
Security Analysis of Contiki IoT Operating System

Jack McBride
School of Computing

University of Kent

jlgm2@kent.ac.uk

Budi Arief
School of Computing

University of Kent

b.arief@kent.ac.uk

Julio Hernandez-Castro
School of Computing

University of Kent

jch27@kent.ac.uk

Abstract
The Internet of Things (IoT) has introduced a myriad of

ways in which devices can interact with each other. The IoT
concept provides opportunities for novel and useful applica-
tions but at the same time, concerns have been raised over
potential security issues caused by buggy IoT software. It
is therefore imperative to detect and fix these bugs in order
to minimise the risk of IoT devices becoming the target or
source of attacks. In this paper, we focus our investigation
on the underlying IoT operating system (OS), which is criti-
cal for the overall security of IoT devices. We picked Contiki
as our case study since it is a very popular IoT OS and we
have access to part of the development team, allowing us to
discuss potential vulnerabilities with them so that fixes can
be implemented quickly. Using static program analysis tools
and techniques, we are able to scan the source code of the
Contiki OS systematically in order to identify, analyse and
patch vulnerabilities. Our main contribution is a holistic and
systematic analysis of Contiki, starting with an exploration
of its metrics, fundamental architecture, and finally some of
its vulnerabilities. Our analysis produced relevant data on the
number of unsafe functions in use, as well as the bug density;
both of which provide an indication of the overall security of
the inspected system. Our effort led to the finding of two
major issues, described in two Common Vulnerabilities and
Exposures (CVE) reports.
Categories and Subject Descriptors

I.6 [Systems security]: Operating systems security – Mo-
bile platform security; I.9 [Software and application secu-
rity]: Software security engineering
General Terms

Security, operating systems, static analysis
Keywords

Security analysis, Contiki, Internet of Things

1 Introduction
Many Internet of Things (IoT) devices are designed to

maximise convenience and performance, but these and other
characteristics such as time-to-market frequently come with
an associated cost in terms of security. As IoT devices are
becoming more integrated into our daily lives – for exam-
ple, in smart home and e-health scenarios – insecure IoT
decives can pose a very serious threat. One of the most re-
cent and consequential attacks came from the Mirai botnet
in late 2016 [11]. This botnet was created by malware which
amassed the collective power of several thousand compro-
mised IoT devices (mostly smart cameras) to launch a Dis-
tributed Denial of Service (DDoS) attack against several crit-
ical network infrastructures, notably the Dyn DNS service
provider. More security risks are anticipated, as according
to the 2018 market forecast by Forbes [10], the IoT market
is expected to expand to around USD 29.02 Billion by 2022,
with security and privacy remaining its biggest challenge.

According to the IoT developer survey of 2017 [12],
amongst the most popular operating systems in use are IoT
based variations of Linux and Windows, with open source
platforms FreeRTOS and Contiki set to experience “steady
growth” over the years to come. It is then paramount that we
turn our attention to the security of popular up-and-coming
systems ahead of time, before they are deployed to billions
of devices; particularly those which have small development
teams, and lesser exposure. Fortunately, many of these sys-
tems are open-source, so analysis can be conducted directly
on their source code. Projects such as Contiki, TinyOS and
RIOT feature open, publicly accessible repositories. This
paves the way for the usage of security techniques such as
static analysis, which can assist in determining the existence
of bugs before they are released into the wild.

Static analysis is a method of program debugging by ex-
amining the source code without execution. This is done
to assist a developer in understanding the structure of their
code, and find potential bugs emerging from it. Static analy-
sis tools are usually capable of additionally calculating some
valuable metrics of a code base, from which an estimate of
“bug density” of a system can be inferred. For example,
the “cleanroom development” technique is a formal method
of software engineering capable of achieving uniformly low
failure rates in delivered systems: 3 defects per 1000 lines of
code during in-house testing and 0.1 defects per 1000 lines
of code in the released product [6]. However, there is not cur-

278

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1

rently a standard measure for determining what may consti-
tute a bug. By investigating this in more detail, it is possible
to determine the stability of Contiki in relation to other sim-
ilar operating systems, and compare their progression over
time as the overall size and complexity of the source code in-
creases. On a larger scale, this also gives us valuable insights
into the developing landscape of IoT security, and helps de-
termining whether operating systems are becoming safer or
more unstable over time.

