is small and thus Hw is large.
3.7 Details of Packet Forwarding

To forward a packet, a node inserts the address of the best
waypoint routing entry into the packet header and sends it
to the next hop defined in the partial route rw. If there is no
waypoint for a destination, the node uses greedy routing.

Fig. 6 presents the following example. Assume that node
ai receives a packet whose waypoint field is empty and final
destination is ad . Waypoint entry wk is selected from WP ?

i
=

{w1, . . . ,wn} found in the routing table, such that ad 2 P ?
i ,

where P ?
i is unique by construction and 8w j 6= wk 2WP ?

i
:

|aw j ,ad | � |awk ,ad |. This means that node ai optimizes the
choice of a route to ad by selecting among its waypoints the
one that is the closest to the destination.

ai

P 1iP 0i

as aw1 adaw2

aw3

A
ai'

P 1i'P 0i'

as aw1' ad

aw2'

aw3'

i i'

Figure 6: Packet forwarding

Node ai inserts awk into the packet and sends it to the
next hop in rwk . The next forwarding node ai0 may have a
different set of waypoint entries and it applies the same rules
with the difference that it chooses the closest waypoint to ad
belonging to its own P ⇧i0 such that ad 2 P ⇧i0 .

To guarantee loop-free forwarding, node ai0 applies the
waypoint optimization principle—it replaces the waypoint
in the packet with a better one if available: if 9w0l 2WP ⇧i0
such that |awk ,ad |> |aw0l

,ad |, it inserts waypoint aw0l
into the

packet.
The left part of Fig. 6 illustrates the operation of node ai

on the path between source as to destination ad (we assume
hl = 2 hops in this example). A packet sent by source as ar-
rives after some hops in ai. Let us assume that the waypoint
field in the packet header is empty. Node ai first identifies the
region that contains the destination address: ad 2 P 1

i and the
set of waypoint entries associated with P 1

i : w1,w2,w3 at lo-
cations aw1 ,aw2 ,aw3 2 P1

i . Node ai can choose between three
different partial routes rw1 ,rw2 ,rw3 towards three waypoints
aw1 ,aw2 ,aw3 , respectively. Assume that the node chooses
waypoint entry w2, because aw2 is the closest to the destina-
tion: 8wi 6= w2 : |ad ,awi | � |ad ,aw2 |, so it inserts waypoint
entry w2 into the packet and forwards it to ai0 , the next hop
in rw2 . Note that the partial route is valid up to hl = 2 hops.

The right part of Fig. 6 shows what happens next at node
ai0 that has a different set of waypoint entries correspond-
ing to the same region (note that in the example, both nodes
ai and ai0 have the same partitioning of the address space).
Node ai0 chooses w30 = w2, the best one among its waypoint
entries. As the partial route in the packet is still valid, i.e.
ai0 is in the previously selected partial route, ai0 can extend
the route by replacing the waypoint entry in the packet with
its best waypoint w30 . In a similar way as previously, it for-
wards the packet to the next hop defined by this waypoint
entry. Greater hl means that the protocol keeps larger traces,
but because of that, a forwarding node can use its own way-
point entries and waypoint entries stored at hl �1 predeces-
sors, which is good, because a forwarding node has sufficient
information to continue forwarding along a certain trajectory
or change to a new, more efficient one.

We can observe that even if each node only knows some
partial information about paths—partial routes to known
waypoints, successive nodes construct the whole path be-
tween a source and a destination. Also note that each node
keeps the waypoint entries having the largest value of Hw
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metric. As the whole path (as, . . .ad) is a concatenation of
small pieces (partial routes), the waypoint metric computed
at the destination ad : Hw = |as,ad |/h is also large, which
means that the resulting path is close to the shortest one and
the protocol constructs it without the need of any global in-
formation, a graph structure, or a graph optimization algo-
rithm.

