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Abstract
Real-time low-power wireless networks are increasingly

being used in applications such as: Industrial Internet-of-
Things, Smart City technologies, and critical infrastructure
monitoring. These networks typically use time-slotted super-
frame techniques to ensure real-time performance. Often the
time slots are assigned statically, and energy conservation is
regulated to other mechanisms such as duty cycling. This pa-
per combines real-time performance with novel energy con-
servation methods by describing a set of dynamic modu-
lation based adaptive packet transmission scheduling algo-
rithms that are designed to reclaim unused slot times. Our
approach uses hybrid link access mechanisms. To support
our reclaiming method in a wireless environment we intro-
duce a novel low-power listening technique called reverse-
low-power listening (RLPL) as part of an overall Hybrid
Low-Power Listening (HLPL) protocol. We evaluate our al-
gorithms against an oracle-based approach, and show that
our dynamic slot reclaiming approach, coupled with HLPL,
can introduce substantial power savings without sacrificing
real-time support.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless

communication

General Terms
Algorithms, Design, Performance

Keywords
Wireless sensor networks, Low-power listening, Dynamic

modulation scaling, TDMA

1 Introduction
Industrial control networks (ICNs) have long been used to

monitor and manage the real-time activities of a wide range
of physical devices, within domains such as manufacturing,

electrical generation, and chemical refining [11]. For ease of
deployment and reconfiguration, simplified maintenance and
lower cost, there is currently tremendous interest in replac-
ing wire-based lCNs with real-time, low power wireless net-
works running protocols such as IEEE 802.15.4e, WIA-PA,
WirelessHART and ISA100.11a [12]. These wireless proto-
cols are also expected to support newer applications such as
Smart City and environmental monitoring applications [10].

Low-power real-time wireless protocols typically work
by organizing nodes in cluster or star topologies (and some-
times in multi-hop topologies), and then using time-division
multiple access (TDMA) transmission scheduling [5]. This
is achieved by a cluster-head or gateway coordinator forming
a logical time-slotted superframe, and then assigning nodes
conflict-free transmission slots. The clusterhead coordinates
each node’s activity during the super frame by transmitting
a beacon to all the nodes in the cluster. There have been a
significant number of studies focusing on obtaining super-
frame based real-time wireless communication performance
in a variety of environments, including both channel hop-
ping and cluster-tree topologies [15]. However, these studies
typically assume that the workload is fully deterministic and
known in advance, which is not the case for many newer ap-
plications that can be supported by real-time wireless proto-
cols [24]. Then an intuitive question becomes, is it possible
to achieve both real-time performance and energy savings in
the face of uncertain workloads?

This paper aims to answer the above question through
the design and analysis of adaptive, superframe based tech-
niques designed to maintain real-time performance guaran-
tees while minimizing energy consumption. One of the ad-
vantages of time-slotted superframe approaches is that the
nodes can sleep, thereby conserve energy, when it is not their
turn to transmit. The basic idea in our approach is to as-
sign nodes time slots in order to meet their communication
transmission deadlines, but allow them to proactively wake
up and determine if other nodes have transmitted all of their
packets and no longer require their time slots. If this is the
case, a node can begin packet transmission before its sched-
uled time, and conserve energy by transmitting at reduced
modulation levels. In order to accomplish this, we have
designed a new low-power listening protocol called Hybrid
Low-Power Listening. The algorithmic and protocol chal-
lenge is to schedule packet transmissions in a manner that
reduces energy while maintaining real-time performance, as
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compared to the traditional static TDMA approach.
Our work makes the following contributions. We first

model a basic real-time superframe model, and propose the
use of Dynamic Modulation Scaling (DMS) in order to op-
portunistically save energy. DMS saves energy by trading-
off the time to transmit a packet with the modulation level
of signaling symbol [3, 21, 17]. By increasing (decreas-
ing) modulation levels it takes less (more) time to transmit
a bit but more (less) energy is consumed. Despite the wide
range of radios available for wireless sensors, the DMS fea-
ture is not commonly found on many systems. One exception
is CC1200 that supports 2-FSK, 2-GFSK, 4-FSK, 4-GFSK,
MSK, and OOK modulations [1].

Under the assumption of a workload that can only be
known probabilistically, we then formulate the joint real-
time and energy minimization as an optimization problem.
Since solving the optimization problem may be computa-
tionally complex, we then propose a set of polynomial-time
algorithms to address the joint real-time energy optimization
problem. To avoid excessive energy expenditures during the
times nodes proactively wake up to see if they can prema-
turely transmit, we propose and analyze a novel Hybrid Low-
Power Listening (HLPL) protocol. HLPL incorporates a new
technique called reverse-low-power listening (RLPL). RLPL
is a twist on traditional low-power listening (LPL) protocols,
which are well-known methods used in low data rate duty
cycling wireless sensor networks [16]. LPL protocols yield
significant energy savings. To our best knowledge this is
the first usage of a hybrid LPL technique in a joint TDMA-
based real-time energy savings protocol, as well as the first
one that combines beacon-enabled superframe concept and
low power listening.

Using HLPL, we evaluated our optimal and heuristic
algorithms against an oracle approach, which has perfect
workload knowledge, under a number of workload and dead-
line constraints. The results show that the hybrid HLPL
approach, coupled with DMS, can achieve significant en-
ergy savings while maintaining real-time performance, as
opposed to the traditional TDMA method.

2 Related Work
The beacon-enabled superframe concept is proposed as

an amendment to IEEE 802.15.4 standards and included in
802.15.4e [2], which is aimed towards real-time industrial
systems with the assumption that this concept can provide
real-time guarantees for wireless sensor networks (WSNs).
This standard defines contention-access-period, contention-
free-period and guaranteed-time-slot concepts. This ba-
sic approach is incorporated in industrial standards such as
WirelessHART, ISA 100.11a and WIA-PA [12, 23]. Our
work is fully compatible with these standards.

