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Abstract
In this paper, we present an acoustic localization system

for multiple devices. In contrast to systems which localize a
device relative to one or several anchor points, we focus on
the joint localization of several devices relative to each other.
We present a prototype of our system on off-the-shelf smart-
phones. No user interaction is required, the phones emit
acoustic pulses according to a precomputed schedule. Us-
ing the elapsed time between two times of arrivals (ETOA)
method with sample counting, distances between the devices
are estimated. These, possibly incomplete, distances are the
input to an efficient and robust multi-dimensional scaling al-
gorithm returning a position for each phone. We evaluated
our system in real-world scenarios, achieving error margins
of 15 cm in an office environment.

Categories and Subject Descriptors
C.2.1 [Computer-communication networks]: Network

Architecture and Design—Wireless Communication

General Terms
Algorithms, Measurements

Keywords: indoor localization, acoustics, EDM, ETOA

1 Introduction
Smartphones and other mobile devices have become ubiq-

uitous in our lives. As a consequence, many location-
dependent applications emerge to support users at work, in
shopping malls, airports, and exhibitions. While GPS pro-
vides localization outdoors, it is often not useable inside.
Thus, a multitude of localization approaches with Wi-Fi and
sensors have been devised.

In this paper we address localization using acoustic sig-
nals, as every commercial-off-the-shelf (COTS) smartphone
is equipped with a microphone and speaker. In particular, we
focus on the localization of several devices relative to each

other. Such a system can be used for e.g., asset tracking, to
ensure safety around (unmanned) vehicles and machines in
industrial settings, for augmented reality applications, either
alone or complementing other localization systems.

Starting from a simple acoustic ranging application, we
propose methods and algorithms to enable the calculation of
the position of several phones simultaneously. To this end
we (i) design a pulse shaping and detection scheme which
has not been used for acoustic ranging to the best of our
knowledge and (ii) we propose an algorithm to schedule the
actions of recording, emitting a pulse and stopping on the
phones and (iii) solve the resulting multi-dimensional scal-
ing problem with Euclidean distance matrices (EDMs).

Using COTS smartphones entails a set of disadvantages
and constraints. Both the speaker and microphone systems
are optimized for voice, i.e., they are designed for signals
in the range of 20 Hz to 22 kHz, higher frequencies are af-
fected by lowpass filters in the audio chain of smartphones
[?]. Moreover, the API to access the audio system of a phone
is limited, so using it for ranging and positioning algorithms
is not straight-forward. We describe how we cope with these
constraints when building a prototype on Samsung S4 mini
phones and we validate our system in real-world scenarios
reflecting the conditions of an office environment.

Contributions: We demonstrate in this paper how
acoustics can be used to calculate positions of several de-
vices relative to each other without anchor nodes. Compared
with other systems, some of which rely on specialized hard-
ware, our system features a low-cost deployment as well as
accuracy. We use BeepBeep [?] ranging method as a ba-
sis, overcoming difficulties due to the multi-phone settings
with a different pulse and detection scheme and proposing
a scheduling scheme to deal with collisions to build a reli-
able system.We reduced the abstract problem behind to MDS
and designed a novel weighting scheme dealing with possi-
bly large (non-Gaussian) ranging errors. Hence, our system
and validation work feature the following.
• Protocol and algorithm for relative positioning of sev-

eral devices at the same time.
• Robustness. It is not necessary that each device deter-

mines the distance to all other devices. Incomplete dis-
tance matrices suffice for localization.

• No anchor points or synchronization. Even if clocks are
not synchronized and no anchor positions are known,
our system can localize devices.
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• Evaluation. We implement our system on Android
smartphones and evaluate it in office environment sce-
narios. The mean location error is 5-15 centimeters de-
pending on the environment and configuration, satisfy-
ing the requirement of many applications.

2 Background
In this section, we discuss how to use audio technology,

i.e. microphones and speakers, in order to measures the dis-
tance between two phones. We use this as a building block
for our multiple-node localization system.

