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Abstract
A major share of the electricity consumption in buildings

is caused by the lighting installation. In contrast to other
consumers of electricity, the components for lighting are
distributed over the entire building. Therefore, measuring
the electric energy spent for lighting with the appropriate
level of detail is a very costly endeavor. In order to mitigate
the underlying problem, we developed the LightMon sys-
tem which correlates light switching events obtained from a
Building Control Network (BCN) with power measurements
on the mains distribution level. Combining both sources
of information allows our system to estimate the electricity
consumption for each light individually with an estimation
error below 11.34%. The system adapts automatically by
observing switching events and their effects on the power
consumption. This adaptation occurs automatically within
8 to 14 days during normal building operation - no manual
actions are required during this training phase. In addition
to the above mentioned characteristics, the system can be de-
ployed in most buildings with commercial use. The LightMon
system facilitates comprehensive information gathering on
the electricity consumption of buildings, enabling advanced
energy optimizations.

Categories and Subject Descriptors
[Computer systems organization]: Embedded and

cyber-physical systems—Sensors and actuators

General Terms
MEASUREMENT

Keywords
Building Control Network, Boad Disaggregation, Electric-
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1 Introduction
In the United States (US) as well as in the European Union

(EU), approximately 11% of the total electricity produced
is spent on lighting [7, 9]. In buildings, lighting accounts
for 30% to 49% of total electricity consumption [28]. This
results in significant financial and environmental costs for our
society. However, due to high setup cost, energy efficiency
technologies are often not used although significant savings
could be achieved. Recently developed technologies such as
Solid State Lighting have the potential to reduce the electricity
demand of lighting by a factor of four. In combination with
adaptive lighting systems capable of sensing the occupancy
as well as the current luminance conditions (c.f. [25, 26]) it
becomes possible to achieve optimal lighting conditions at the
lowest possible energy expenditure. However, the adoption
rate for these methods remains low. The key obstacles these
technologies face are firstly the high investments required and
secondly the general lack of knowledge regarding to the vast
saving potentials. Current Building Control Networks (BCN)
like KNX, Dali, EnOcean do not mitigate this blind spot as
those systems typically do not monitor switched loads. The
integration of dedicated electricity meters would increase the
cost of those systems and is therefore often omitted.

LightMon was developed with the consumer-centric aim
of providing deep insights by making detailed information
on the costs of electric lighting easily available. Our system
obtains light switching events from the building control net-
work (BCN) and correlates them with changes in the whole
building’s power consumption. Our LightMon system is
easily deployable in buildings which are already equipped
with a BCN system for controlling the lights. This require-
ment is fulfilled for most new commercial buildings as BCN
simplifies electric wiring and increases the flexibility. By
comparing the whole building power consumption before and
after a switching event, LightMon creates a comprehensive
electricity consumption database stating the power draw for
each light individually. In conjunction with historic switching
events, it becomes possible to calculate the electricity cost
for each light individually, on room level granularity or for
the whole building. During a one year field study, LightMon
estimated the electricity consumption of 69 switched lamps
with an error below 11.34%. LightMon is based on adaptive
and scalable algorithms, which achieve live processing even
on low-power embedded systems.
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Main Challenges
Detecting the correlation between switching events and power
changes with an appropriate level of detail faces the following
main challenges:

1. Cost Pressure: Due to high cost pressure, nodes of a
BCN are kept as simple as possible. Therefore, BCN switch-
ing actuators typically do not contain additional hardware
components for current measurement of the attached loads.
In order to keep a low resource profile, common smart meters
have limited sampling rates typically below 1 Hz [4]. Elec-
tricity meters with higher sampling rates are often specifically
tailored for research purposes [23, 14, 21] and not widely
available in today’s buildings. Electricity meters providing
higher sampling rates would require more processing power
as well as memory, and thus manufacturers omit this func-
tionality.

2. Concurrent Events: The high probability of concur-
rent events and turn-on-transient convolve the effects of indi-
vidual events. Thus, differentiation is not sufficient to handle
conflicting situations. A high number of collisions arises from
the fact that buildings typically share a BCN for all sensors
and actuators. While manual switches are rarely used, passive
infra-red sensors (PIR) trigger switching commands on every
detected movement which causes high numbers of events. In
the building hosting our observed office environment with
5 floors, 10 hallways, and underground parking there is a
probability of 43% for colliding events within a two second
time interval, as shown in Figure 1. This figure shows the
occurrence probability of different inter-event-times as well
as the cumulated density function (CDF). The underlying
excerpt of data was collected over one month during our field
study and includes weekends as well as night times. This
figure implies to use electricity meters supporting high fre-
quency sampling. However, this approach is not sufficient as
the inrush transient of lamps from cold start is significant (c.f.
Sec. 4.4). Therefore collisions could not only be mitigated
by using electricity meters with high sampling frequency.

3. Noise Level: Other electrical appliances obfuscate the
effects of switching events on the whole building power con-
sumption. Most electrical appliances have variable power
consumption based on their current mode of operation. Typ-
ically, those appliances are not connected to the BCN and
thus their mode of operation as well as their power demand
remains unknown. The variability in the power consumption
caused by those devices interferes with effects of switching
events and thus must be handled by LightMon.

Our proposed system copes with those challenges in the
most cost-efficient way. Combining low sampling rate require-
ments on the electricity metering side with plug-in integration
in existing BCN systems, our proposed solution provides
cheap means to obtain key insights in the electricity spent for
electric lighting.

Contributions
In order to address those main challenges, our work provides
the following contributions:

1. We developed simple, adaptive and scalable mecha-
nisms for estimating the effect of every single BCN
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Figure 1: Event distribution observed in office building.

light switching event on the total electricity consump-
tion. Our system handles concurrent switching events
and achieves live-processing capabilities on resource-
constrained hardware.