This paper explores the effectiveness of deploying static
analysis on the code bases of open source operating systems.
The main focus is Contiki: a popular IoT operating system
designed to support networks of low-power devices. We be-
lieve that due to its growing popularity, Contiki will soon
feature in a large number of IoT applications, and so would
benefit from a security analysis to identify bugs at an early
stage. We do so by deploying a range of static analysis tools
and combining their results. Besides our main aim of im-
proving the security of Contiki, we also intend to explore
and evaluate the capabilities of the tools.

The rest of the paper is organised as follows. Section 2
provides an overview of the Contiki operating system, which
serves as the case study of our approach. Section 3 describes
our methodology in addressing the challenges in securing
the Contiki IoT operating system through a static analysis
approach. Section 4 reports the results and analysis we per-
formed on Contiki, culminating in two Common Vulnerabil-
ities and Exposures disclosures discussed in Section 5. Sec-
tion 6 outlines related work, while Section 7 summarises our
paper and provides several ideas for future work.

2 The Contiki Operating System
Contiki OS is an IoT operating system designed to sup-

port networked, resource-constrained devices. Implemented
in C, Contiki prioritises lightweight memory management
and power efficiency, with typical configurations being de-
ployed using as little as 2 kilobytes of RAM and 60 kilobytes
of ROM running at 1 MHz [7]. According to the IoT devel-
oper survey of 2017 [12], Contiki is used in roughly 13.4%
of devices, and it is expected to grow steadily.

Designed to connect small, battery-powered devices to
the internet, Contiki provides lightweight implementations
for a variety of popular communication standards, includ-
ing IEEE 802.15.4, 6LoWPAN, CoAP, MQTT, TSCH and
RPL. Additionally, Contiki features a hardware-independent
software infrastructure, with minimalistic abstraction be-
ing provided by the core system. Given the increasingly
application-driven nature of sensor devices, this facilitates
system portability, as additional platform support can be im-
plemented in libraries and services on top of Contiki’s fluid
architecture.

Based on its support for a wide range of platforms and
architectures, Contiki is considered an effective prototyping
platform. Contiki has been integral to several recent IoT
projects, in which it has provided a basis for consumer tech-
nology and hobbyist projects alike, such as the LiFX smart
light bulb1, the Thingsquare cloud platform2, as well as gen-

1https://www.lifx.com/collections/featured-products
2http://www.thingsquare.com/

eral purpose sensor mote development such as the Zolertia
ReMote3. Another popular choice is the Sensortag platform
by Texas Instruments. One of its main products, the CC2650
LaunchPad4, encompasses an array of built-in sensors such
as a humidity sensor, gyroscope and accelerometer, ambi-
ent light sensors and an infrared temperature sensor into a
board priced at $29 (£23) per unit. The Contiki source code
also contains several examples of demo programs, which can
be swiftly loaded onto devices and booted into a fully func-
tioning Contiki system. In addition to its support for the
TI MSP430 and Atmel AVR platforms, Contiki is also used
across Redwire Econotags, Zolertia z1 motes, and ST Mi-
croelectronics development kits; and more recently, high end
processor architectures such as the ARM Cortex.

As an open-source project, Contiki is maintained by a
team of core developers alongside the technical community.
The official github repository is open to the public to engage
and contribute5. The latest stable release of the Contiki op-
erating system, version 3.0, was published on 26 Aug 2015.

3 Methodology
The first step was to grasp the scope of the system at hand.

With Contiki, this meant determining the size of the project,
as well as investigating how it has changed over the course of
its releases. We began by measuring the total number of lines
of code, expressed in Source Lines of Code (SLOC) over the
entire code base of the project, as well as for each directory.
This allowed us to establish granularity in the system as a
whole, and then in terms of its constituent components.

Once we had obtained a basic understanding of Contiki
through its global metrics, the next stage was to investigate
the deployment of static analysis tools on its source code.
Static program analysis is a security technique involving the
use of automated software tools on the source code of a soft-
ware system. The analysis is, in principle, “static”, in the
sense that the code being analysed is not executed; but in-
stead interpreted for errors, making it possible for the most
elusive bugs to be detected. Such bugs may otherwise be
completely imperceptible during execution time, leading to
unexpected and sometimes dangerous behaviour. We deploy
this analysis technique upon the Contiki source code to de-
termine the existence of bugs and logic flaws.