We apply a method proposed in [?] based on elapsed time
between the two time-of-arrivals (ETOA) with sample count-
ing. This method does not require a tight time synchroniza-
tion which is a very difficult task in the Android environment
and resolves the problem of timestamping which is not accu-
rate enough due to the Android OS delay and its impossibil-
ity to acquire the exact instance of an event with the desired
precision.
2.1 Pulse Shaping and Detection

Any time measuring method needs an accurate pulse de-
tection scheme. The optimal detector w.r.t. Signal-to-Noise
Ratio (SNR) is a matched filter [?]. To facilitate detection
we need a pulse shape with a narrow autocorrelation func-
tion, i.e., high bandwidth. However, the available bandwidth
is limited on smartphones because of the frequency response
of their microphone and speaker.

A very simple option for a pulse shape is a finite dura-
tion sinusoidal signal, although it has a low bandwidth and
a low detectability. In the presence of noise and interfer-
ence, the accuracy of detection with pure sinusoids drops.
Another candidate is a chirp signal, a frequency variant si-
nusoid, used in [?] and [?] for acoustic ranging. Pseudo-
random sequences have been widely used in wireless com-
munications contexts [?] due to their narrow autocorrelation.
PN sequences are almost white noise but they differ in the
distribution. As we will explain in more detail later, we use
pseudo-random sequences for our setting because they en-
able an easier implementation for multi-user detection and
have a narrower autocorrelation than the other variants.
2.2 Multi-Dimensional Scaling

Assume that we have several phones and we know the
pairwise distances between them. We can collect all dis-
tances in a matrix called Euclidean Distance Matrix (EDM).
Consider a list of points {x1,x2, . . . ,xN} in the Euclidean
space R

η of dimension η. An Euclidean Distance Matrix
(EDM) is a matrix D such that D[i, j] = d2

i, j = ‖xi − x j‖2.
In other words, each entry of D is an Euclidean distance-
square between pairs of xi and x j. The problem is how
to find {x1,x2, . . . ,xN} based on the corresponding EDM.
Many methods to solve this problem are proposed in the
literature, e.g., the classical approach to solve this problem
called classical Multi-Dimensional Scaling (cMDS) [?]. In
an error-free setup where the all the pairwise distances are
measured without error, cMDS exactly recovers the configu-
ration of the points [?]. This method is simple and efficient.
However, in a noisy situation it does not guarantee the opti-
mality of the solution. Furthermore, it can only be used if all
distances are known.

Figure 1. Elapsed time between two times of arrivals
(ETOA) method: both phones start recording (indicated
by microphone icon), emit a pulse each (play icon), and
finally stop recording.

3 Pulse Shape and Detection
In our early experiments, we used a finite duration sinu-

soid pulse. The frequency of the pulse can be different for
each phone to make detection easier. Because we would like
to have a non-audible pulse, we choose 18 kHz and 17 kHz
for phone 1 and 2 respectively. These frequencies are high
enough to be hardly audible and are not too high to be dis-
torted too much because of the frequency responses of mi-
crophones and speakers. The length of the pulse is set to
4000 samples at a sampling rate of 48 kHz, thus keeping the
duration of the pulse below 0.1 second.

With finite duration sinusoid pulse shaping, we can
choose different frequencies to make them more distinguish-
able. As they have finite duration, they are not completely
orthogonal and can only be distinguished if the frequency
difference is large enough. Therefore, we have used pseudo-
noise as described in Section 4.2 in later experiments.
3.1 Assumptions and Parameter Selection

The sampling rate fs, recording length and speed of sound
νs influence the performance of acoustic ranging.

The sampling rate is very important because it determines
the maximum frequency and bandwidth that can be used. Be-
cause the audio hardware of the smartphones are designed to
play in audible frequency range, the highest possible sam-
pling frequency for most of the phones are 48 kHz [?]. Since
according to Nyquist’s theorem a higher sampling rate im-
plies a higher bandwidth, we thus choose fs = 48 kHz.

The recording length is very important since a short du-
ration can cause phones to miss pulses. On the other hand,
longer recordings need more memory and the detection re-
quires more computation. So there is a trade-off between the
length of the recording and the chance of missing pulses.

To circumvent this issue, we use a simple communication
protocol, illustrated in Figure 1. This protocols works over
the existing Wi-Fi network. The phones let each other know
via a WiFi connection that they started recording. After the
reception of this message phone 1 emits its acoustic pulse.
To ensure that phone 1 does not record indefinitely, phone
2 passes a message to phone 1 after it played the pulse. As
soon as phone 1 receives it, it stops recording. This way we
are sure that both phones have recorded both pulses and no
one misses anything. It means that the recording length is
not a constant and it varies according to the OS delays and
network delays.