These standards emphasize the necessity of real-time per-
formance in wireless networks. Our work contributes to
these by adopting dynamic time slot allocation and adjust-
ment on-the-fly for generic superframe structure. Moreover,
we introduce a novel protocol called Hybrid Low-Power Lis-
tening (HLPL) as an efficient technique to eliminate the im-
pact of neighborhood for superframe structures by combin-
ing two seemingly contradicting ideas such as superframe

and low-power listening.
Our work incorporates TDMA, CSMA, and LPL MAC

layer protocols; hence, it can be categorized as a hybrid
MAC layer protocol. Hybrid MAC-layer approaches have
been studied for a number of years [14]. Some well-known
examples are Z-MAC, HyMAC, H-MAC, ER-MAC, and
Queue-MAC [18, 19, 13, 22, 28]. Our work differs from
these because of our introduction of the HLPL concept which
allows efficient on-the-fly slot adjustments (even in the exis-
tence of interference) and our use of DMS to save energy
while maintaining transmission deadlines.

Low-power listening (LPL) is a commonly used MAC-
layer protocol that reduces the energy consumption caused
by idle listening to the channel for an activity. In LPL, nodes
periodically wake up to detect the activities in the channel.
LPL techniques are generally categorized as either sender-
initiated, receiver-initiated, or hybrid. Another classification
line considers synchronous or asynchronous nature of the so-
lution. Our proposed HLPL protocol is a sender-initiated,
asynchronous LPL and includes a new technique to address
high false-alert rates caused by overhearing observed in the
traditional LPL protocol frameworks [7].

In our system DMS is simply a control knob that can be
replaced with any other energy saving mechanism but it is an
important concept for energy minimization and worth men-
tioning here. One of the earliest papers that applied DMS to
real-time traffic is [20]. That work has developed the con-
cept of adjusting modulation scaling on-the-fly for general
real-time purposes. However, WSN was not the main fo-
cus of the paper. The authors in [25] studied the applica-
tion of DMS on data gathering scheduling of wireless sen-
sors in a real-time scenario. They have shown that DMS can
achieve up to 90% energy savings. However, they have as-
sumed the same constant packet workload for each node in
the network. Our work differs from the above by consider-
ing a probabilistic workload and applying DMS to Time Di-
vision Multiple Access (TDMA) based scheduling. We be-
lieve non-deterministic workload is more realistic for many
applications of wireless sensors and is worth investigating.
DVS/DMS joint scheduling for probabilistic workloads is
considered in [3], but only for a simplified environment with
no interference and no co-scheduling of the nodes.

3 System and Communication Model
3.1 Application Requirements Model

Our work focuses on nodes that form single-hop com-
munication clusters. Each node is assumed to periodically
generate some number of packets that it must transmit by
a specific deadline. The actual number of packets changes
over time, and is only known probabilistically. In order to
meet these requirements we use a generic, beacon-enabled
superframe architecture for real-time communication. We
assume every node participating in the cluster can directly
communicate with the coordinator. We also assume that the
coordinator or clusterhead is not power-limited.

Our model is shown in Figure 1. As it is seen, at the be-
ginning of each superframe the beacon is transmitted by the
coordinator. The beacon contains management information
such as TDMA slot assignments, and is received by all the
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Figure 1: The lay-out of superframe

nodes in the cluster. This is followed by a contention access
period (CAP), allowing each node to talk to the coordinator
via CSMA. During this phase a node may send future work-
load information, or may ask to join or leave the cluster. The
contention free period (CFP) starts right after the coordinator
sends out a beacon. CFP consists of a series of Guaranteed
Time Slots (GTSs), which are assigned to specific nodes. In
order to provide real-time communication guarantees, each
node is assigned a number of GTSs equal to its worst-case
traffic workload.

The coordinator manages GTS assignments to avoid col-
lisions and provide real-time guarantees. CAP can be fol-
lowed by an inactive period during which the nodes can
sleep. A traditional approach is to have a node sleep during
the GTSs assigned to other nodes. In this paper, we introduce
a Hybrid Low-Power Listening protocol that allows nodes to
proactively remain awake during time slots assigned to other
nodes to attempt to opportunistically transmit their packets
at a reduced energy level.
3.2 Communication

We assume that each node is equipped with a DMS-
enabled radio capable of dynamically adjusting the modu-
lation levels. We adopt the basic energy model presented in
[21]. Specifically, the radio power consumption is divided
into two parts. The first is transmission power, denoted as
ps, and the second is electronic circuitry power, denoted as
pe. These values can be expressed as ps =Cs×φ(b)×Rs and
pe =Ce×Rs, respectively. Here, Rs is the number of symbols
transmitted per second and b is the modulation size. The val-
ues Ce and Cs are radio-specific; but Cs can be affected by the
current environmental conditions, such as atmospheric noise,
transmitter-receiver distance and temperature. In practice Ce
and Cs can both be approximated as constants. Finally φ(b) is
the convex scaling function of the modulation used depend-
ing on the modulation scheme. For QAM, φ(b) function is
2b− 1 [21], which shows the exponential increase in power
consumption in terms of the modulation level (pe is assumed
to be constant). The transmission time, on the other hand, is

1
b×Rs

which decreases linearly in terms of modulation level.
As a result, the tradeoff of DMS becomes exponential in-
crease (decrease) of transmission power with linear decrease
(increase) of transmission time for QAM [21].

Our HLPL protocol uses two schemes commonly used
in asynchronous duty-cycled low-power MAC protocols,
namely low-power listening (LPL) and embedding informa-
tion in short preamble (physical layer) packets. A typical
LPL protocol such as B-MAC [16] requires a sender to trans-
mit a long preamble. Receivers wake up, sense the preamble,
and stay awake to receive data. The duration of listening and
sleeping schedules can be adjusted to, for example, maxi-

Figure 2: Illustration of offline and online slack reallocation

mize energy savings, maximize throughput, or minimize de-
lay. Protocols such as X-MAC [4] extend this idea by using
preambles to embed information such as receiver target ad-
dresses. The advantage of using preamble addressing is a
reduction in the number of bits that need to be transmitted
and a flexible, user configurable information, since most ra-
dios allow the preamble sequence to be reprogrammed.

4 Hybrid Low-Power Listening (HLPL)
The advantage of DMS is that the nodes can minimize

overall energy consumption by using lower modulation lev-
els. The drawback is that lower modulation levels require
longer periods of time to transmit the same number of bits.
In our environment this means that more GTSs are required.
We assume that the nodes can cap their worst-case workload
in terms of the number of packets to send, but the actual dis-
tribution is only known probabilistically. This means that the
nodes may send fewer packets then their worst case estimate.
Hence, a node might not use all of the GTSs assigned to it. It
is therefore desirable to devise dynamic algorithms capable
of assigning these unused slots to other nodes. Further, it is
possible to use DMS techniques to extend transmission over
unused slots, in order to reduce their energy expenditures, as
long as the deadlines are maintained. We call the extra time
available from unused slots ”slack time”.