2. LightMon is easily installable in modern office buildings
by deploying a single-box system which interfaces the
BCN and measures the power consumption on mains
distribution level.

3. We provide a thorough evaluation based on a simulation
as well as a real-world field study in our institute with
23 offices over the duration of one year.

4. We make the entirety of the data collected during our
evaluation publicly available. This dataset collected
during our field study contains the electricity meter read-
ings of two electricity meters, ground truth data for 69
installed lights as well as all BCN switching events that
happened in the building.

Benefits
In the following section we present four use-cases benefitting
from LightMon:

1. Cost visibility: Our system exposes electricity cost of
lighting for single lights, on a room level, or for the whole
building. This way, it becomes possible to identify hot spot
configurations with excessively high electricity consumption
and thus high costs.

2. Lamp selection: Additionally, our system provides
insights into historic usage patterns like usage frequency, the
average switch-on durations, or total daily usage, which are vi-
tal parameters for selecting the most energy- and cost-efficient
lighting technology.

3. Fault detection: Our system enables the automatic de-
tection and localization of faults in the lighting system, such
as broken lamps. This reduces the response time to faults and
enables more efficient scheduling of maintenance operations
by facility managers.

4. Adaptation: LightMon is an important information
source for systems that aim for adaptive behavior. Our system
enables quantifying the saving potentials of strategies that 1)
enhance the energy efficiency of lights, 2) reduce the supply
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of light to spaces where no-one is present, and 3) limit the
over-provisioning of lighting. Furthermore, the information is
useful for implementing demand response (DR). The system
could slightly adapt dimmers when receiving load shedding
requests. If the luminance change is below a certain thresh-
old, the variation would not even be noticed by inhabitants of
the environment. If, for example, nation-wide retailers with
hundreds of stores adapt such a DR schema, LightMon could
be used to easily assess the DR potential.

The remainder of this work is structured as follows: First,
we describe the most important related works in Section 2.
Building upon that, a concise description of our LightMon
system is provided in Section 3 alongside a thorough evalua-
tion in Section 4. Next, we lay out the insights gained from
the application of LightMon in our very institute’s building.
Finally, we supply a conclusion to this paper.

2 Related Works
Electricity metering on a device-level granularity is an im-

portant foundation for optimizing energy efficiency in build-
ings. Having this information allows the collection of detailed
feedback on the amount and originating appliance of all elec-
tricity consumption. According to Darby [10] and Fischer
[15], this kind of user feedback alone causes behavioural
changes which lead to significant electricity savings. These
energy reports can be enriched even further with links to con-
textual information. E.g. by using apportionment schematics
[17, 27], the consumed electricity can be matched with indi-
vidual inhabitants. Fused with contextual information like
user activities [2] or locations of the inhabitants, home elec-
tricity saving recommender systems can be implemented [1].

However, electricity metering on a device-level granular-
ity is challenging. Beginning with the works of Hart, the
research community has explored numerous approaches for
this kind of sensing task. Related works in this area can
be categorized into two main directions: those propagating
(1) the deployment of additional sensors or (2) using load
disaggregation algorithms. When deploying additional sen-
sors, each monitored appliance needs its own sensor unit.
In such a setup, one can either directly measure the current
and voltage of the attached appliance (ACme [19], DeltaFlow
[8]). Alternatively, other indirect effects like electromagnetic
emissions[16], audio signals [12], inhabitants position [29]
or heat can be observed to infer the electricity consumption
of the device under observation (Kim et al. [22]). For some
devices it may be possible to embed energy models directly to
the device firmware for inferring the current power draw for
the current mode of operation [13]. The deployment efforts
of such systems scale linearly with the number of appliances
to observe. In contrast, load disaggregation approaches aim
for a much lower deployment effort [23]. The so-called Non-
Intrusive Appliance Load Monitoring (NILM) relies on a
single electricity meter installed at the mains distribution,
which measures the summarized power of all connected appli-
ances. The resulting power signal is split into its components
using a disaggregation algorithm. As described by Beckel
[5], the design space to implement a NILM algorithm has
three dimensions: (1) power model representation, (2) device
state detection, and (3) model training. Differences in the

Mains ϕ1 

ϕ2 

ϕ3 

BAN 

… 

Usage 
Report 

Actuator 1 

… 

Actuator N 

Live 
Monitor 

events 

LightMon 
other  

Appliances 
 

Figure 2: Integration of our System into an existing building
infrastructure.

exact behavior of present appliances, the amount of power
consumption and the number of observed appliances, require
different trade-offs. To compare different load disaggregation
algorithms, the decent NILMTK [4] benchmarking toolkit
can be used. However, using pure NILM approaches, the dis-
aggregation of low loads or environments with many similar
appliances remains challenging [3].

Therefore, hybrid approaches combine NILM algorithms
with information obtained from easily deployable environ-
mental sensors in order to enhance the disaggregation accu-
racy (c.f. Pathak et. al [24] with audio as information source,
Irwin et. al [18] integrating home automation systems, or
[20, 6] with general on/off events). This information signifi-
cantly reduces the uncertainty on the set of present appliances
or their internal working state and therefore enhances the
accuracy of load disaggregation.

3 Calculating the Energy Demand of Switch-
ing Events

The goal of this work is to describe the means for deter-
mining the electricity consumption of the electric lighting in
office buildings with a high level of detail. Our two-phase
approach relies on the existence of a building control net-
work (BCN) which is used for switching the lights. As those
BCNs are commonly used in modern office buildings, this
requirement is barely a limitation.