Acoustic distance measurement depends on the speed of
sound, which is temperature dependent. Some recent smart-
phones have temperature sensors. Using this they can calcu-
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late the speed of sound according to the temperature sensor.
As the phones we used, Samsung Galaxy S4 Mini, are not
equipped with such a sensor, we assign the speed of sound
according to the average room temperature of around 25◦C,
i.e., νs = 340m/s.

In brief, we built an Android Phone App for acoustic
ranging using ETOA measurement with sample counting and
self-recording to calculate the distance between two phones
using the above. Figures 1 illustrate the basic mechanisms.

4 Multiple-Node Localization
Above, we discussed how to measure distances between

two devices using acoustics. Furthermore we described how
Euclidean Distance Matrices (EDMs) can be used to infer
positions under ideal conditions in Section 2.2. We now ex-
plain how to use these as building blocks to localize several
phones simultaneously under noisy conditions.
4.1 Central Distance Collection

We cannot use the application described in Section 2 to
measure the pairwise distances between several phones as is.
With an increasing number of phones, several issues arise.

Measuring one pairwise distance at a time is unfeasible as
the total required time is proportional to N(N −1)/2. Thus,
we devise a scheme to do all measurements in one interval.

Clearly, the number of calculations to be executed by each
phone increases as the number of phones grows. Also there
is an extra calculation that we do not have in acoustic rang-
ing, namely solving the MDS problem. Even though this can
be done in a distributed way efficiently, it requires that each
phone knows the pairwise distances of all nodes, which re-
quires the exchange of O(N2) messages. Thus we decided to
carry out all computations on a server, which incurs a linear
message complexity of O(N) and also reduces battery power
consumption in the phones.

In addition, the server is not only used for collecting data
and doing the calculations, it can also schedule the localiza-
tion related activities and minimize the probability of missed
pulses or of two pulses of two phone colliding.

The main responsibilities of the server include to (i)
schedule the pulse emitting procedure, (ii) collect recordings
from the phones, (iii) calculate distances and MDS, (iv) run
algorithms to solve the MDS problem and localize phones.

For the measurements, each phone carries out the follow-
ing steps: (i) start recording when receiving LISTEN(t1, t2)
from server via a WiFi link, (ii) emit pulse after time t1, (iii)
stop recording after time t2 has elapsed, (iv) send recording
to the server via WiFi link.

Ideally, in each phone’s recording we have N different
recorded pulses. If we can detect these pulses in each record-
ing, we can find the Round Trip Time (RTT) for each pair.
The recorded signal of phone i can be written as ri[n] =
∑ j s j[n−Ti, j], where s j(.) is the received signal from phone
j and n is the index of the nth sample of a signal. Ti, j is the
index of the sample which corresponds to the time phone i
receives the pulse from phone j. For simplicity and because
we are only interested in differences, not in absolute time, we
can assume here that all the phones started the recording at
the same time. The distance between phone i and j can thus
be computed as di, j = |(Ti, j − Ti,i)− (Tj, j − Tj,i)|/(2 fs)νs,

Figure 2. (left) RTT = Δ1−Δ2
2 . (right) RTT = Δ1+Δ2

2 .

where νs is the speed of sound and fs is the sampling fre-
quency. Figure 2 illustrates why this holds, even if the order-
ing of pulses leads to negative Δ2.
4.1.1 Scheduling: Increasing Reliability

There are several factors that can cause errors in the mea-
surements, falling in one of the two categories. (a) Android
OS and networking delay (missed pulse error) and (b) acous-
tics errors (NLOS components, reverberations, obstruction).

Consider for example the case where a phone starts
recording too late because of delays introduced by the An-
droid OS and thus misses the pulses of other phones. Analo-
gously, a phone can stop recording too early and miss pulses.
A good schedule can minimize the probability of such errors.

Let S = {(t(1)1 , t2),(t
(2)
1 , t2), . . . ,(t

(N)
1 , t2)} denote a sched-

ule, where phone i emits its pulse t(i)1 ms after the recep-
tion of the message and to stop recording after t2 ms. The
server determines the schedule S and broadcasts it to the N
involved phones over the WiFi network. Let delayOS be a
bound on the maximum delay cause by the operation system
and networking. To avoid errors, the schedule computed by
the server should satisfy some conditions.