3.8 Checkpoint Creation

aw

as ad

a1

(a) Without checkpoints

ac1

aw'ac2

aw

as ad

a2

a1

(b) With checkpoints

Figure 7: Waypoint forwarding

Loop-freeness of the forwarding scheme (cf. Sec. 3.7 and
4) imposes strict conditions on the update of partial routes
and raises a problem of inefficient packet forwarding for
small hl . The reason is twofold. First, each node only records
a small number waypoints in comparison to the large num-
ber of nodes in large regions. Second, every forwarding node
optimizes the packet route by using its closest waypoint to-
wards the destination. Subsequent forwarding nodes do not
necessarily store the same waypoint (too many candidates)
causing path extension impossible. The situation is illus-
trated in an example in Fig. 7a. Node as sends a packet
to ad using aw as its waypoint. However, at a1 the partial
route is finished and subsequent forwarding nodes have to
use greedy forwarding to advance towards aw, which may
lead to a drop at an obstacle. The situation results in a dra-
matic performance loss that we evaluate later on (cf. Fig. 15,
17).

To solve the problem, we have observed that in typical
topologies, the number of nodes at the region edge is small
compared to the region interior. The idea is therefore to
group waypoints on a forwarding node with respect to check-
points (a sort of “bread crumbs” or region entry points) re-
siding at the region edge. If on the forwarding node, the
packet partial route ends, we extend it by borrowing the par-
tial route belonging to another known waypoint on the node
sharing the regional checkpoint with the packet waypoint.
Let us consider the example in Fig. 7b. This time, the packet
contains a regional waypoint checkpoint, so instead of falling
back to greedy forwarding when the partial route expires, the
forwarding node sends the packet to ac1. If a1 has a partial
route to ac1 then uses it, otherwise runs greedy routing to get
there. In both cases, the packet advances in the right direc-
tion, but the information on nodes still scales as O(logN),
because a checkpoint is just a label attached to a waypoint in
the routing table.

Note that due to quadtree partitioning, all nodes resid-
ing together within a certain region share the routing ta-
ble organization for external regions. Using this observa-
tion, we have discovered a local procedure to compute the
checkpoint on a forwarding node for the source of an incom-
ing packet (becoming a waypoint) associated with its cor-
responding region. For this purpose, a packet has a source
checkpoint field (initially set to the source node as) being
part of the routing header. Note that each packet contains
both source checkpoint used for learning and checkpoint
field used for forwarding to borrow partial routes from other
waypoints. The forwarding node finds the corresponding re-
gion of the current checkpoint ac 2 P (c) and the last hop
last hop 2 P (lh) according to the local routing tables. If
size(P (c)) = size(P (lh)), the node updates the packet check-
point with the last hop. The packet now contains a candi-
date waypoint (as) with the associated checkpoint for region
P (c). Due to this procedure, only nodes at the borders of
ever growing (or equally sized) regions update checkpoints.
Other nodes share the same global partitioning at a large
scale and do not modify previously established checkpoints.
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Figure 8: Learning checkpoints

Fig. 8 presents an example process of learning check-
points and storing them in routing tables. First, as sends a
packet to ad . At the beginning, the source checkpoint field
in the routing header is set to as. a1 does not update this
field as the packet does not cross any region. After receiving
the packet, a2 sets as as the waypoint for region R 22 (in this
example, we denote regions with R and keep the same num-
bering scheme for all nodes for simplicity reasons). As the
previous hop lies in another region, a2 sets a1 as the check-
point. Then, between a2 and a3, the packet crosses larger re-
gions R 2 and R 1 so the source checkpoint field is set to a2,
which is valid for every node in R 1. Note that when trans-
mitting the packet between a3 and a4, nodes do not update
the source checkpoint field, because the crossed regions are
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smaller than the ones already crossed. Nodes then update
the source checkpoint field only when crossing the border
between R 0 and R 1 as well as between R 3 and R 0. The
last part of Fig. 8 shows all chosen checkpoints: a9 for nodes
in R 3, a6 for nodes in R 0, a2 for nodes in R 1, and a1 for
nodes in R 21.

Nodes use checkpoints as targets in greedy routing or to
extend partial routes to waypoints. Fig. 7 explains how nodes
use checkpoints in forwarding. In this example, as sends a
packet to ad so it includes waypoint aw, checkpoint ac1, and
partial route raw in the packet header and sends it to the first
node in raw. When the packet reaches a1, the node runs out
of the partial route. We assume that a1 does not have any
information in its routing table to forward the packet to the
waypoint so it uses greedy routing towards ac1 instead of aw.
When the packet arrives in ac1, ac1 clears the checkpoint field
in the header, updates the header with a new partial route,
and sets the checkpoint field to ac2. Upon arriving in a2, the
node runs out of the partial route, but this time a2 has aw0 in
its routing table. As waypoint aw in the packet and waypoint
aw0 in the routing table have the same checkpoint ac2, the
node inserts the partial route to ac2 from the routing table
into the header and forwards the packet. After reaching ac2,
the packet continues its way to waypoint aw and finally to the
destination.