The working principle of our system called LightMon is
shown in Figure 2. To determine the electricity demand of
the lights, our system continuously monitors the electricity
consumption of the whole building using electricity meters
installed at sub-distribution boxes. Typically, each building
has one or more sub-distribution boxes per floor. Addition-
ally, our system records all light-switching events that are
exchanged over the BCN. During an unsupervised training
phase, our system correlates switching events observed from
the BCN with the actual electricity consumption obtained
from the electricity meters. This way, the influence of single
switching events on the data collected by the electricity me-
ters can be inferred. During the training phase, all switched
actuators are annotated with their inferred influence on the
various electricity meters installed in the building. As a result,
we obtain a power consumption matrix stating the individual
power draw of each lamp that was switched at least once. We
assume that each light in a building is attached to a BCN
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actuator and that each actuator has a unique address. More
precisely, the BCN switching event is sent to the actuator,
which then connects or disconnects the light from mains. It is
common practice to connect multiple light bulbs to a single
actuator or to switch multiple actuators using a group address.
Therefore even though light bulbs with the same power rating
are used, the load varies significantly for different switched
actuators as a different number of lights is switched. For bet-
ter comprehensibility, we define the term ”switched light” as a
BCN actuator to which one or more light bulbs are connected.

In the reconstruction phase, our system uses this power
consumption matrix in conjunction with a stream of observed
BCN light switching events to reconstruct the share of the
power consumption caused by the lighting. However, this
approach is not limited to whole-building observations. By
selecting the switching events of single rooms or even single
switches, our system calculates the electricity demand for
lighting in much greater detail. For example, we can use our
system to calculate the lighting electricity demand for each
of the 23 offices in our department building independently.

Having given a brief overview over of working principles
of our system, we shall continue by describing the underlying
algorithmic steps in the following paragraphs.

3.1 Definitions and Assumptions
The implementation of our LightMon system is based on

seven core assumptions. These are explained below:
1. We assume the availability of entire building power mea-

surements with a sufficiently high sample rate.

2. If a building is supplied using a three-phase power sup-
ply, we assume the availability of independent power
measurements for each available phase. This assumption
holds for most commercial buildings. In our observed
office environment, independent measurement points for
six phases were available.

3. We assume the usage of a building automation network
to switch lights. Supported switch commands are on, off,
or any level in between (dimmer functionality). Newer
commercially used buildings are equipped with BCN
systems like KNX, EiB or Dali.

4. As our algorithms are executed on embedded sys-
tem hardware, we assume a limited availability of
computation- as well as memory resources. We trade ac-
curacy in favor of simpler algorithms, which still achieve
good results and even run as ”live systems”.

5. We use the heavyweight function as a power model
for our light bulbs. Thus, we assume zero power draw
in ”switch off” mode and a constant power draw if a
particular light is switched on. This model fits well for
LEDs or incandescent lamps. However, CCFL lamps
need a certain warm-up time to reach steady state.

6. If a particular lamp is not operated at maximum bright-
ness level, we assume a linear correlation between cur-
rent brightness level and power consumption (c.f. Roisin
et. al [26]).

7. The residual noise R(t) measured on the power signal is
bounded below a certain threshold (c.f. Section 4.3 for

Table 1: Symbols which are used for modelling the working
principle.

Symbol Description

Event e 3-tuple of (sender, actuator, cmd)

Power pe,i
Influence of e for the actuator i on the total
power p in Watt on the n’th phase ϕn

N Number of independent mains lines in
power supply system of the building

I Total number of switched actuators

Phase ϕn n’th independent mains line for n in 1...N

Time te Timestamp t at which event e occurs

Residual R(t) Power draw of all, non-observable loads
present in the building

State xi(t) Switch state of actuator i at time t

Vector Φe
Phase Effect Vector of event e in Watt
(pe,1, pe,2, . . . pe,N)

T for phase 1...N

Vector ε
Measurement error vector in Watt
(ε1,ε2...εN)

T for phase 1...N

estimates of this threshold).
In addition to these assumptions, Table 1 explains important
symbols required to understand the exact working principle
of our event correlation algorithm.

3.2 Training Phase
In the training phase, we derive the power consumption

matrix from effects of switching events on the power con-
sumption of the building. Depending on the intended use
cases, the training phase could run continuously or only for
predefined time windows. When running continuously, it
becomes possible to detect faults or anomalies in the lighting
system of the building. When scheduled for pre-determined
time windows, it becomes possible to further reduce the com-
putation requirements of our system. As shown in Figure 3,
the training phase consists of five processing steps, which are
described in the following paragraphs.

1. Delay compensation: In order to correlate switching
events with electricity consumption, both data streams must
be synchronized. Due to filtering in the electricity meter,
the measurements of instantaneous electricity consumption
lag behind the occurrence of BCN events by a few seconds.
This static delay depends on the exact hardware configuration
and must be compensated for. To determine the delay, we
extract switching events from the electricity time series (c.f.
[11]). Next, we calculate the average time difference between
switching events observed from the BCN and the correspond-
ing switching events extracted from the electricity time series.
Using our hardware configuration, we observed a maximal
time delay tdelay < 2sec.