1. ∀i : t(i)1 > delayOS (to avoid late recording errors)

2. mini(t2−t(i)1 )> delayOS (to avoid early stopping errors)

3. ∀i, j : |t(i)1 − t( j)
1 |> δ (to avoid colliding pulses)

We choose t(i)j s for N phones in the following way

t(i)1 = Ddelay + i ·D0. (1)
t2 = 2 ·Ddelay +N ·D0. (2)

The reason why we separate t(i)1 into two terms is the fact that
there are two different types of error. The first type is to miss
pulses and the second one is the collision of pulses. To pre-
vent the former, we force the phones to wait for an amount
of time, i.e. Ddelay, before the first one sends a pulse to de-
crease the probability of missing any pulses because not all
phones are in the recording state yet. We determined ex-
perimentally that Ddelay = 100 ms is a good choice taking
OS and networking delay into account. Collision errors are
avoided by an additional amount of delay that varies from
phone to phone, i.e. phone i waits iD0 time before playing its
pulse (assuming a pulse duration below D0). To minimize the
collision probability under i.i.d. OS and networking delay,
given measurement time t2, we set D0 = (t2 − 2Ddelay)/N.
Thus, by increasing t2 the recording phase is extended while
the error probability is reduced. However, the probability
that the phones have changed their positions in the mean-
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time increases and higher storage and computation costs are
induced.

Another option to increase the probability of success
is to repeat the measurements and to combine the results
(weighted averages). To this end, we discuss in Section 4.3
how to fuse several (potentially incomplete) EDMs to get a
better accuracy result, i.e. optimum weightings. Given a
set of assumptions one can thus optimize along the trade-off
between the required time for the measurements and the ac-
curacy. However, this is out of the scope of this article. In
our evaluation section we show that 5 repetitions provide an
error margin of around 15cm in a noisy office environment.

Consequently, instead of using N(N−1) pairwise record-
ings with up to two pulses each, we use one recording in-
terval at each device with containing up to N pulses. This
minimizes time and coordination, enabling evaluation in less
than 1s.

4.2 Pulse Shape and Detection Scheme
The detection scheme described in Section 3 for acoustic

ranging does not satisfy all requirements for a multi-phone
setting. Since we want to carry out all pairwise measure-
ments together, two important issues arise:

(i) For N phones, we need N easily distinguishable pulse
shapes because we would like to find their positions in each
recording and compute their corresponding Ti, js.

(ii) Each phone receives not only different pulses but also
different power levels. This means that a recorded signal
contains N different pulses where the received power de-
pends on the distance between the phones. The detection
scheme should thus not be sensitive to the power level.

One possible solution is to detect the pulses iteratively.
We can detect one pulse at a time and then cancel its contri-
bution from the recorded signal. We repeat this procedure on
the canceled recording in the previous step for another pulse
recursively. This method would work perfectly if the pulses
were not distorted and noise free. In practice, we have still a
residual of larger pulse after cancellation.

Pseudo-Random Binary Sequences: In principle any
pulse shape with a narrow autocorrelation function can be
used in such a localization system. Due to the constraints
posed by the built-in microphone and speaker, we select
Pseudo-noise (PN) sequences in the frequency range 15-20
kHz and durations of 1000 samples. Though 15 kHz is still
audible by humans, it is noticed only as a very short pulse.
PN sequences have a large bandwidth with a narrow autocor-
relation function. These characteristics depend on the length
of the sequence and facilitate detection. The longer the se-
quence, the better the detectability.

As the phones receive signals from other phones as well
as the one emitted by themselves, the signals vary in their
power levels. To avoid the problem of different power levels
if we use the traditional matched filter approach, we pro-
pose a CDMA-like detection scheme that correlates a binary
signal to detect pulses. A PN binary pulse shape of length
L is defined as s[n] = bn for n = 0,2, . . . ,L− 1, where
bns are realizations of i.i.d. binary random variables with
P(bn = 1) = P(bn = −1) = 1

2 . These sequences are suit-
able as they do not convey any information in their ampli-

Figure 3. Transmitter (top) and receiver (bottom) of de-
tection scheme

tude. Hence, additive noise with reasonable variances can
be canceled easily by a sign filter. Thus, we can ignore the
amplitude and apply the matched filter detection on a binary
sequence.