3.9 Path Exploration and Backtracking
When a packet reaches a concave node that does not have

any waypoint to use for forwarding, it uses path exploration
to find a potential route. In path exploration, a node forwards
a packet tagged as exploring to a node that is not closer to the
destination, but is the farthest from the previous hop. Such
forwarding is possible only if the node sending the packet is
still in the packet trace (in our simulations it means 3 or 5
hops). A node removes the exploring tag from a packet, if it
is closer to the destination than the tagging node. It finds a
node with the same waypoint, as the one in the packet, but
with lower hop count, or it finds a waypoint closer to the
destination than the one in the packet. When a node removes
the tag, the packet continues its way based on the waypoint
mechanism.

When none of these conditions are fulfilled, a forward-
ing node uses backtracking to explore other potential routes:
it sends the packet backwards (to the previous node in the
packet trace) tagging it as reverse. Upon receiving a re-
verse packet, a node repeats the selection process of the next
hop by avoiding the node chosen previously as the next hop.
Nodes can send packets backwards until there are no more
nodes in the trace. If a node receives a reverse packet with a
waypoint or a checkpoint from its routing table, it considers
it as invalid and drops it.

Although both mechanisms are quite simple, they com-
plement the main mechanism based on waypoints and check-
points, which leads to achieving very good results presented
in Section 5. The system of checkpoints provides global
leads on paths, while path exploration and backtracking al-
lows to deal with small obstacles and network dynamics,
closing the gap between partial paths.

3.10 Refreshing Routing Information
Finally, we address the issue of dynamic adaptation to

changing topology. In a large-scale network, to deal with
a substantial part of nodes that may join and leave the net-
work, we use route ageing. Each routing entry has an asso-
ciated timestamp that a node takes into account in the choice
of the suitable partial route: the node may prefer slightly
longer, but more reliable partial routes to the partial routes
not refreshed for a long time. Such a refreshing mecha-
nism is sufficient in our case to deal with the network dy-
namics, because a node only stores the information on short
partial routes (3 or 5 next hops) that indicate the direction
of the complete route, so even if some nodes leave or join
the network, the routing entries remain valid. Nodes close to
the change in the network will learn about the modification
through the backtracking mechanism.
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Figure 9: Backtracking
and waypoint refreshment.
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Figure 10: Backtracking and
path exploration

Figure 9 presents this mechanism. Node 1 sends a packet
to 11 using 10 as its waypoint. However, Node 6 goes
down. Nodes use the backtracking mechanism so the packet
is transferred back to Node 5 that deletes waypoint 10 from
its routing table and chooses another one from the same sub-
space (Node 15). Other Nodes 1�4 will soon replace Node
10 in their routing tables due to the ageing process. In Fig.
10, Nodes 4 and 5 do not have any other waypoint or neigh-
bor closer to the destination so Node 4 invokes path explo-
ration to bypass the obstacle and deliver the packet. Note
that such mechanisms are much more efficient than dropping
a packet because reconstructing the routing structure and re-
sending the packet again significantly decrease the delay.

It is possible to replace both path exploration and back-
tracking by one of the face routing protocols (GPSR,
GOAFR+, CLDP, GDSTR, GDSTR-3D). Such a solution
does not influence WEAVE performance (as it is used only
in 1-2% cases) and guarantees packet delivery. However,
GPSR, GOAFR, GOAFR+ require the Planar Graph assump-
tion, while CLDP (only 2D), GDSTR, GDSTR-3D result in
huge protocol overhead for removing crossed edges (CLDP)
or maintaining a global convex hull tree (GDSTR, GDSTR-
3D). Currently, we implement WEAVE with path explo-
ration and backtracking as it achieves a high packet deliv-
ery rate (cf. Sec. 5). Note also that the combination of
face routing and WEAVE will increase overhead as WEAVE
consumes some space in packet headers (cf. Sec. 3.2),
while CLDP, GDSTR, GDSTR-3D send signaling messages
to provide the information on the global topology.
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4 Loop-freeness
For simplicity reasons, we omit the concept of check-

points, which does not change the main conclusions of our
observations.
THEOREM 1. Loop free property for unbounded traces.