2a. Naive handling of conflicting events: If multiple
BCN switching events happen within a small time window,
their respective power consumptions interfere with one an-
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Figure 3: Process steps to calculate the influence of electric switching events on the total electricity demand.

other. Thus, the observed effects on the building’s electricity
consumption cannot directly be assigned to the exact event
which caused the change. We implemented two methods for
handling such situations. The naive approach relies on drop-
ping conflicting events whereas the second method uses a
linear equation system to gain information even from conflict-
ing events. For the naive approach, we define a time window
tdead around each BCN switching event in which no other
event may occur. If multiple events happen within the time
window tdead , all those events are excluded from the training
phase, as their influence cannot be determined unambiguously.
However, this filtering step comes at a cost. If BCN switch-
ing events have a temporal correlation, their influence on the
electricity consumption can never be calculated if filtering
occurs. This occurs if several hallway movement sensors trig-
ger the same light on movement. Furthermore, the maximum
number of BCN switching events which can be processed
is limited by tdead . Especially in large environments with
hundreds or even thousands of actuators and a high number
of switching events, the likelihood of collisions becomes very
high. Thus, to achieve good scalability, the parameter tdead
should be as small as feasible. Yet, tdead cannot get arbitrarily
small. Its minimum size is determined by two factors. First,
it depends on the gradient of electricity consumption change
in case of switching events. Second, if the electricity meter
has a low sampling rate, larger values for tdead are necessary
to acquire a data points before and after the switching event.
Experimental methods to determine optimal values for tdead
are presented in Section 4.
To further minimize the number of excluded events, our sys-
tem uses the current power consumption matrix to check
if multiple events occurring in the same time window tdead
would influence the same electricity metering unit. If the
switching events are known to influence different metering
units and thus different parts of the building, these concurrent
events do not cause statistical uncertainty. Of course, this
optimization only works if the current power consumption
matrix is already populated.
Using the naive conflict handling strategy, the effects of a
BCN switching event on the electricity consumption is cal-
culated as follows: As assume the switched light reacts to
switching commands with a step function, the influence pe,i
of event e and actuator i is:

pe,i = p(te +∆t)− p(te−∆t);∆t = 0.5 tdead

In other words, we subtract the power consumption before
the switching event e from the power consumption after the
switching event. The time span ∆t directly depends on tdead .

In case of switch-off events, we invert pe in order to obtain
positive values for pe. In time frames with high variations
of electricity consumption, pe may become negative. These
values are indicators for invalid measurements and thus fil-
tered. The information content of on- and off-events is not
equal. The inrush of some electricity-saving lights increases
slowly during a warm-up time. Thus, switch-off events are
better for approximating the steady state power draw of these
lights. However, as the switch-on behavior is deterministic,
we calculate the ratio between on- and off-events and use
this information to scale up the on-events (c.f. assumption
5). While it may be possible to use more sophisticated meth-
ods for modeling the inrush, we expect the lamps to run in a
steady state for most of the time.

2b. Enhanced conflict handling using superposition:
A better approach towards conflict handling is imposed by
the particular problem structure. The general idea is using a
linear equation system to describe the superposition of power
demand in case of concurrent events. In detail, the system
works as follows: The total power consumed by the building
is equal to the summarized power draw for lighting plus the
power draw of all other consumers which are switched on:

Ptot(t) =
I

∑
i=1

pe,i ∗ xi(t)+R(t)

By differentiating this term with respect to time t we get the
change term:

d
dt

Ptot(t) =
d
dt
(pe,1 ∗ x1(t)+ . . .+ pe,I ∗ xI(t)+R(t))

If only a single state change happens in each time window,
this term is equal to the naive conflict handling. In this case,
all elements without state change drop out as their derivative
is zero. Then the respective value of pe is equal to the power
change ∆P. However, in case of multiple concurrent state
changes their effects on the power consumption superimpose.
For decomposition of the power signal, we use the following
linear equation system:

d
dt


x1 x2 . . . xI te0
x1 x2 . . . xI te−1
...

...
. . .

...
...

x1 x2 . . . xI te−I




pe1
pe2
...

peI

=
d
dt

P(t)− d
dt

R(t)

To solve this equation system, at least I linearly independent
state changes are needed. For populating the equation system,
the last I linearly independent events are taken. As result we
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obtain the power influence vector p for each actuator. In a
multi-phase system, this step must be repeated for each phase
individually in order to obtain the phase influence vector Φe
for all actuators. If R(t) is constant, there is an exact solution
of this equation system. Otherwise, the presence of variations
limits the performance of our system. In section 4.3 we
quantify the impact of varying R(t) on the overall system
performance.

3. Couple Matching: In addition to the conflict handling
strategy, we apply a matching of corresponding on- and off-
events for each light switched by the BCN. Using a simple
state-machine, we filter duplicate switching commands that
cause no changes to the environment and thus have no effect
on the electricity consumption. However, purely event-driven
BCNs like KNX provide no functionality to query the current
state of a light. Thus, when our system starts processing
events, it cannot determine the current state of lights present
in the building. To cope with that fact, our state machines
are modeled with switched-off as their initial state. Initially,
this may cause false negatives when the light’s real state
diverges from our state machine. After receiving the first
switch command, both states are in sync, however.

4. Phase Assignment: In Europe, the electric wiring in
a building is connected to the three phase electricity grid.
Therefore, our proposed system measures the electricity con-
sumption for each phase independently. During our field study
in an office building, our two electricity meters observed the
power draw of six phases independently. To achieve a similar
load on all phases, different parts of the building are con-
nected to different phases. Therefore, BCN switching events
typically do not influence all phases in an environment. In
this processing step, our system determines which phases are
influenced by BCN switching events. To estimate the Phase
Effect Vector Φe for a switching event e we calculate pe for
each phase and check if pe is above a certain threshold pmin:

Φe =

{
pe,n if pe,n > pmin
0 else for phase n in 0 . . .N

For each observed environment with N phases, Φe is an N-
dimensional vector describing the influence of the event e
on the electricity consumption of each phase in the system.
As some BCN switching events do not cause effects, pmin
suppresses the influence of random variations. Random varia-
tions are caused by other electrical appliances which are also
connected to the power meter. The threshold pmin determines
the system performance. If the value for pmin is too small, a
power consumption pe may get assigned to events without
effects on the electricity consumption. On the other hand, if
pmin is too large, the effects of events caused by switching
actuators with a power draw below pmin are not detectable by
our system. While a good trade-off for pmin depends on the
exact environment, we show means to approximate pmin in
Section 4.