The aim of using static analysis in this project is to mea-
sure the overall “bug density” of the Contiki operating sys-
tem, as well as to locate any critical bugs. The bug den-
sity provides a measure of security for the scope of the sys-
tem, usually by determining how many bugs are likely to be
present in a given number of lines of code. From here, we
then perform a closer analysis upon the main areas where
the results show evidence of vulnerabilities. For example,
we consider the code in the ‘core’ directory to be of higher
priority than that in ‘examples’, on the basis that the former
exists in all devices running Contiki, while the latter is de-
ployed in particular platforms only.

As with any security analysis, providing a holistic and
complete overview of a system is paramount. In previous

3http://zolertia.io/product/hardware/re-mote
4http://www.ti.com/tool/launchxl-cc2650
5http://www.contiki-os.org/community.html

279

research, we had learned that on the market of static anal-
ysis tools, there are considerable gaps in terms of sensitiv-
ity, speed, usability and applicability. As such, the potential
of our work would not be realised with a single tool. Our
analysis, thus, starts with a range of eight tools of which
we fully utilised six: two are commercial (CodeSonar6 and
Understand7), the other four being open source (Cppcheck8,
Clang9, Flawfinder10 and RATS11). Our aim here is to ex-
pand upon the coverage of the source code, for there is a
high likelihood that some tools miss bugs which are spotted
by others. It is known that certain tools specialise at find-
ing particular bugs, so the aim is to gather different ones to
increase the potential for vulnerabilities to be found.
4 Results and Analysis

Contiki is a large piece of software containing many di-
rectories and providing support for multiple programming
languages. Furthermore, the software has evolved through
many versions (at least ten stable versions since its incep-
tion). As such, there are three main types of analysis we
carried out: by version, by programming language and by
directory. However, due to space constraints, we present the
results and analysis by version only. There are four main
factors we consider: size of code base, number of errors, bug
density, and unsafe function usage.
4.1 Code Base Size

We gathered source code metrics in order to understand
the scale of the Contiki code base. This first step was fun-
damental to understanding the system’s bug density, which
we calculated by determining the average number of bugs
present per 1,000 source lines of code (KSLOC). We deter-
mined how the size of Contiki had evolved over the past 10
years. This was used to investigate the system from a histor-
ical perspective. We believe that this provides assistance in
estimating how the future bug density could progress.
4.2 Errors

Having obtained a set of software metrics, our next di-
rection was to use the tools to briefly estimate the number
of errors in the Contiki source code. By “error”, we mean
a mistake, misconception, or misunderstanding that a soft-
ware developer made when writing a program. The presence
of errors may create security vulnerabilities and increase the
likelihood of bugs in the developed software system. The
aim here was to reveal information regarding the current ar-
eas which are most heavily affected by potential bugs. Fur-
thermore, we can observe the error rate over time between
consecutive releases, and draw conclusions and estimations
about its future evolution with regard to historical data. The
results can be seen in Table 1.

According to our findings, the number of potential errors
in Contiki has steadily increased over time, with the latest
release exhibiting upwards of 4,000 errors. This is perhaps
to be expected though, as over time the size of the code base

6https://www.grammatech.com/products/codesonar
7https://scitools.com/
8http://cppcheck.sourceforge.net/
9https://clang-analyzer.llvm.org/

10https://www.dwheeler.com/flawfinder/
11https://tinyurl.com/y94gyedm

Table 1. Errors detected by tool, for each Contiki version.
Version SLOC Flawfinder RATS Cppcheck

2.0 69165 1326 204 9
2.1 80029 1480 236 19
2.2 90217 1692 263 34
2.3 116648 2058 304 33
2.4 147042 2283 332 41
2.5 191187 2660 393 50
2.6 217308 2963 417 60
2.7 235456 3044 410 125
3.0 260346 3081 406 122
3.x 355913 3451 439 123

of any project grows leading to higher complexity levels and
therefore increasing the likelihood that bugs are introduced
into the system. That said, over time studies have increas-
ingly highlighted the dangers of unsafe programming prac-
tices in ANSI C. These findings are also generally reflected
in the outputs of each tool; each of which shows a gradual
rise in issues detected between versions.