In the hl =• case (packet traces are unbounded), the pro-
tocol is loop free, so it always uses finite routes.
PROOF. The number of possible waypoints in a network is
finite, because any node may be considered as a waypoint
and we assume a finite number of nodes. When a node se-
lects a waypoint, all waypoints placed equally distant or far-
ther from the packet destination will not be used. In the case
of unbounded traces, if a node sends a packet to a waypoint,
it will eventually reach it by using the inverse trace towards
the waypoint. Intermediate forwarding nodes may apply
waypoint optimization and each replacement of a waypoint
by a better one to reduce the number of still valid waypoints
by at least 1. The number of possible waypoint replacements
is also finite. This contradicts the condition for obtaining
loops and infinite routes: an infinite number of waypoint re-
placements is necessary to create an infinite route from par-
tial routes of finite length.
THEOREM 2. In the hl < • case, the protocol is also loop
free and it provides finite routes.
PROOF. Let us assume that there is a loop, so there are three
possibilities. First, the waypoint is regularly replaced with a
better one closer to the destination, but then the same argu-
ment as above applies: in this case, the number of legitimate
waypoints is decreasing, which is in contradiction with the
presence of a loop. Second, the path to the current way-
point is extended on the way by a forwarding node. Due
to the fact that forwarding node can only extend the route
if and only if the current hc to the waypoint is lower than
the waypoint hc in the packet, the path cannot be extended
indefinitely. Third, if the path extension to the current way-
point does not exist nor a closer waypoint was found, the
procedure switches back to greedy forwarding, which does
not result in loops.

5 Evaluation
We have chosen greedy routing, MDT, and GDSTR-

3D as reference protocols, because previous evaluations al-
ready showed their good performance in comparison with
other proposed protocols for geographic routing in 3D net-

works such as CLDP/GPSR, GDSTR, AODV, VRR [6], and
S4 [21]. To make our comparisons fair, we use single hop
greedy routing for all geographic protocols. We configured
GDSTR-3D to use two 2D hulls to approximate a 3D hull
(2x2D). We use MDT for both 2D and 3D networks. We
evaluate two variants of WEAVE: with the size of the partial
routes hl = 3 (WEAVE3) and hl = 5 (WEAVE5). In parts of
our evaluations, we show the impact of checkpoints and eval-
uate a version without them (Waypoint3 and Waypoint5). In
sec. 5.8, we compare our solution against RPL [26] to show
the benefits of using geographic routing.

5.1 Experiments on a Testbed
To validate the performance of WEAVE in real world

conditions, we have run experiments on the Senslab testbed
[5] with 256 WSN430 nodes placed in a 3D grid. The
testbed supports both operating systems used in our evalua-
tions (TinyOS and Contiki) and the code required for differ-
ent protocols (GDSTR-3D on TinyOS and Contiki for other
protocols). We have used low transmission power to cre-
ate a topology with multiple hops. For each test, we have
performed at least 10 000 transmissions between a random
source and destination pair with 50B UDP packets.

Figs. 11 and 12 show the packet delivery rate and the
hop stretch during the learning phase. All protocols expe-
rience some packet loss caused by unreliable radio commu-
nication. WEAVE achieves very similar delivery rate and a
significantly lower hop stretch than other protocols. After
the learning phase, nodes send one 50B packet every 15s to
measure the energy consumption. We have measured the en-
ergy consumption of GDSTR-3D and MDT also during the
update of the topology (denoted as GDSTR/D and MDT/D
respectively). WEAVE3, MDT and GDSTR-3D have similar
header sizes (8B/4B difference), so energy consumption for
transmissions is almost the same. Increasing the trace size
to 5 in the WEAVE5 variant, increases the header size and
thus energy consumption, but less than 1%. During topol-
ogy modifications, GDSTR-3D consumes 30% more energy
to send updates to every neighbor in the spanning tree. MDT
requires even more control traffic to discover all DT neigh-
bors.