Figure 2 shows how different algorithms may behave
when slack time is available. Assume the initial GTS assign-
ments are shown in the superframe labeled a. Here node1 has
been assigned 3 packet-length GTS but it only transmits a
single packet. The next superframe, labeled b, shows a static
approach. The GTS assignments for node2 and node3 do
not change, and the available slack time remains un-utilized.
The superframe c shows a dynamic approach where these
slots are reallocated to node2, which can lower its modula-
tion level but still meet the deadline. A dynamic and fair ap-
proach, shown in superframe d, shows how the slack could
be allocated to both node2 and node3. Detailed descrip-
tions of these algorithms along with methods for determining
modulation levels for the new GTS distribution are provided
in Section 6.

For dynamic algorithms to succeed, the nodes need to be
aware when the currently scheduled node prematurely fin-
ishes transmission. Our approach works by having the coor-
dinator broadcast a relatively short preamble that contains
the address of the next node to transmit and the modulation
levels that the node will use. Nodes hear this preamble by
using low-power listening. The selected node may in fact be
granted permission to transmit early using the available slack
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Figure 3: Parameters of the Sleep-Listen Cycle

Figure 4: Possible intersection of listening period and
preamble

time.
Figure 3 shows the parameters of the listen-sleep cycle.

Here δ shows the wait-duration before the node starts its
low-power listening (LPL) cycle. The node is entirely asleep
during the period δ. For the LPL phase, we use parame-
ters α and γ, referred to as the sleep-duration and listening-
duration, respectively. γ is the time during which the node is
listening to the medium whereas α is the time during which
the node is in sleep mode.

The length of the coordinator’s preamble has to be greater
than the LPL period of α+ γ. Lpreamble ≥ α+ γ guarantees
that the receiver will hear the preamble. However, it does
not guarantee that the receiver will listen to the preamble as
a whole. Figure 4 shows the possible intersections of the
LPL period and preamble. Among these three possibilities,
the first one is desired, since the receiver receives the en-
tire preamble. In the second and third cases, the receiver
will hear the preamble; however, it will not know who the
preamble is addressed to. As a result, the receiver will need
to keep listening even after the preamble message is over, in
order to learn the address of the preamble. This adds to the
power consumption of the receiver. The coordinator needs to
make sure that after sending the preamble message, the in-
tended node starts transmitting. If not, the coordinator needs
to re-send the preamble. We evaluate the effect of these pa-
rameters in Section 6.

An additional problem exists in that the absence of trans-
mission activity being detected by a node does not necessar-
ily mean that nodes are not transmitting in the cluster. Two
nodes may be entirely out of each others’ radio range. An-
other possibility is that a node may be in another node’s inter-
ference range, but not its transmission range. This means that
a node can hear another node transmit but cannot decode the
transmission. Also, when a node is in the transmission range
of another node, it overhears the communication. However,
nodes are only interested in transmissions from the coordi-
nator. Listening to the other nodes in addition to the coor-
dinator increases the energy consumption. For our scheme,
the practical impact is that a node may not be able to hear
another node that is in the process of sending a packet to the
coordinator, and therefore cannot tell if the slot is used or
idle. Also, it may overhear the unintended communications

Figure 5: The steps of HLPL

with additional energy cost. We refer to these issues as the
neighborhood problem.

In order to overcome the neighborhood problem, we de-
fine the hybrid-low-power listening (HLPL) protocol. HLPL
is a combination of traditional low-power listening and a new
scheme called reverse-low-power listening (RLPL). On the
receiver side, the node needs to decide which LPL mode it
needs to be in. In HLPL, if a node receives a preamble and
learns that it is not scheduled next and it senses any trans-
mission during its first wake-up after this preamble, the node
goes into the RLPL (described below) stage. For non-zero
wait-duration values, when the node wakes up, it listens to
the channel for a preamble. If it senses any transmission and
this transmission is not a preamble then the node goes into
the RLPL stage. However, if this transmission is a pream-
ble that is not addressed to itself and if it does not hear any
transmission during its first wake-up after the preamble, it
goes into the traditional LPL stage.

Further, for zero wait-duration values, the nodes (except
for the first scheduled node) start with traditional LPL. Dur-
ing listening phases if they do not hear any transmission,
they stay in the tradition LPL stage. However, when a node
senses a transmission after a preamble, it goes into the RLPL
stage. The logic behind this process is the fact that hear-
ing a transmission during the first wake-up right after the
”false” preamble indicates that there is an interference since
the sleep-duration is smaller than length of a single packet.
If the node does not hear any transmission after a preamble
addressed to another node means there is no interference.
On the sender side, the coordinator waits for sleep-duration
amount of time before it broadcasts the preamble, unlike in
traditional LPL, where a sender broadcasts the preamble as
soon as the current node stopped transmitting. Waiting for
sleep-duration amount of time ensures that all the nodes that
are in RLPL mode are currently in the wait-for-preamble
stage. Figure 5 shows the flow chart for HLPL.

RLPL differs from traditional LPL in its conditions to
transit between listening and sleeping stages. In RLPL when
the node wakes-up and hears a transmission, it goes back to

4



Figure 6: Comparison of traditional LPL and RLPL

sleep. However, if it does not hear any transmission, it starts
listening, which is different than the traditional low-power
listening. In RLPL, this listening phase is called wait-for-
preamble stage. As explained, when a node stops transmit-
ting, the coordinator waits for sleep-duration amount of time
before it broadcasts the preamble. Hence, wait-for-preamble
stage can last at most for sleep-duration time. Wait-for-
preamble guarantees that when the coordinator broadcasts
the preamble, the nodes will be listening to the channel.

The core idea of HLPL is to save energy when there is
constant traffic in the network. In the absence of this, HLPL
behaves very similar to traditional LPL. Figure 6 aims to
clarify the difference between traditional LPL and RLPL
during a constant traffic. Under traditional LPL, the node
wakes up periodically and each time it senses a transmission.
Then it stays awake long enough to conclude that the trans-
mission is not from the coordinator. On the other hand, under
RLPL, the node first listens to the channel, realizes that it is
not a preamble, and goes to the RLPL stage. With RLPL,
a node still periodically wakes up but stays awake enough
to detect that there is some transmission. If so, the node
goes back to the sleep mode. Otherwise, the RLPL stage
concludes, and the node transitions to the wait-for-preamble
stage. It stays in that stage until it receives the preamble.