4.3 Bug Density
This section describes our findings regarding the error dis-

tribution of the Contiki source code, commonly referred to
as the bug density.We postulate that there are several factors
affecting the bug density metric, such as code complexity,
the type of defects taken into account for the calculation, the
time scale over bug density calculation, developer and tester
skills, and sensitivity of tools used to locate bugs.

We argue that complexity of code is intrinsic to our case
study of an operating system. We intend to target the next
three points (type of defect, time taken, and developer/tester
skills) by automating the process with our tools. As a re-
sult, time will not be an issue and neither will tester skills.
However, the type of defects calculated presents an interest-
ing challenge. This is applicable to the tools we used, in that
each of them prioritise a different subset of bugs to detect. As
such, our results presented a spectrum of sorts: Flawfinder,
which reports argue is strong at minimising false positives,
reports a significantly higher value for bug density. RATS is
between the two extremes. We attempt to combat this by
generating an average bug density across the open source
tools we used, so as to scale the outputs appropriately. Table
2 provides the breakdown of the results.

We ran each tool to traverse all of the directories of the
Contiki releases over the past 10 years. Using the code met-
rics we obtained from SLOCCount, we generated a measure
of bug density in the Contiki operating system across its re-
leased versions.

Using this data, we then generated the total bug density
and scaled it appropriately to determine the number of bugs
per 1,000 lines of code. As there is no standard way of de-
termining bug density, we calculated it first by taking the
average number of bugs across the tools, as well as by gen-
erating a separate output for each individually, to allow us to
compare the differences in tool output.

The bug density was initially measured by code base to
establish a general overview of the bugs in Contiki. Whilst
the tools are capable of reporting on specific cases of error
prone behaviour in the source code, exploring those capabil-
ities is further considered in Section 4.4. During this stage,

280

the goal was to pinpoint the critical areas of Contiki, i.e.
most vulnerable, most popularly used, and those hosting the
highest concentration of potential bugs. This was used to
pick the areas of the system on which to deploy the more ac-
curate commercial tools. From our findings, we calculated
the average bug density of Contiki in terms of its releases
over time, and each specific directory of its latest release.

Table 2. Bug density per KLOC in Contiki, by version.
Version SLOC Avg # of errors Bug Density (KLOC)

2.0 69165 513 5.6312
2.1 80029 578.3333 5.1644
2.2 90217 663 5.2181
2.3 116648 798.3333 4.8881
2.4 147042 885.3333 4.4587
2.5 191187 1034.3333 4.1939
2.6 217308 1146.6666 3.8071
2.7 235456 1193 3.9609
3.0 260346 1203 3.6571
3.x 355913 1338.3333 3.1441

It appears that whilst the number of bugs is increasing
between Contiki releases, on average the bug density is de-
creasing. This is reflected both in terms of the average mea-
sure taken across all three tools, as well as in the individual
cases besides that of Cppcheck, for which the bug density
appears to peak twice: at Contiki versions 2.2 and 2.7, be-
fore settling. This may be attributed to Cppcheck’s tendency
to target a specific class of bug to minimise false positive re-
sults. However, it may also indicate a spike in numbers of a
particular bug which Cppcheck is receptive to, prompting a
more in-depth analysis.

Our investigation into the bug density per directory re-
veals a convergence of errors towards the tools, apps and
examples directories (of 18.09, 12.07 and 6.54 respectively).
This is not surprising, as these are the areas of the system
which contain some of the more complex code. Across the
majority of the analysis tools, the highest bug densities are
found in the tools and apps directories. This is also unsur-
prising, as most of the code from these directories form the
underlying functionality in Contiki. Once again, this result
is shown clearly in the relationship between Flawfinder and
RATS, but less so for Cppcheck: which interprets tools as
having a lower bug density. Surprisingly, the core directory
has one of the lowest bug density results at 3.743 per KLOC.
This could be down to a number of reasons, e.g. the Contiki
developers focus the majority of their time on maintaining
the core functionality of the OS hence it is more polished.