5.2 Simulations
To evaluate WEAVE for a larger parameter space, we

have run simulations using the following tools:
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ns-3: greedy routing, GDSTR-3D, MDT and WEAVE for
large-scale networks (> 1000 nodes).
Cooja(v.2.6): greedy routing, MDT and WEAVE for small
networks ( 1000 nodes). We have used Sky Motes as the
execution platform with CC2420 2.4 GHz radio and Contiki-
MAC at Layer 2.
TOSSIM(v.2.1): GDSTR-3D for small networks ( 1000
nodes), Micaz Motes with an ideal radio channel as the ex-
ecution platform. The source code comes from the authors
[27].

There are multiple reasons for using three different sim-
ulators. First, ns-3 uses a simplified representation of lower
layers, so we can test the behavior of the protocols in large-
scale networks. Second, through Cooja and TOSSIM, we
study a real protocol stack implementation executed in a con-
trolled simulated environment, but the number of simulated
nodes is highly limited. As GDSTR-3D is implemented on
TinyOS, TOSSIM is required to run the code. Other proto-
cols were implemented in Cooja under Contiki. We argue,
however, that the performance of a routing protocol is only
marginally affected by the type of the operating system and
lower layer protocols.

Unless stated differently, we have used the same packet
loss rate as experienced during test on Senslab Testbed (1%)
in all our simulations. For each set of parameters, we have
randomly generated at least 20 topologies, performed at least
10 000 transmissions between random pairs of nodes and
averaged the results. The hop stretch is only computed for
packets reaching the destination.
5.3 Initial Simulation Comparisons

Figure 14 presents a comparison between data packet
header sizes of tested protocols. We assume 3D coordinates
(x, y, z) for the packet source and destination. WEAVE 3
and WEAVE 5 use 25B and 29B header respectively. The
WEAVE header is only a few bytes larger than the GDSTR-
3D header, while in the forwarding only version, it is even
smaller. MDT has a significantly smaller header size than
other protocols. However, the WEAVE header is the only
overhead introduced by the protocol, while all other proto-
cols (except greedy routing) need a significant amount of
control traffic to fill and maintain routing tables.

We evaluate the packet delivery rate in a network with
800 nodes for different network densities (cf. Fig. 15) in the
stable state after the learning phase. For each network con-

figuration, we have generated at least 10 random networks.
As expected, both GDSTR-3D and MDT achieve 97-99%
for all tested networks. WEAVE achieves 95% delivery rate
for low density networks and almost 100% for networks with
a higher average node degree. The versions without check-
points perform significantly worse, especially in sparse net-
works. Note that in WEAVE, the routing tables are con-
stantly being updated. If a route is not found, it does not
mean that there is no connectivity between two nodes. Re-
sending the same packet, after a short period of time, usually
results in successful delivery. During our simulations, we did
not observe a pair of nodes without connectivity.

Fig. 16 presents the hop stretch (the ratio between the
length of a route for a given protocol and the shortest path)
in the same configuration. For low density networks, both
MDT and GDSTR-3D perform almost twice worse than the
shortest path. By default, GDSTR-3D performs greedy rout-
ing and tries to recover using a spanning tree so the protocol
may go into a local minimum and then look for another route,
which increases the hop stretch. MDT uses its virtual links
to connect a DT neighbor, which creates routes far from op-
timal, especially for sparse networks.

After the learning phase, WEAVE directly uses routes
close to the shortest ones trying to avoid local minima. Re-
moving checkpoints slightly reduces the hop stretch, as only
packets with shorter paths are successfully delivered. Greedy
routing has an almost constant hop stretch.

Next, we evaluate the packet delivery rate for constant
network density (average node degree of 7) for different
network sizes (cf. Fig. 17). GDSTR-3D and MDT main-
tain 98% delivery rate while WEAVE3 slightly degrades to
92% in the largest networks and WEAVE5 keeps its delivery
rate at 97%. The version without checkpoints, once again,
achieves much lower delivery rate, as partial routes are not
enough to deliver all packets, especially in larger networks.
With longer routes, the efficiency of greedy routing drops to
20% for the largest networks. In further experiments, for bet-
ter readability, we present only WEAVE results for the ver-
sion with checkpoints, as they always perform significantly
better.