5 Joint Deadline-Energy Optimization prob-
lem

Based upon the number of nodes, the real-time con-
straints, and the actual workload, the question remains how
to set the modulation levels to achieve all deadlines and con-
serve energy. We now show how to formulate this question
as an optimization problem.

Earlier research in DMS has shown that there exists a
constant optimal modulation level that minimizes the energy
consumption while meeting all deadlines under deterministic
workloads [21]. However, in [3] observed that under proba-
bilistic workloads, this is not the case. Instead, the optimal
solution to minimize the expected energy consumption con-
sists in transmitting the first packets at low speed (modula-
tion), and increasing the speed gradually for the subsequent
packets when approaching the deadline. This is based on the
observation that in the more likely scenarios where the ac-
tual workload deviates from the worst-case, low modulation
levels are sufficient to meet the deadline while saving signif-
icant energy. However, as more packets are transmitted, the
modulation level is gradually increased to meet the deadline.
The framework to find the optimal modulation levels given
a deadline and probabilistic workload profile is called speed
scheduling in [3] and we also adopt this approach.

Table 1: List of symbols

symbol description
n number of nodes
mi upper limit on the number of packets nodei can send
D length of superframe
pi(k) the probability that nodei’s workload is k packets
ai(k) the probability that nodei sends k or more packets
bi(k) the modulation level used by nodei to send its kth packet
L the maximum transmission unit of the underlying communication

protocol
tbit the time to send a bit
tsymbol the time to send a single symbol
Rs symboling rate
bmin the minimum modulation level that a node can use
bmax the maximum modulation level that a node can use
β

i,k
l the binary indicator equals 1 for the selected

modulation level l for nodei’s kth packet
pe power consumption of the electronic circuitry
ps power consumption from transmission

In our application, each node has a varying communica-
tion workload determined by a known probabilistic distribu-
tion. The nodei can have from 1 to mi packets to transmit in
a given superframe. pi(k) represents the probability distribu-
tion function of nodei’s workload. Specifically, pi(k) denotes
the probability that nodei will transmit exactly k packets dur-
ing a superframe.

The energy needed to transmit a single packet, epacket , is
the product of time to send a single bit (tbit), the length L of
the maximum transmission unit (in bits), and the total power
(ps + pe). Moreover, tbit =

1
b.Rs

where b indicates the mod-
ulation level and Rs is constant. A typical value for Rs is
62500 symbols/second for 802.15.4 [8]. By using the radio
power consumption formula from Section 3, we get:

epacket = L · (ps + pe) · tbit =
L · (Cs ·φ(b)+Ce)

b
(1)

The total expected energy consumption is the sum of ex-
pected energy consumption of n nodes:

eexpected =
n

∑
i=1

mi

∑
k=1

epacket ·ai(k) (2)

In Equation (2) ai(k) = ∑
mi
x=k pi(x) indicates the proba-

bility that node i will actually transmit the kth packet. By
denoting the modulation level of the kth packet of the node i
by bi(k), we obtain:

eexpected =
n

∑
i=1

mi

∑
k=1

L.ai(k)
bi(k)

.[Cs.φ(bi(k))+Ce] (3)

Note that the kth packet of node i can potentially be trans-
mitted with any of the discrete modulation levels in the range
[bmin, ..,bmax]. Let β

i,k
l be a binary indicator variable ∈ {0,1}

to represent whether the kth packet of node i is transmitted
using the modulation level l or not. Then an integer pro-
gramming formulation to minimize the expected energy can
be obtained as:
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minimize
n

∑
i=1

mi

∑
k=1

bmax

∑
l=bmin

β
i,k
l ·

L ·ai(k)
bl

· [Cs ·φ(bl)+Ce]

(4a)

subject to
bmax

∑
l=bmin

β
i,k
l = 1 ∀i,k (4b)

n

∑
i=1

mi

∑
k=1

bmax

∑
l=bmin

β
i,k
l ·

L
bl .Rs

≤ D (4c)

β
i,k
l ∈ {0,1} ∀i,k (4d)

The objective function gives the sum of the energy con-
sumption of all the packets over all the nodes, by considering
their probability of being transmitted and all possible modu-
lation levels. The constraints (4b) and (4d) indicate that ex-
actly one modulation level will be assigned to each packet in
the workload. The constraint (4c) enforces that all the mod-
ulation levels must be selected in a way that all the transmis-
sions will be completed before the deadline (the end of the
superframe). Although integer programming problems are
known to be intractable in the general case, moderate-size
instances can be solved using the existing optimization tools
such as CPLEX.
6 Performance Evaluation

To evaluate the performance of the several variants of
the proposed framework under different workload condi-
tions, we developed a Matlab based simulation system. We
simulated a system with a coordinator and 10 nodes ar-
ranged in star topology, and with communication range set to
rcommunication = 30m. The work done in [9] shows that DMS
is effective for distances greater than 25 meters. Each node’s
workload in a superframe varies between 1 to 10 packets
and is derived from a probability distribution. We assumed
DMS-capable systems (with QAM modulation) where the
modulation levels can vary from 2 to 8.

We ran various simulations for different superframe
lengths (deadlines) to analyze how the energy consumption
varies. The minimum deadline D0 is assumed to be the su-
perframe length necessary to allow the transmission of the
worst-case workload (10 packets) by each node at the max-
imum modulation level, considered to be equal to 208 ms1.
The actual deadline for a given experiment is then computed
as D = D0

load where the system’s load is in the range [0.1,1.0].
We implemented the following algorithms:
i.) Oracle: This is the yardstick algorithm where the exact

number of packets that each node will transmit is known in
advance, at the beginning of each superframe. As a result,
it does not need to assume the worst-case workload. This
scheme does not require any LPL because it knows the exact
time each node will stop transmitting. Hence, the overhead
of LPL is also omitted. Although it is not a feasible algo-
rithm in practice, it provides the minimum energy consump-
tion that is theoretically possible for a given experiment.