5. Model Consolidation: The goal of this processing
step is to enhance the accuracy of the power estimate for a
switching event e by combining multiple observations of its
effects Φe. Each single observation consists of the real effect

of e Φereal and a measurement error vector ε:

Φe = Φereal + ε

By consolidating multiple observations of Φe it becomes
possible to prune instances with a high error ε and also to esti-
mate Φereal . In order to remove erroneous instances, we use a
sliding-window based approach to merge the last W observa-
tions of Φe. The window containing the last W observations
of Φe is called Consolidation Matrix:

CM =


ϕ1 ϕ2 . . . ϕN

Φe1 pe1,1 pe1,2 . . . pe1,N
Φe2 pe2,1 pe2,2 . . . pe2,N
...

...
...

. . .
...

ΦeW peW,1 peW,2 . . . peW,N


Using this consolidation matrix, we consecutively apply three
different strategies (1) Blanking, (2) Clustering, and (3) Aver-
aging to reduce the effect of erroneous instances and finally
to approximate Φereal . The blanking strategy enhances the ro-
bustness against random noise on phases which are unaffected
by a switching event e. For each column ϕn in our consoli-
dation matrix, the number of zero entries is determined. If a
certain percentage of all entries are zero, we assume no effect
of event e on the phase ϕn, and thus, the whole column is set
to zero. However, it is still possible that entries in the consoli-
dation matrix for event ew significantly deviate from the real
power draw of a switched actuator. The reasons for this may
be random variations happening on the phase ϕ in the same
time as event ew. It is unlikely that random variations for
different events have the same magnitude. In contrast, events
without significant noise components ε form a cluster around
Φereal . To identify those entries with high noise variations,
we apply a DBScan clustering with a sufficiently low band-
width parameter on consolidation matrix CM. We assume the
biggest cluster to be found around the real power value Φereal .
Therefore, we set all values to zero which are not assigned
to the biggest cluster. Finally, we consolidate our matrix by
summing up the average power values for each phase ϕ:

Φeest = mean(CM,column wise)

Using a sliding-window based approach to consolidate the
last W events has two major advantages. The first advantage
is a bounded computation complexity. As the window size
W is known in advance, it becomes possible to ensure that
our algorithms do not exceed the available computation or
memory resources on a embedded hardware platform. As a
second advantage, it becomes possible for our system to adapt
to changes by forgetting old values. If the power consumption
of a light changes, (e.g. because one of many light bulbs in a
switching group breaks), this new behavior will be reflected
in the power consumption matrix after a few events.
4 Evaluation

To assess the applicability of our system we conducted an
exhaustive evaluation of our system. For rating the quality of
our system we focus on the performance criteria:

1. Accuracy

2. Scalability
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3. Robustness against noise

4. Low Resource Consumption
Our evaluation consists of a simulation part to measure per-
formance criteria and a field study in an office building to
verify the simulated results. As it is not feasible to equip all
lights in a building with power meters we use a simulation
to create synthetic environments with different properties.
More precisely we use historic power traces obtained from
the sub-distribution of an office building and added virtual
BCN switching events. The historic power trace was trimmed
to a time window from 7a.m. to 6p.m. during a normal work-
ing day. This way we ensure realistic noise conditions on
the power signal for our simulation. Night times, weekends
and holidays were excluded from our trace set, as these days
contain too few variations in the power consumption. To sim-
ulate the effects of the virtual switching commands, we add
constant power consumption as long as the simulated light is
switched on. Using this approach we can freely vary relevant
environmental parameters like the power draw of switched
lights (1), the number of different lights present in the envi-
ronment (2), the total number of BCN switching events, (3)
and the noise level caused by other appliances (4). A com-
plete list of all parameters available for simulation is denoted
in Table 2. Additionally, the simulations allow searching
optimal values for the system parameters pmin, tdead or the
consolidation strategy. However, to testify the correctness of
this aforementioned simulation we conducted measurements
in an office environment over the period of one year. This
field study is described in section 4.6.

4.1 Accuracy
The accuracy of our system depends on two factors. First,

in each environment there are different lights in different
switching groups. Our system should be capable of estimat-
ing the power consumption independently from the actual
configuration. More precisely the error of the estimation
should not depend on the power consumption of the switched
actuator. Second, as some lights are switched few times a day,
the number of events for training the power model should be
as low as possible.

To determine the effect of the actuator’s power consump-
tion on the estimation error, we simulated actuators with
different power consumptions by varying the parameter
act power from 40W to 1,000W. The resulting estimation
error is shown in Figure 5. The graph clearly shows that
the total estimation error is nearly constant. Even small con-
sumers with a power draw of 50W could be estimated with a
relative error below 4%.

Additionally we tested the accuracy of the resulting power
model for a varying number of switching events. This way
we measure how the accuracy of our system evolves over
time when more and more switching events per actuator are
available. To carry out this simulation, we varied the parame-
ter num events from 2 to 30 and observed the mean absolute
estimation error. However, it is important to mention that our
simulation environment always generates on/off event pairs
in order to avoid situation where sequences of multiple on- or
off-events occur. The estimation error for a different number
of training events per switched appliance is shown in Figure

Table 2: Parameters used for simulations.

Parameter Value Description

historic trace Historic power recording to use as
source.

start time 7a.m. Start time of simulation.

stop time 8p.m. Stop time of simulation.

num repeats 30 Number of times the simulation was
repeated.

num acts 50 Number of different actuators
present in the environment.

num events 10 Number of events to execute for
each switching actuator.

act power 50W Power consumption of the actuator
in the simulation.

noise level 3W Level of noise to add to the real
world power trace.

p min 30W Effects of events below this thresh-
old are not considered.

bcn delay 3s Time lag until BCN events arrive.

delta t 2s Time to look ahead for effect calcu-
lation.

b2e delay 3s Time lag between BCN events and
power readings.

t dead 4s Dead time around events.

blank th 0.3 Percentage of zero pe required to
blank effects of event e on phase ϕ.

a phase 1 Amplification factor multiplied with
the power readings.