In large networks, we can observe an important increase
of the hop stretch for GDSTR-3D (cf. Fig. 18), because the
protocol enters local minima more often. The root of the
spanning tree is also farther away, so the recovery process
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various network size.
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takes more time. MDT uses longer virtual links more of-
ten, which also increases the hop stretch. Both versions of
WEAVE obtain much lower hop stretch growth that does not
exceed 1.7 (WEAVE3) and 1.4 (WEAVE5). Greedy routing
results in almost constant hop stretch for all tested networks.

To test the distribution of energy consumption over nodes,
we have measured the number of packets forwarded by each
node (cf. Fig. 19). In WEAVE, each node chooses its way-
points independently, so the distribution is balanced. More-
over, in most cases, waypoints are not reached by packets.
Intermediary nodes keep changing waypoints for better ones
to forward a packet to its final destination. Moreover, check-
points do not tend to attract more traffic than ordinary nodes.
In MDT, the end of virtual links and nodes near obstacles for-
ward much more packets than the others. GDSTR-3D nodes
placed near the tree root also receive significantly more con-
trol and data packets, which can reduce their lifetime.
5.4 Learning Phase

In this section, we evaluate WEAVE during the learn-
ing phase: Fig. 20 presents the delivery rate for the first
1000 packets exchanged in the network (800 nodes, aver-
age node degree of 6). At the beginning, the routing tables
for WEAVE are empty and the both versions of WEAVE ob-
tain more than 90% delivery rate. The result comes from the
path exploration and backtracking mechanisms. Neverthe-
less, their drawback is an increased hop stretch during the
initial phase when exchanging the first few hundred pack-
ets (cf. Fig. 21). Nevertheless, the hop stretch for both
WEAVE versions decreases rapidly while the performance
of GDSTR-3D and MDT remains at the same level (1.8).
5.5 Dynamic Networks

To evaluate the performance in dynamic networks with
node churn, we switch off a given amount of random nodes
(off nodes) and specify the change frequency—50% change
frequency means that for every packet forwarded in the net-
work, there is a 50% probability to turn off one of the work-
ing nodes and turn on one of the nodes that were shutdown.

Fig. 22 presents the packet delivery rate for different
change frequencies. In this scenario, the performance of
GDSTR-3D significantly decreases. Every time a node is
turned on or off, the protocol needs to rebuild its spanning
tree. If a forwarded packet happens to be in the part of the
tree being rebuilt, the packet is dropped to avoid loops. The

same thing happens for MDT: the protocol needs to main-
tain connections between DT neighbors and cannot keep the
communication if some of intermediary nodes are down.
WEAVE does not maintain complete routes so it can deal
even with frequent node churn, which results in an almost
constant packet delivery rate.

Fig. 23 presents the results for a fixed amount of nodes
turned off, fixed frequency, and different network sizes.
Even for a constant frequency, the performance of GDSTR-
3D decreases with the network size. Topology changes, es-
pecially near the tree root, affect a larger part of the network,
which causes more packet losses. MDT virtual links get
longer and easier to break by a shutdown of a random node.
As in the previous scenario, the results for both versions of
WEAVE remain almost unaffected by the network size.

All protocols need to use a hello message mechanism
to discover direct neighbors. Usually, the time interval be-
tween sending those messages needs to be carefully adjusted.
Sending too many of them increases the protocol overhead,
while sending too few, delays the protocol reaction to topol-
ogy changes. However, while it is crucial for GDSTR-3D
and MDT to maintain a valid spanning tree/virtual links,
WEAVE can just update its neighbor table when a node does
not succeed to send a packet, thus, it is not affected by the
hello timer interval.

Fig. 24 illustrates this phenomenon: for given network
dynamics parameters (10% nodes off and 20% frequency),
the performance of GDSTR-3D and MDT decreases for the
increasing hello interval. WEAVE remains unaffected by
the interval, so nodes can choose large hello intervals to re-
duce energy consumption. Note also that with each topology
change, both MDT and GDSTR-3D generate a significant
amount of the control traffic, while WEAVE does not ex-
change any control messages.
5.6 Concave Obstacles

To push routing to the limits, we test several 2D and 3D
networks with carefully placed nodes and large concave ob-
stacles in the middle of the topology. We have tried to intro-
duce a large amount of local minima, so that greedy routing
almost always fails and all protocols need to use their mech-
anisms to recover and deliver packets. We observe sending
packets between any two pairs chosen at random. By de-
fault, GDSTR-3D uses greedy routing that forwards packets
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upon the learning phase.
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the learning phase.
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with 10% nodes off.
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Figure 25: Partial map of a city used in
experiments.