1As in low-power listening mode each node can miss up to 2 preambles
before it can start transmitting, this duration as well as the transmission
delay are included in D0 to ensure feasibility.

ii.) Static: In this algorithm, assuming the worst-case
workload (i.e., 10 packets) for every node, the smallest pos-
sible modulation level with which the deadline can be met is
assigned to all the nodes in uniform manner statically. The
assigned modulation levels do not change for the duration of
the superframe, even though the actual workload of a node
may deviate from the worst-case (i.e., slack is not reclaimed).

iii.) Static*: This is similar to Static algorithm in the sense
that the modulation levels are computed statically and slack
is not reclaimed. However, instead of assigning a constant
modulation level to every node, the nodes use a speed sched-
ule that gradually increases the modulation levels by exploit-
ing the probabilistic workload profile. This is computed by
solving the integer programming problem with the objective
function given in Equation (4a).

iv.) Dynamic: This algorithm makes initial modulation
level assignments as in Static but then dynamically adjusts
the modulation levels in order to take advantage of the avail-
able slack time after the end of each node’s transmission and
allows only the following node to reclaim this slack time by
adaptively reducing the modulation level. At slack reclama-
tion times, each node uses the smallest feasible modulation
level to use the duration of its originally allocated slots and
reclaimed slots.

v.) Dynamic*: This algorithm enables dynamic reclaim-
ing of the unused slots by adaptively reducing the modula-
tion level at run-time. However, the initial modulation levels
are computed using Static* and the node that reclaims the
slack uses the speed scheduling solution to re-assign possi-
bly different modulation levels to each of its packets.

vi.) Dynamic f : The fair version of the Dynamic algo-
rithm in the sense that the available slack time is distributed
evenly among all subsequent nodes rather than being as-
signed entirely to the next node. The modulation levels of
all the subsequent nodes are dynamically adjusted after the
end of each node’s transmission to the lowest feasible mod-
ulation level.

Static, Dynamic, and Dynamic f are polynomial-time al-
gorithms. They only iterate over each modulation level (from
2 to 8) once and select the minimum feasible one. Static*
solves the Binary-Integer Programming Problem introduced
in Section 5 but it is executed offline by the coordinator and
only once unless the probability distribution changes. Dy-
namic* also solves the same Binary Integer Problem but only
for a single node. In practice, a look-up table can easily
be constructed with the pre-computed modulation levels as
a function of available slack.

Consider the example of 5 nodes with maximum work-
load of 10 shown in Figure 7. Initially, each node is assigned
slots with total length equal to 10 packets with the modula-
tion level b where b > bmin. When it is node1’s turn, it sends
6 packets using modulation level b which yields a slack time
of four packets long. Dynamic and Dynamic* allocate this
slack time to the next scheduled node, namely node2. Now,
node2 has effectively additional slots, giving a transmission
time equal to 14 packets. However, node2 will transmit at
most 10 packets so it can reduce its modulation levels. In
the case of Dynamic, node2 uses the lowest feasible modu-
lation, bD, where bD < b for each of its 10 probable pack-
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Figure 7: An example for dynamic algorithms

ets. Dynamic* uses the optimal modulation levels computed
by solving Equation (4a) only for its probabilistic workload
and slot length. When it is node2’s turn, it ends up trans-
mitting 5 packets implying there is a slack time of 9 pack-
ets with modulation b. Similarly, Dynamic and Dynamic*
assign this slack time to the next scheduled node, namely
node3. In the Dynamic case, node3 uses the lowest feasible
modulation level, bD′ , where bD′ ≤ bD ≤ b. node3 uses the
optimal solution computed for its own packets with its own
deadline. In the Dynamic f case, the 4-packet long slack
time after node1’s transmission is distributed among node2,
node3, node4, and node5. These nodes have 11-packet long
slack time with the modulation level b. The lowest feasi-
ble modulation level, bD f , that will meet with the deadline
with 40 possible packets is computed where bD f ≤ b. Af-
ter node2 stops transmitting, the 9-packet long slack is dis-
tributed among node3, node4, and node5. The new lowest
feasible modulation level bD′f

for all 30 possible packets to
meet the deadline is computed where bD′f

≤ bD f < b.

For each load value, our simulator generated 300 work-
load instances for 10 nodes using a discretized Normal distri-
bution function with the mean of µ = 5 packets and the stan-
dard deviation σ= 2. We also ran experiments with Uniform,
Pareto and Flipped-Pareto distributions. We will present de-
tailed simulation results for Normal distribution and under-
line the trends and relative ordering of the schemes for the
remaining distributions.

All the proposed algorithms run on the coordinator. The
computed modulation levels are transmitted to the nodes us-
ing beacons and preambles. Hence, the computation over-
head at the nodes is minimal. We set the preamble size to
14 bytes, which includes a 1 byte for sender address, a 1
byte for receiver address, 10 bytes for the calculated modu-
lation levels, and 2 bytes for the CRC footer. For the Static,
Static*, and Oracle algorithms the beacon size is set to 124
bytes; while it is 24 bytes for the Dynamic, Dynamic*, and
Dynamic f algorithms.

All the dynamic algorithms require same amount of sig-

naling. Furthermore, we assumed the coordinator uses the
maximum modulation level to broadcast the preamble. In
our simulation settings, the listening-duration γ = tsymbol and
the sleep-duration α = tpreamble− γ where tsymbol is the time
necessary to listen to 8 bits and tpreamble is the time needed to
transmit the preamble with modulation size of 8. For the Ce
and Cs values described in Section 3, we have used 15×10−9

and 12× 10−9 Joules, respectively, and bmin = 2, bmax = 8,
after [3, 21]. All the simulation results are presented at 95%
confidence level. In all the plots presented, the energy con-
sumption values of various schemes are normalized with re-
spect to the energy consumption of Static at load = 1.0.

6.1 Analysis of the Ideal Case
In this section we evaluate the proposed algorithms’ ideal

case performances. In ideal case, we assume that the nodes
have exact knowledge about the time at which they need to
wake up, in advance. The static algorithms can incorporate
this information in the beacon message. For dynamic al-
gorithms we assumed the same beacon message structure.
Obviously in this ideal case, the need for low-power listen-
ing disappears. Still, we believe the analysis of this case
reveals some important patterns because it points to the up-
per bounds on the energy savings that each algorithm can
provide with zero-overhead low-power listening.