The proposed detection scheme is illustrated in Figure 3.
On the transmitter part, we first upsample the generated PN
binary sequence by a factor of P. For the inserted zeros by
upsamplers, we interpolate the values. The resulting pulse
is our new pulse shape. We do the interpolation and upsam-
pling to decrease the required bandwidth and make it low-
pass. Therefore, we used P = 4 to reduce the bandwidth and
be able to modulate the signal to higher frequencies. How-
ever, for very high frequencies, greater than 20 kHz, audio
components are more affected by distortions caused by the
microphone and loud speaker.

On the receiver side, instead of directly applying a
matched filter that corresponds to the transmitted pulse
shape, we pass it through a sign filter. Then we apply a
matched filter that corresponds to the signed version of the
pulse shape. The output of the matched filter will be fed into
a peak detector in order to find Ti, js.

The proposed detection scheme shows a better perfor-
mance compared to using a matched filter directly. Though it
may be surprising at the first glance, this is due to the lack of
the optimality condition for the matched filter. The matched
filter receiver is the optimum linear filter in the sense of
SNR. However, in this case we do not know the distortion
by the acoustic propagation channel, therefore a matched fil-
ter based on only the pulse shape does not necessarily work
better in all circumstances.
4.3 Robust Positioning with incomplete EDMs

We cannot use cMDS mentioned in Section 2.2, as pair-
wise distance measurements are noisy or might even be miss-
ing if two phones are too far from each other to detect each
other’s pulse. Instead, we use a convex and differentiable
cost function called s-stress to solve the MDS problem de-
spite incomplete EDMs as proposed by Takane et al. [?]:

min
X∈RN×η ∑

i, j
wi, j

(
D(X)[i, j]−d2

i, j
)2

(3)

We are interested in cases where the number of spatial
dimensions η (η = 2 or 3) is significantly smaller than the
number of nodes N. Parhizkar [?] proposed an algorithm to
minimize this function in a (distributed) manner based on the
alternating gradient descent optimization method. In each
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iteration it uses the coordinate descent method by optimiz-
ing along one of the variables cyclically. To the best of our
knowledge, no other MDS methods combine 1) operation
without parameter-tuning, 2) configuration independence, 3)
fast convergence, and 4) cope with missing/noisy data.

This algorithm has the advantage that it lets us fuse sev-
eral sets of measurements easily. Thus, we can increase the
accuracy by repeating the experiment several times. When
there are only two phones, we can simply take the aver-
age over the measured values. Now, suppose we have re-
peated the measurements for multiple-node localization and
obtained several EDMs, one per measurement. The naive
approach is to average over each component separately and
form a new EDM. We can solve the MDS problem for this
new EDM, to minimize the cost function in (3). In other
words, this new EDM contains the mean value of the mea-
sured distances. We improve over the naive approach by
weighting the measurements. By modeling the measurement
noise as additive Gaussian noise, one can show that if we
choose the weight wi, j inversely proportional to the squared
variance of the measurements between node i and j, the error
is minimized, i.e.

wi, j =
1/σ4

i j

∑i′, j′ 1/σ4
i′, j′

. (4)

A lower weight reflects a higher variance which means more
uncertainty in measuring the corresponding distance. Since
we do not know the exact variances of the measurements,
we estimate it by the sample variance.We evaluated both the
naive and the optimum weighting strategy in Section 5.

5 Evaluation
Acoustic Ranging: We first compare the performance of

the single tone method described in Section 3 to the CDMA-
like approach of Section 4.2, depicted in Figure 4. In the
single tone approach, we used two sinusoidal pulses at fre-
quencies 18 and 19 kHz for each phone. The accuracy and
confidence are much better for the binary PN sequence.
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Figure 4. Error vs the actual distance for the finite dura-
tion sinusoid (left) and PN sequence (right) schemes: av-
erage and standard deviations of 10 measurements with
phones at distance 0.1m, 0.5m and 1.5m from each other.

Due to this and the reasons explained in Section 4.2,
we used PN sequences in the remainder of our evaluation.
To evaluate the accuracy, we applied the proposed ranging
method with binary PN sequences on distances up to 6.5m,

the confidence intervals for such accuracy is around 4 cm in
the worst case

Acoustic Multiple-Node Localization: Here, we show
the results of applying the localization scheme explained in
the previous section in four different settings. We localized
the phones in two configurations, a cross-shaped configura-
tion of 5 phones where all the distances are mid-range and a
three by three configuration of 6 phones where the distances
are short-range and long-range. We repeated the experiment
in two indoor environments: an empty quiet room. and an of-
fice environment with several people, computers, desks and
other obstacles and noise.