Table 1: Summary of results for networks with obstacles.
Aspect Greedy WEAVE3 WEAVE5 MDT GDSTR-3D

Delivery rate 46% 98% 99% 99% 99%
Hop stretch 1.0 1.06 1.02 1.6 1.7

toward local minima and then tries to recover using a span-
ning tree. It results in longer paths as shown in Fig. 26 for
a chosen source and destination pair. MDT also performs
greedy forwarding between DT neighbors, which can result
in non optimal detours (cf. Fig. 27). On the other hand,
our protocol uses waypoints with the lowest metric, which
creates almost optimal paths (cf. Fig. 28). Table 1 summa-
rizes the results for the scenario. WEAVE delivers almost
100% of packets while having a much lower hop stretch than
GDSTR-3D. When packets under greedy routing arrive at
the destination, they use the optimal route, so the hop stretch
is 1.
5.7 Realistic Geographic Topology

We have generated a 2D topology based on a map of
Grenoble by placing a node in all buildings and adjusting
the distances between them to obtain a fully connected graph
(cf. Fig. 25). The resulting network contains 18144 nodes
with the average node degree of 5. Table 2 presents the
results for all protocols. Even for such a large-scale net-
work, WEAVE achieves a high delivery rate while maintain-
ing very low hop stretch. We have repeated our tests with
some network dynamics (5% nodes off, 50% frequency),
which significantly decreases the GDSTR-3D and MDT per-
formance, while leaving the results of WEAVE almost unaf-

Table 2: Summary of results for the city network.
Aspect Greedy WEAVE3 WEAVE5 MDT GDSTR-3D

Delivery rate 36% 91% 96% 98% 98%
Delivery rate(dynamic) 36% 94% 98% 80% 83%
Packet stretch 1.19 1.7 1.5 1.8 2.4
Packet stretch(dynamic 1.19 1.74 1.6 3.2 3.5
Overhead(per node) 0B 0B 0B 1850B 1600B
Memory used(per node) 0B 800B 1060B 980B 1400B

Table 3: Memory usage of routing tables for different net-
work sizes.

Size(nodes) WEAVE3 WEAVE5 MDT GDSTR-3D RPL

800 83B 99B 96B 112B 25600B
5000 178B 202B 189B 240B 160000B
18144 800B 1060B 980B 1400B 580608B

fected. WEAVE also requires less memory and does not use
any control messages.

5.8 Comparison with Standard Routing
Compared to classical routing protocols, geo-routing re-

quires node locations, which may introduce some additional
overhead, like retrieving or computing coordinates. How-
ever, a standard routing protocol such as RPL uses huge
amounts of memory to store routing tables when address ag-
gregation is infeasible. Table 3 presents memory usage for
different network sizes. Even for relatively small networks
(800 nodes), RPL requires more than 25kB of storage per
node for the routing table. For our biggest tested topology,
WEAVE uses more than 700 times less memory.
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Figure 26: Concave obstacle
- GDSTR-3D

Figure 27: Concave obstacle
- MDT

Figure 28: Concave obstacle
- WEAVE

6 Conclusion
We have presented WEAVE, a geographical routing pro-

tocol for large-scale dynamic multi-hop wireless networks.
Our protocol does not use any control traffic and fills up
routing tables only by observing incoming traffic. Instead of
maintaining the information on whole routes, WEAVE con-
structs them out of partial routes to waypoints. The key ele-
ment of WEAVE is a system of checkpoints used as “bread
crumbs”.

We have compared WEAVE against greedy routing, MDT
[17], and GDSTR-3D [27] through measurements on a sen-
sor network testbed and simulations for various network
sizes. Our results show that WEAVE achieves a high packet
delivery rate, low stretch, and balanced energy consumption.
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