Figure 8a shows the normalized energy consumption of
the proposed algorithms. We observe that on higher load val-
ues the Dynamic, Dynamic*, and Dynamic f algorithms give
significant energy savings compared to Static and Static* al-
gorithms. Moreover, Dynamic and Dynamic* perform better
than Dynamic f. However, at lower load values, the dynamic
algorithms provide only limited gains; this is because even
the static algorithms are able to assign low modulation levels
when the system has ample time to finish the workload.

It is important to compare Dynamic and Dynamic*. The
winner algorithm is Dynamic* as expected; but Dynamic
comes very close. Recalling that solving the integer pro-
gramming formulation for Dynamic* may be computation-
ally expensive, we can reach the conclusion that using Dy-
namic may be a reasonable approximate solution in practice.

6.2 Analysis of the effect of traditional LPL
with no interference

In this section, we will show the effect of low-power lis-
tening on the proposed algorithms. The ideal case where
the nodes know exactly when the previously scheduled node
stops transmitting cannot be implemented in real-life scenar-
ios. The nodes need to listen for a preamble from the coordi-
nator to see when they can start transmitting. One possibil-
ity is to use the traditional low-power listening (without the
HLPL enhancement described in Section 4) and our results
in this section consider this case, by further assuming that
the cross-node interference is negligible. In Section 6.3, we
will re-analyze these settings within the HLPL framework,
and by considering the impact of the interference.

Figure 8b shows the normalized energy consumption of
greedy low-power listening enabled algorithms. The com-
pared algorithms are greedy in the sense that they use tra-
ditional low-power listening with the wait-duration δ set to
zero. We need to recall that only Dynamic, Dynamic*, and
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(a) Energy consumption in the ideal case (LPL not
needed)

(b) Energy consumption of greedy-LPL where
δ = 0

(c) Energy consumption of smart-LPL where
δ =expected-wait-time

Figure 8: Simulation results with no interference

Dynamic f require low-power listening. The remaining al-
gorithms have pre-determined wake-up times. We can see
that the dynamic algorithms perform poorly compared to
static algorithms when load≤ 0.7. This is due to the fact that
for lightly loaded systems, the gain from dynamic reclama-
tion of the slack times is offset by the additional energy con-
sumption due to energy overhead of traditional low-power
listening activity. The dynamic algorithms’ energy perfor-
mance improves only when load approaches and exceeds 0.7
– this is when the overhead of low-power listening (neces-
sary to implement the reclaiming mechanism) becomes res-
onably low compared to the gains of adaptive modulation
downscaling at run-time.

Another possibility for the implementation of the tra-
ditional low-power listening in these settings is to have
each node wait for a time duration δ equal to the ex-
pected time needed for the completion of the packet trans-
missions by the previous nodes. The idea is to take advan-
tage of the known probability distribution. Rather than let-
ting nodes start low-power listening as soon as the collision-
avoidance-period starts, the nodes calculate the expected
number of packets that will be transmitted by the previ-
ously scheduled nodes based on the known probability dis-
tribution function. We call this scheme smart-LPL. The
expected-number-of-packets before nodei can start to trans-
mit is ∑

i−1
k=1 ∑

ml
l=1 pk(l)× l. The scheduling order is embed-

ded into the beacon message. Two observations are in order
here: i) if the node starts low-power listening before its ac-
tual turn then the node spends more energy for low-power
listening but does not miss any of its slack time. However, if
the node wakes up after its turn starts then the node loses
some portion of the given slack time (the node could not
reduce its modulation levels as much as it could have) but
spends less energy on low power listening. Hence, there is a
trade-off between the gain from low-power listening and loss
from smaller slack times. ii) The modulation level assumed
in the calculation of the expected-wait-time for the previous
nodes is another critical variable. The nodes know the ex-
pected number of packets to be sent before their turn, but
they do not know what modulation levels have been used by

the previous nodes (they cannot accurately map the expected
number of packets to the expected amount of waiting time).
In our simulation settings, we have used the modulation level
calculated by Static to compute the expected-wait-time val-
ues.

Figure 8c illustrates the normalized energy consumptions
with smart-LPL. Our analysis reveals that with smart-LPL,
the energy consumption of the dynamic algorithms is re-
duced compared to the greedy-LPL case.

One important observation here is the effect of low-power
listening on the ordering of the dynamic algorithms. In Fig-
ure 8b and Figure 8c, for the load value roughly less than
0.7, Dynamic f performs better than Dynamic, which out-
performs Dynamic*. This is in contrast to the ideal case re-
sults (Figure 8a). This is a result of two factors: i) lower
energy consumption in ideal case means the transmissions
are taking longer time which leads to higher overhead cre-
ated by low-power listening; ii) For the case shown in Fig-
ure 8c, the expected-wait-time values are calculated using
the modulation level given by the Static algorithm. How-
ever, higher ideal case performance implies that the previ-
ously scheduled nodes have used smaller modulation levels
than initially computed. This leads to less accuracy in pre-
dicting expected-wait-time and as a result, a longer duration
for traditional low-power listening. This is a crucial result
that shows how dynamic modulation levels can a ffect (up
to the point where the ordering of algorithms change) low-
power listening and becomes one of the fundamental reasons
necessitating the use of HLPL protocol.

6.3 Analysis of the impact of neighbor-
hood/interference and HLPL

In this section, our aim is to evaluate the effect of neigh-
borhood/interference on traditional low-power listening and
also include our newly proposed HLPL in the comparison.
In real settings when a node wakes up to check for a pream-
ble, it has to listen to its neighbors’ communications to make
sure that the communication it is sensing is not a preamble.
In order for a node to make sure that it is not receiving a
preamble, it may need to listen the channel for up to two
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(a) Energy consumption with greedy-LPL and inter-
ference

(b) Energy consumption with greedy-HLPL where
δ = 0 (with interference)

(c) Energy consumption with smart HLPL where
δ = expected-wait-time (with interference)

Figure 9: Impact of interference

preamble transmission times as shown in Figure 4. We used
the neighborhood size as 4 in our simulations, assuming the
interference range rinterference = 1.2×rcommunication after [27].