In Figure 5, an example of the result obtained from one
set of measurements for each configuration is depicted. As
expected, the accuracy in an office is lower because of the ob-
stacles and noise in the environment. It is impossible to keep
all influencing factors the same in the two environments. For
example the quality of the Wi-Fi network, which has a great
effect on the delays with which the phones start recording,
varies considerably. The error of the examples in Figure 5
is shown in Table 1 in centimeter. The error is the average
deviation from the actual positions, i.e. e = 1

N ∑N
i=1 ‖x̂i−xi‖,

where x̂i and xi are the estimated and actual positions respec-
tively and rotation and translation have been applied for er-
ror minimization. The second setup, consisting of 6 phones,
shows a better overall performance especially in the office.
This might be due to the fact that the number of phones has
a great impact on the performance of the MDS algorithm in
[?]. However, more experiments are needed to verify this
hypothesis. The overall accuracy is on the decimeter level.

Table 1. Error comparison (single measurement set).
Cross-shaped Three-by-Three

Empty room 1.30 cm 5.2 cm
Office 34.8 cm 8.2 cm

For multiple-node localization, the effect of repeating
measurements depends on the weighting strategy. The av-
erage distance error is shown in Table 2. Compared to the
results using one set of measurements we observe that error
can be reduced up to 50%. The optimal weighting scheme
outperforms the equal weighting scheme by up to 30%.

Table 2. Error comparison for different weightings in
noisy office (5 sets of measurements).

Equal Weighting Optimum Weighting
Cross-shaped 19.89 cm 13.6 cm
Three-by-Three 11.4 cm 9.7 cm

In summary, our localization scheme behaves as expected
and is able to provide error bounds of around 30cm in noisy
environments using one set of measurement or around 15cm
when combining several measurements.
6 Related Work

Many different indoor localization systems are available
today, based on pedestrian dead-reckoning, Wi-Fi or other
radio signals, cameras, etc. or a combination thereof. We
refer to [?] for an overview, since we focus here on acoustics.

The fact that many devices can generate sound from their
built-in speaker and detect sound with the integrated micro-
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Figure 5. Examples with one measurement set. Red asterisks correspond to actual, blue circles to estimated locations.
(a) and (c) 5 resp. 6 phones in a quiet empty room, (b) and (d) 5 resp. phones in an office environment (in meter).

phone has been used in a number of different approaches.
There are distance-free localization methods which use au-
dio devices to capture acoustic impulse response as an input
to a pattern classification algorithm, e.g. [?]. Here, we focus
on the distance-related methods.

While there is a multitude of acoustic ranging meth-
ods [?, ?, ?, ?, ?, ?], using different pulse shapes and calcula-
tion methods, positioning has not received the same amount
of attention. From a system design perspective, it is highly
valuable to know how to schedule distance measurements
between several nodes with unknown positions and how to
process the results to derive positions. To our knowledge,
the current literature does not address these issues.

Marziani et al. [?] use an RTT and CDMA-based method,
to find pairwise distances. However, they do not determine
the actual positions of the nodes. Chakraborty et al. [?] pre-
sented a TDOA-based localization scheme while Whistle [?],
applies a ranging method similar to BeepBeep with 10-20 cm
accuracy for localizing a sound source with TDOA The prob-
lem of finding the position of multiple nodes simultaneously
using acoustics is not discussed in any of the work we are
aware of.
7 Conclusions

In this article we proposed a localization system to posi-
tion several phones simultaneously. Our system uses ETOA
measurements with sample counting to compute distances
between phones. We used the s-stress cost function to formu-
late the problem of finding the positions from the distances
as an optimization problem to which we applied an alternat-
ing gradient descent algorithm. Furthermore, we described
a pseudo-noise-based pulse shaping and detection scheme
and a method to schedule multi-node measurements reliably
despite OS and networking delays, which has not been ad-
dressed in other work to the best of our knowledge. In addi-
tion to reliability, accuracy is an important performance mea-
sure of a localization system. To improve the accuracy, we
take measurements several times and combine them using an
optimal weighting strategy.

A more detailed version of this paper is available at arXiv.
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