It is difficult to reach a general consensus on bug den-
sity based in the reporting by these tools as, for example,
RATS and Flawfinder show high levels, up to 29 potential
bugs per 1,000 lines of code. However, as the definition of
what constitutes a bug is down to interpretation, it may be
that this particular result simply demonstrates high levels of
false positives.

4.4 Unsafe Function Usage
For the tools that had the ability to report on unsafe func-

tion usage (which, in our study, are RATS and Flawfinder)
we collected statistics of unsafe functions from data longi-
tudinally over the past 10 years of Contiki releases, starting
from version 2.0 and concluding with the current release.

This avenue of work was conducted mainly in response
to previous research conducted by Alnaeli et al. [1] on Con-
tiki and its competitors, and borrows their definition of “un-
safe” in terms of functions written in C. Additionally, we
researched the CVE database for information regarding bug
types. Our primary consideration are the functions in the
C standard library that have been deprecated and replaced
with safer alternatives, such as strcpy and strncpy; the lat-
ter was introduced to combat buffer overflow vulnerabilities.
Additionally, we drew upon the extensive knowledge base
of professional C programmers, researchers, and documen-
tation found on various sites online.

Our results show that one of the more verbose static
analysis tools, Flawfinder, reports on a considerably higher
amount of issues that RATS. Flawfinder has specific features
for detecting the usage of unsafe functions including a built-
in database. For illustration, the results from Flawfinder can
be seen in Table 3.

Interestingly, there was a lack of consistency between the
findings we produced and those reported in the research by
Alnaeli et al.[1], in which the researchers postulated that
there were 1,859 unsafe functions detected in Contiki using
the UnsafeFunsDetector tool. This once again highlights the
clear lack of consistency between the reporting of static anal-
ysis tools; possibly resulting in a skewed impression across
a system’s security. As their UnsafeFunsDetector tool was
not made publicly available following the publication, it is
impossible to verify their claims.

Flawfinder reports very high use of the dangerous func-
tions memcpy and strlen. Using this, we can infer the cir-
cumstances under which the highest concentration of vul-
nerabilities in Contiki will arise. In this case, the comput-
ing of string lengths using strlen might lead to space is-
sues for null terminating characters (which strlen does not
compute). Further to this, memcpy is known to cause seri-
ous buffer issues; suggesting the possibility of buffer over-
flows in the system. Alternatively, had the programmers im-
plemented a safer version of memcpy (such as memmove) this
threat would be reduced.
5 CVE Disclosure

As a result of testing the Contiki operating system in our
testbed environment, we discovered two major exploitable
vulnerabilities, which we disclosed to the Common Vulner-
abilities and Exposures List12.
5.1 CVE-2017-7295

The first vulnerability resulted in a system crash for
a Contiki device running in network node. We discov-
ered this by tracing a use-after-free vulnerability in the
httpd-simple.c file in the cc26xx-web-demo, detected as a
result of our use of static analysis tools and debugging within
our test bed environment. A typical use-after-free bug oc-
curs when a previously released memory resource which has
been deallocated following its use, is called upon again by
the program. This can result in a program or system crash.
An attacker could abuse this to cause issues in a network de-
ployed in the real world, potentially using it as leverage to
disrupt or damage network infrastructure.

12https://cve.mitre.org/

281

Table 3. Unsafe function usage by Contiki version reported by Flawfinder.
Version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.0 3.x Total

puts 0 0 0 0 0 0 0 0 0 0 0
gets 0 0 0 0 0 2 2 2 2 0 8
fgets 0 0 0 0 0 0 0 0 0 0 0

sprintf 34 44 52 60 77 101 101 102 97 90 758
strchr 0 0 0 0 0 0 0 0 0 0 0
strlen 143 149 176 189 199 184 236 284 318 375 2253
sscanf 0 0 0 0 0 2 2 2 2 2 10
scanf 0 0 0 1 1 6 6 6 6 6 32

strcmp 0 0 0 0 0 0 0 0 0 0 0
malloc 0 0 0 0 0 0 0 0 0 0 0

free 0 0 0 0 0 0 0 0 0 0 0
fopen 0 0 6 6 11 11 8 10 10 9 71

localtime 0 0 0 0 0 0 0 0 0 0 0
system 9 7 12 14 14 16 15 14 16 17 134

memcpy 142 168 215 330 381 465 585 604 658 743 4291
alloca 0 0 0 0 0 0 0 0 0 0 0

CopyMemory 2 1 2 2 2 4 4 4 4 4 29
vsprintf 1 2 2 2 2 2 1 1 1 1 15
snprintf 0 0 10 12 17 32 33 33 33 44 214
vsnprintf 3 2 3 5 7 11 14 14 16 20 95
wsprintf 0 0 0 0 0 0 0 0 0 0 0

strtok 0 0 0 0 0 0 0 0 0 0 0
Total 334 373 478 621 711 836 1007 1076 1163 1311 7910