Figure 9a shows the normalized energy consumption with
traditional low-power listening and possible interference.
A striking observation is the significantly increased energy
consumption of the dynamic algorithms for most of the spec-
trum, due to the prohibitive energy consumption of false
alerts induced by the interference due to the naive appli-
cation of the traditional low-power listening framework. In
this case, the nodes receive false alerts from their neighbors
and they need to verify the content of these transmissions.
The length of preamble message is 14-byte long whereas the
MTU of 802.15.4 is 127 bytes. This indicates that even for
a single packet with the highest modulation level, the node
has to consume an additional energy of listening up to 2/3
of a packet (which is 84 bytes) to see if there is or there is
not a preamble addressed to itself. In a neighborhood of size
4, this may create and additional overhead up to 26 packets
per node. For lower modulation levels, this number is even
higher. As can be seen from Figure 9a, the energy consump-
tion of the dynamic algorithms tends to go down with the
higher utilization factor. This is due to the fact that, in lower
utilization factors, the nodes use lower modulation levels and
longer transmission times which significantly increases the
interference caused by the neighbors.

The overhead created by the interference also depends
on the values used for sleep-duration and preamble size. In
our simulations, we have observed that larger sleep-duration
values tend to decrease the overhead induced by the inter-
ference. However, longer sleep-duration has other conse-
quences such as longer superframe lengths and larger losses
in the available slack times. In order to ensure the dead-
lines, we have to account for the maximum time a node can
miss before it hears a preamble. This maximum time needs
to be added to the minimum feasible superframe length to
ensure the feasibility of the system. Some optimal values
of preamble length and sleep-duration values that will min-
imize this overhead may exist. However, we believe even
this minimized overhead will still be undesirable especially

for lower utilization factors where offline algorithms perform
well. Finding this minimized overhead value is left as a fu-
ture work.

Figure 9b shows the simulation results obtained after
adopting greedy-HLPL. Comparing to Figure 9a, one can
see the drastic energy savings provided by the greedy-HLPL.
Dynamic and Dynamic* outperform the Static algorithm for
load values higher than 0.7. For load value 0.85 and higher,
we observe that Dynamic and Dynamic f have less energy
consumption than Static*. Dynamic f outperforms Static*
for load values roughly after 0.93. If we compare Figure 9b
with Figure 8b, we can see that the performance of dynamic
algorithms in the presence of interference is rather close to
the one in the no-interference case. Figure 9c shows the
normalized energy consumption of smart-HLPL when wait-
duration is equal to expected-wait-time. This case further
reduces the overall energy consumption of dynamic algo-
rithms. In this case, Dynamic outperforms the static algo-
rithms for load values roughly larger than 0.70.

As can be seen, HLPL successfully addresses the neigh-
borhood/interference problems and yields significant energy
savings. Finally, the comparison of Figure 8a with Figure 9c
shows that the results of HLPL are reasonably close to the
ideal case, showing the potential of the framework.

6.4 Effect of different probability distribution
functions

All the results presented so far were obtained under the
Normal probability distribution. We have also repeated all
the simulations with Uniform, Pareto and Flipped-Pareto dis-
tributions with k= 10 (shape parameter), σ= 3 (scale param-
eter), and θ = 10

3 (threshold value).
An important difference is in terms of the average energy

consumption of different distributions. Our simulation re-
sults show that the Pareto distribution has the lowest aver-
age energy consumption followed by Normal, Uniform, and
Flipped-Pareto distributions. This is expected due to the fact
that each distribution function has different expected work-
load figures which are 3.22, 5.04, 5.5, 7.78 for Pareto, Nor-
mal, Uniform, and Flipped-Pareto distributions, respectively.
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(a) Flipped-Pareto distribution (b) Uniform distribution (c) Pareto Distribution

Figure 10: Energy consumption of smart-HLPL with different probability distribution functions

Figure 10 shows the energy consumptions for each prob-
ability distribution function. We can draw several conclu-
sions: i) Distribution functions did not have any major im-
pact on the results presented in previous sections. The order-
ing of the algorithms is still the same for each of the tested
probability distribution functions. ii) For all the cases ana-
lyzed in previous sections: the gap between the average en-
ergy consumption values of the algorithms got smaller for
Flipped-Pareto case especially for load values greater than
0.7. Also, the dynamic algorithms have performed very
close for these load values. iii) In the Pareto distribution
case, Dynamic and Dynamic f outperformed Static* for the
load value roughly 0.8 and Dynamic* did the same for 0.85.
These values are slightly higher than the results presented
in previous sections. iv) Finally, we can say that when the
nodes have higher workloads, the performance gaps between
dynamic algorithms get smaller and for the cases where the
nodes have lower workloads, the gap between Dynamic f
and Dynamic* as well as the gap between Dynamic* and Dy-
namic get larger for load values greater than 0.7.

6.5 Analysis of scalability
We have analyzed the scalability of HLPL in terms of the

neighborhood size, number of nodes, and number of pack-
ets. For the neighborhood size analysis, we created a simula-
tion with 20 nodes with the workload up to 10 packets with
Uniform probability distribution. We repeated the simulation
for neighborhood size from 1 to 20 for the load value of 1.
Furthermore, we conducted this simulation for greedy-HLPL
and smart-HLPL. The results presented in Figure 11 show
that the average energy consumption of dynamic algorithms
is an increasing but concave function of neighborhood size.
The reason behind this is the scheduling of the node-level
transmissions. A node that has the ith slot in the superframe
does not have to listen more than i−1 neighbors to check for
its preamble (for example, node5 will have to listen only to
the 4 of the previously scheduled nodes even though it can
overhear 19 other nodes in the cluster). Figure 11b shows
that, when the nodes wait for expected amount of time be-
fore they start reverse-low-power listening, we can say that
even with the largest neighborhood size, the dynamic algo-

(a) greedy-HLPL (b) smart-HLPL

Figure 11: Scalability in terms of neighborhood size

rithms outperform static ones. However, we cannot conclude
the same for greedy-HLPL. In the latter case, Static* outper-
forms Dynamic f for neighborhood size greater than 13.

In Figure 11a we see that the neighborhood size has sim-
ilar overhead for all dynamic algorithms since the concavity
of the graph looks almost identical for each of these algo-
rithms. The results shown in Figure 9c indicate that Dy-
namic* has lower energy consumption than Dynamic f for
a 10-node cluster with the neighborhood size of 4 at load 1.
However, the results shown in Figure 11b indicate that there
exists a neighborhood size where Dynamic f starts to outper-
form Dynamic*. This is because the low-power listening and
waiting for expected amount of time have different effects on
different dynamic algorithms due to previously used modu-
lation levels and mismatch between the expected-number-of-
packets and the expected-time (as explained in Section 6.2).