W 10
Size of the sliding window to con-
solidate the last W events for a par-
ticular light.

6. As visible in the graph, the error drops fast with a rising
number of event pairs. At the turning point of ten event-pairs
error flattens and more training provides only small benefits.
Thus, ten observed event-pairs per actuator are sufficient to
derive a high accuracy power model. We selected the size
of our sliding window W based on those findings. As side
note it is interesting to mention the reason for the drop in the
estimation error in case of four training events. Beginning
with this number of events the consolidation step starts to
remove errors caused by noise on phases not affected by an
event e.

4.2 Scalability
The Scalability quantifies the total amount of events out

system can compute. In general, the scalability of our sys-
tem is limited by noise effects on the phase. With disabled
collision handling, the Scalability is also limited by the dead
time between two events affecting a single phase. If multi-
ple events happen within tdead , our system removes all those
events because it is impossible to determine the effect of each
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Figure 4: Resulting estimations errors depending on the
value of pmin.

Figure 5: Estimations are independent from the electricity
demand of actuators.

event independently. With a rising event density, the num-
ber of conflicting events increases. If a massive number of
conflicts occur, the number of training events per actuator
decreases and thus the estimation error rises. These effects
are mitigated using our proposed collision handling schema.
In case of N BCN events occurring at the same time, those
events are combined with N other, linear independent events
to assess the phase influence of each individual event. How-
ever, the information density of each event is still reduced by
a factor of N.

In order to determine the Scalability of our collision han-
dling schema, we varied the number of different actuators and
measured the resulting absolute error per actor. As baseline
measurement, we drop all events in case of collisions. The
results of this simulation are shown in Figure 7. Below 300
actors present in the environment, the number of collisions
is rather low and thus both approaches perform equally well.
However, with a rising number of present actuators and thus a
higher collision probability, the system performance degrades
rapidly without collision handling. On the other hand, if col-
lision handling is enabled, the system performance degrades
much slower with a constant pace.

To assess the Scalability of our system, we measure the
error caused by conflicting events for different combinations
of switched actuators and events per actuator during a simu-
lated time frame of 12 hours. The result of this simulation is
shown in Figure 8. The x-axes show the number of different
actuators used for the simulation whereas the y-axis denotes
the number of events per actuator. For each tuple (x,y) we
calculated the resulting error. Low errors are indicated by
green color (bottom and left area of Figure 8) and areas with
high error are marked red (c.f. top right corner in Figure
8). As expected, the estimation error increases with a rising
number of events. However, below an event density of 400
events per hour, the resulting error is below 5W, which is
considered as low. For a high number of different actuators
and a low number of events per actuator the error increases
due to the insufficient number of events for training.

4.3 Robustness against noise
The total error εtotal for inferring the power consumption

of event e is dominated by two main components. Namely,

Figure 8: Influence of event count on estimation error.

these are event estimation error εevent and phase error εphase:

εtotal = εevent + εphase

εevent = ε(ϕn)

εphase =
N

∑
i=0,i6=n

ε(ϕi); i f ε(ϕi)> pmin

The error εevent is caused by inaccurate estimation of the
effect of event e. The component εphase is caused by random
variations above pmin on other phases which are co-occurring
with event e. For noise below pmin the phase error is 0, as it
is completely removed by the blanking strategy of the con-
solidation step (c.f. Section 3.2). With increasing noise level
on the observed phases, the phase error starts to dominate the
error term, as the blanking strategy could no longer success-
fully identify and prune erroneous instances. We simulated
the effects of noise on the accuracy of our system by adding
artificial noise. This noise signal is generated using a loga-
rithmic series distribution with α = 0.85. Our findings with
real power traces indicate that the medium tailed distribution
of the logarithmic time series provide a good approximate to
the noise observable in our test environment. In order to test
our system with different noise levels we varied the parame-
ter noise level to scale the noise signal with different noise
amplitudes from 0W to 30W. The results of this experiment
are shown in Figure 9. From 0 to 10W noise level the error
εtotal is dominated by εevent and correlates nearly linear with
the noise amplitude. Above 10W εtotal is dominated by εphase
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Figure 6: Approximately eight switching events are suffi-
cient for training.

Figure 7: Influence of actors count on system performance
with and without collision handling

which results in a much higher slope as we simulated an envi-
ronment with six phases. In our field study environment we
observed a mean noise power below 3W and a noise shape
similar to a logarithmic distribution. Therefore the result of
this experiment shows that our system could deal with a five
times higher noise level without raising the relative estimation
error of a 100W actuator above 6%.
4.4 Simulation Accuracy

While being conducted with great care, our simulation
could not address all variabilities which might be observed
in real world deployments. Effects not considered by the
simulation are:

1. Turn-on-transient of lights

2. Ageing of lights

3. Jitter on the BCN
Those effects and their impact on the accuracy of Light-

Mon will be discussed in the following section.
Our simulation framework assumes immediate response of

lights to switching events. While this is a valid assumption for
LEDs, CCFL-lights as well as incandescent light bulbs have
different turn-on behaviour. To determine those transients,
we measured the inrush power of a cold cathode fluorescent
lamp (CCFL) as well as a halogen incandescent light bulb
using a high frequency power meter. As illustrated in Figure
10, halogen light bulbs respond within 200 ms to switching
commands while CCFL lights take up to 2 s to reach steady
state power consumption. As the shape and also the inrush
duration varies for different lights, we decided to exclude
the turn-on-transient from our simulation. Therefore, if the
turn-on-transient of a light exceeds tdead , LightMon could not
accurately track the power consumption. Most probably, this
fact accounts for discrepancies between simulated values and
measurements we obtained in a real world setup.

The inevitable ageing effects reduce the performance of
lights over time. However, different lighting technologies
have wear-down time frames ranging from 1.000 hours mean-
time-to-failure (MTTF) for incandescent light bulbs to 30.000
hours for modern LEDs. However, as the ageing happens
slowly over time, LightMon adapts its coefficients within a
few switching cycles to accurately track the real power draw
of the attached lights. At some point in time a light may finally

fail, which could be detected and reported by LightMon.
Additionally, in high load situations on the BCN, there

may be a jitter effect on the otherwise static time-lag between
switching events and power signal. This jitter could cause
temporal de-synchronization of BCN events and their corre-
sponding effects on the measured power. This leads to false
power assignments for switching events and degrades the sys-
tem performance. Currently, our simulation does not account
timing jitter in the arrival of BCN events. Jitter below a cer-
tain threshold is non-critical while high jitter values could be
avoided by proper configuration of the BCN.

4.5 Low Resource Consumption
We measured the performance of LightMon on a 700MHz

Raspberry Pi B+ by replaying recorded historic electricity
consumptions as well as the corresponding BCN events. The
replay data covers five working days. The replay log con-
tained a total of 1,453 switching events. Processing of that
data with the steps described in Section 3 took between 126
and 130 seconds. In average our system running on a Rasp-
berry Pi B+ is capable of processing 11.3 switching events
per second. Our current implementation is running on Python
2.7 without any optimizations for better performance. The
Raspberry Pi which executes LightMon consumes between
1.5W under light load and not more than 3W under full load.
Together with the combined power draw of 4.8W for our
electricity meter, our system consumes below 7.8 Watt. Com-
pared to the electricity demand of our institutes building, the
installation of LightMon increased the electricity demand
only by 0,5%.

4.6 Field Study
To testify the functionality of our LightMon system, we

installed the system in the second floor of a four story office
building. The system has been installed there for over one
year and monitored 69 light switching groups in 23 offices,
one meeting and one resting area. During that time, the of-
fice area was in unrestricted use by approximately 45 people.
Among lighting equipment, the power meters observed the
power consumption of Laptops, Monitors, Desktop Comput-
ers, Printers and kitchen equipment. In our model, this office
equipment shows up as residual term R as LightMon could
not observe the state of those devices. The power supply
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Figure 9: Error dependent on noise level. The simulated
noise is based on logarithmic series distribution (a = 0.85)
and scaled with the denoted power.

Figure 10: Turn-on transient for commonly used CCFL
and halogen lamp.

in our test environment is realized by two independent sub-
distributions with three phases each. All six phases were
monitored using two EMU Professional series electricity me-
ters. Our LightMon system obtains power readings via MOD-
BUS interface with a sample rate of 0.5Hz. The building is
equipped with a KNX-bus system for controlling lights. The
LightMon connects to the KNX-bus using a commercially
available ABB KNX to IP gateway. Although all four floors
of the building share the same KNX bus, our system also
received events from other parts of the building.

The building department of our university provided us with
a mapping of KNX actuator addresses to the rooms where
the actuators are installed. We used this mapping to replace
the KNX actuator address with it’s symbolic name for better
comprehensibility. If no such mapping is available for the
building, the live monitoring feature of LightMon could be
used to generate such a symbol table. In this case, one has
to manually switch all lights and record the corresponding
BCN addresses using live monitoring. We use this approach
to check the correctness of the provided symbol table.

In our test environment five different kinds of lights are
switched by the BCN. More precisely, in our environment
29 Desktop lights (S), 8 Wall lights (W), 26 Ceiling lights
(D), and 5 Bathroom lights are installed. We searched for
lights not attached to the BCN and found one light which was
privately purchased by an employee. The rest of the electricity
consumption is caused by ordinary office equipment, printers,
and kitchen equipment.

Ground Truth Estimation: In order to obtain ground
truth data for all lamps present in the environment, we con-
ducted a measurement when the whole floor was unoccupied.
During that measurement, all disengageable loads were turned
off to avoid random variations in the power draw caused by
non-lighting equipment. Then, we switched each lamp five
times on and off. During that time, we monitored the power
consumption on all phases. The ground-truth data also shows
the deviation from our assumed power model until the lamps
reach their steady state power consumption. However, we
manually reviewed the collected ground data for each lamp to
ensure the absence of noise effects from other electric devices.

Manual Electricity Audit: In addition to that, we man-
ually counted the number of installed light bulbs and read
manufacturer information printed on each installed light bulb.
The manufacturer information differs from our ground truth
measurement by approximately 4.92%. A comparison on
individual light level showed that the ground truth measure-
ment is almost 1W higher than it is stated by the manufacturer
information. The biggest single consumer was the two inde-
pendent lights installed in our hallway. Each of them consists
of 28 light bulbs with 16W power consumption per light
bulb. Both lights are controlled by a movement sensor which
switches those lights for 15 minutes if movement is detected.

In the whole test environment, we found six lights which
were not measurable by LightMon as they are connected to
a separate sub-distribution. Those lights are installed in the
rest room areas. Five lights were broken during the ground
truth measurement and for 17 BCN switching actuators, no
corresponding light was connected. All those 17 places were
not equipped with a desk. Two lights even had a program-
ming error which caused an inverted reaction to switching
command, e.g. they switch on when receiving a BCN switch
off event. We received valid, non-zero measurement for 39
individual lights.