We have also analyzed the scalability in terms of num-
ber of nodes and packets. For the number of nodes case, we
have conducted simulations from 1 to 20 nodes each with
uniformly distributed workload of 10 packets and for the
number of packets case, 10 nodes with uniformly distributed
1 to 20 packets of probabilistic workload. Furthermore, we
have repeated these simulations with neighborhood size of 4
and with no neighborhood. Figure 12 shows the scalability
in terms of number of nodes and packets – the simulations
ran for the neighborhood size of 4 for both cases. The linear
regression analysis shows that for all of the scheduling algo-
rithms, the average energy consumption grows linearly with
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respect to number of nodes and number of packets.

6.6 Discussion of the Evaluation Methodology
Our simulator was developed to assess the performance

of the proposed schemes that combine DMS and low-power
listening. As a proof-of-concept approach, we focused
on a small-scale system connected through a star-topology
(single-hop) network, which may be found in industrial con-
trol applications. We believe that the presented results give
sufficient evidence on the applicability of the schemes, at
least in similar settings.

Radio irregularity in wireless sensor networks is a known
fact [26], which includes non-isotropic radio range and non-
isotropic signal strength phenomena. [26] indicates that, in
principle, radio irregularity has a more tangible impact on
the routing layer than the MAC layer. Consequently while
the main findings of our evaluation on our small-scale star
topology should remain valid even with the consideration of
the radio irregularity, a more sophisticated evaluation tool,
such as a network simulator augmented with radio irregular-
ity models (e.g., ns3), should be used when the framework
is extended to larger-scale systems or to different (e.g., mesh
or multi-hop) topologies. Radio irregularity will also have
an effect on the neighborhood size, whose analysis was pre-
sented in Section 6.3. In order to extend our work to net-
works with single-hop but asymmetrical topologies, the dis-
tances between the sensors and the coordinator need to be
known a priori in order to set-up a precise superframe length.
In the absence of this a worst-case distance can be consid-
ered. Notice that the radio irregularity and varying link qual-
ity will also translate to increased energy consumption due
to packet loss for all the schemes presented.

It should be noted that an extension to multi-hop topol-
ogy requires addressing several additional issues; in partic-
ular, scheduling of the transmissions on neighboring nodes
must be carefully planned to address collisions which may
have an accumulative and adverse effect on the end-to-end
delay. As an example, [6] proposes a graph-theoretical so-
lution based on a modified Bellman-Ford algorithm to find
minimum delay end-to-end TDMA schedules in multihop
wireless networks. In DMS-enabled settings, there will be
a need to extend those solutions to factor in the potential im-
pact of slack reclaiming on the end-to-end delay. We leave
this rather interesting problem as a future work.

6.7 Analysis of packet loss
To analyze the packet loss probability in an actual deploy-

ment, we implemented an emulation of DMS on Zolertia Z1
motes (that do not have DMS capability) using ContikiOS.
Specifically, the transmission times that correspond to indi-
vidual modulation levels are computed by scaling the trans-
mission time that corresponds to the maximum modulation
level which is 8. In general, the transmission time increases
linearly with the modulation level, because the time to send
a single bit is 1

b×Rs
where b is the modulation size and Rs is

a constant denoting the number of symbols transmitted per
second. Based on this relationship, the packet loss rate is
analyzed for different modulation levels in a series of exper-
iments.

We have used 10 Z1 motes with a coordinator mote con-
nected to a desktop computer which formed a star topol-
ogy. We have implemented the emulated version of proposed
Static and Static* algorithms on the conventional superframe
structure as explained in Section 3. At the beginning of each
superframe, the coordinator broadcasts a beacon which has
the CAP start and end times. During the CAP, each node is
allowed to request a GTS from the coordinator by registering
their workload probability. The coordinator then computes
the modulation levels according to the corresponding static
algorithm. These modulation levels and GTS start and end
times were embedded into the beacon of the next superframe
for every node. We have emulated the Normal probability
distribution of the workload as presented in Section 6.

It is expected to have low packet loss during CFP due to
minimized collisions. In our experiment, we have disabled
the low-power listening for the coordinator mote. We aimed
to analyze the packet loss as a function of transmission time
which varies with the modulation level. In our experiments,
retransmission during CFP is disabled and when the motes
did not receive an ACK after their transmission, they stopped
transmitting. We observed the probability of losing packet
during CFP as 1.3%. Theoretically this ratio should be the
same for any modulation level since in DMS we increase the
energy to noise ratio according to the scaling function. How-
ever, we have observed a slight increase on the packet loss at
reduced modulation levels, which shows that increased trans-
mission times have a higher (and increasing) impact on the
packet loss rate. The packet loss rates that are observed at
different modulation levels are summarized in Table 2. In
case of a packet loss, the motes add the missed packets into
their future workload while making sure their workload do
not exceed maximum workload to ensure the feasibility. This
fact does not change the modulation levels for the static algo-
rithms and the energy consumption increases proportionally
by the corresponding packet loss rate.

Table 2: Packet Loss Rate at Different Modulation Levels

Modulation Level 2 4 6 8
Packet Loss Rate 0.017 0.016 0.014 0.013

7 Conclusions
This paper addressed the problem of ensuring real-time

guarantees while minimizing the overall energy consump-
tion in wireless sensor networks. We have studied the dy-
namic reallocation of slack times of a superframe, which is
the mostly adopted technique for giving real-time guarantees
in industrial wireless standards, by using dynamic modula-
tion scaling. We also analyzed the effect of interference and
dynamic modulation levels on low-power listening. Lastly
but not the least, we have introduced a new low-power lis-
tening protocol called hybrid-low-power listening (HLPL) in
order to overcome the interference problem caused by neigh-
borhood. Our experiments show that dynamic slot readjust-
ment saves important amount of energy under highly loaded
systems. They also indicate that HLPL overcomes the in-
terference caused by neighborhood and significantly reduces
the overall energy consumption of the system.
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(a) number of nodes smart-HLPL (b) number of nodes greedy-HLPL (c) number of packets smart-HLPL (d) number of packets greedy-HLPL

Figure 12: Scalability in terms of number of nodes and number of packets
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