We compared the power consumption matrix derived from
our ground truth measurement with a power consumption
matrix obtained from LightMon after observing the office
environment for 30 days during a sunny summer month. The
average absolute error between ground truth measurement
and observation is 11.34%. However, this error is not evenly
distributed. All 13 lights which were frequently used have
a very low absolute error. The rest of the lights were rarely
used and show significant estimation errors. While acceptable
for most applications, it may be that the reported observation
error is too high for particular applications. However, in
such cases, LightMon could be configured to automatically
conduct a ground truth measurement at night times or on
weekends.

5 Application Scenarios
In this section we describe the findings of one year Light-

Mon usage in one floor of our institutes building. The Light-
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Figure 11: Share of Lighting on the buildings total electricity consumption.

Mon system collected n=356 days of electricity consumption
together with corresponding BAN light switching events from
July 2014 till July 2015. The whole data set is available on-
line1. The data was recorded continuously except for a period
of 27 days in November and December when our system was
not operating properly.

We obtained a power consumption matrix from this data
and calculated the electricity consumption for each light in-
dividually. As result we get a multidimensional time series
stating the electricity consumption of each light for each point
in time. In order to make this large matrix more comprehensi-
ble for people, we aggregated the data in three different views.
Those views show the electricity consumption for lighting
as daily profile, the share of lighting on the total electricity
demand varying between different month as well as the elec-
tricity used for lighting different rooms and spaces of the
building. Thus, the electricity consumption has a high cor-
relation with the total electricity consumption. Furthermore,
the lighting profile reflects the usual working conditions at
our department. The first employee starts at 7:15 in the morn-
ing and the last employees leave at round about nine in the
evening. We calculated the share of lighting on the total elec-
tricity consumption for each day from Jan till July to get a
better understanding of its influence on the total electricity
demand. The result of this analysis is shown in Figure 11. As
expected, the results show a strong seasonal behavior. During
the winter months (Jan, Feb), the share of lighting is in total as
high as 42%. In spring and summer the share lighting on the
total electricity consumption drops down to a total percentage
of 28%. In the period from January to July our monitored
environment consumed 6.8MWh of electricity from which
2.4MWh (35%) was spent for lighting. When interpreting
Figure 11 it is important to note that this graph is not rep-
resentative for the big stock of available buildings, as other
buildings are equipped with other electricity consumers, have
different heating or cooling concepts and the inhabitants have
different behavior. For future work, it would be interesting to
compare the share as well as the total amount of lighting on
the electricity consumption for different kinds of buildings.
To answer the question why such a high share of electricity
is used for lighting, we analyzed the electricity consumption
on room level. For that purpose, we queried LightMon to a

1Download available on the LightMon Website at
https://nglrt.github.io/LightMon/

list of the installation location of all lights, its type (c.f. Sec-
tion 4.6), its average daily electricity consumption, its daily
cumulated switch on time, and the average cycle length be-
tween a switch on command and a switch off command. This
automatically generated summary table is useful for selecting
the most efficient lighting solution for differently used rooms.
Depending on the total switch on duration as well as the
switching frequency, different lamps could be selected. We
found that in our observed building, the hallways dominate
the electricity demand for lighting. Therefore, investments in
energy efficiency should focus on the hallways first. In each
hallway 28 light bulbs with 16W each are installed. The light-
ing of the hallway is controlled by movement sensors which
switch on the lighting for 15 minutes if movement is detected.
This causes a constant illumination of our hallways for over
8 hours every day. However, the movement sensors do not
consider if the hallways are already sufficiently lighted by the
sun. Therefore, the single biggest saving potential could be
realized by adding indoor luminance sensors in our hallways
and using them to avoid over-provisioning. Alternatively, the
currently installed light bulbs could be replaced with more
energy efficient solid state lights.

6 Discussion
The design of a specific system for monitoring the elec-

tricity cost of lighting results in unique technical as well as
non-technical design decisions. Those are discussed with
much broader context in the next section.

Switching in un-occupied situations: Instead of live-
monitoring the changes in the power signal of a building,
the system could rely on one-time calibration. With other
words, the system could automatically switch all loads dur-
ing night time to determine the power draw of each actuator
individually. While being much simpler to implement and
evaluate, this active approach has severe disadvantages. First,
switching all loads causes additional and unnecessary elec-
tricity demand. Second, online detection of faults becomes
impossible. And third, the auto-calibration at night times
seems strange for human spectators being currently in the en-
vironment. Therefore, we use this approach only as reference
measurement for verification purposes.

Manual Energy Audit: Instead of installing additional
hardware for monitoring the electricity consumption of light-
ing, one could conduct a manual audit of all present lights.
This step would involve enumerating all lights present in a
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building together with their power rating and estimating the
average on-time for each light individually. This work is la-
bor intensive and most probably much more expensive than
installing LightMon. However, we executed this procedure
once in our test environment in order to verify ground truth.

Applicability in legacy buildings: The proposed system
relies on the existence of a building wide BAN for switching
the lights. Thus, the system is not easily applicable in legacy
buildings. The installation of additional luminance sensors
or the usage of Smartphone-integrated sensors could mitigate
this fact. In the long term, this work around is not necessary
as the prices for networked lighting drops rapidly. With af-
fordable networked lights, each lamp in a building will be
able to provide the necessary state information.
7 Conclusion

We presented the LightMon system, which is capable of
measuring the electricity consumption of individual lights by
correlating switching events with their influence on the total
power consumption of a building. Our proposed system is
seamlessly deployable in modern buildings equipped with a
building automation network. It estimates power consump-
tion on the level of individual lights with an error as low as
11.34% and provides a web based user interface for live con-
sumption monitoring as well as viewing historic electricity
consumption of the lighting installation. LightMon adapts
itself to the characteristics of any building where it is installed
and requires neither additional explicit training nor manual
inputs. By using our LightMon system, it becomes possible to
track the financial cost of electric lighting in a building. This
is the key information required to implement energy savings
projects on an economical basis.
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