Figure 1. CVE-2017-7295 entry.

5.2 CVE-2017-7296
The flaw we discovered presents the possibility of a per-

sistent XSS attack on a Contiki device running as a native
node. In the MQTT/IBM Cloud configuration page run-
ning on the node, a lack of input checking in the text input
fields makes it possible for an attacker to submit malicious
Javascript code – tested in our case using the “Type ID” field.
When the devices MQTT configuration is updated with the
malicious script input, the stored code may be executed in a
users browser when they visit the configuration page to view
or update settings.

We documented this vulnerability with a description of
its reproducible steps, along with a video 13 in which we in-
jected our own arbitrary Javascript code into a device’s cloud
configuration page. We concluded that due to this vulnera-
bility, an attacker would be capable of remotely hacking into
any vulnerable system running Contiki 3.0.
6 Related Work

Whilst there have been almost universal benefits follow-
ing advances in the IoT, this technology introduces an in-

13https://tinyurl.com/y8glecv9

Figure 2. CVE-2017-7296 entry.

creased risk to the privacy and integrity of our assets and
lives.

The work of Zhang et al. [14] describes seven major prior-
ities and challenges currently faced in IoT research. Accord-
ing to their research, some of the field’s greatest challenges
are rooted in security; namely in enforcing a suitable stan-
dard of measures for protecting IoT devices. Particularly,
the authors acknowledge the emerging challenge of scalable
cryptography, emphasising the need for lightweight and IoT
driven solutions. The factor of software vulnerability in the
development stages is also cited as critical.

A core use case of Contiki is for wireless sensor net-
works (WSN), where a series of connected devices, referred
to as “nodes” or “motes” exchange data to provide a service
[8]. Based on time and execution overhead, most WSN de-
ployments do not possess robust protection measures. This
presents a high security risk, as many WSN systems are
featured in sensitive applications such as health monitoring,
where there is an intrinsic need for confidentiality and avail-
ability. Data integrity must also be accounted for, as critical

282

decisions are often made assuming that the data collected has
not been manipulated in transit. As such, security should not
be overlooked for the sake of efficiency.

Borgohain et al. [3] examine the features of several oper-
ating systems, including Contiki, mbed, and TinyOS. They
acknowledge the differences between the security of stan-
dard computer systems and those in IoT. In their work, they
emphasise the importance of data encryption, citing its inclu-
sion as “paramount” to the success of IoT. When discussing
the specific security implementations of each system, the re-
search postulates that end-to-end security such as TLS and
DTLS is imperative for secure communications. Both Con-
tiki and TinyOS implement this, with the former also featur-
ing “ContikiSec” for additional network layer security [4].
The authors later emphasise the need for improving the gen-
eral robustness of IoT systems against dictionary attacks,
based on the possibility for weak, derivative passwords to
be brute-forced [2]. This was showcased in recent hacking
attempts on Virgin media routers, which in 2017 faced is-
sues regarding the default password of the “Super Hub 2”
network router. Based on the weakness of the password, at-
tackers were able to remotely leverage unsolicited access to
IoT devices on the home network, subsequently compromis-
ing over 800,000 Virgin customers14. As the IoT continues
to expand, we propose that regular surveys would be a use-
ful asset for monitoring security at a general level. Our re-
search builds upon this idea, by running static analysis tools
over the code bases of popular IoT systems, and generating a
measure of bug density across consecutive software releases
to provide historical coverage.

Security analysis at the code level has developed consid-
erably since the times of tools such as ITS4 [13]. It is well
understood that the majority of vulnerabilities discovered in
a system are resolvable during the implementation stage of
the development life cycle. However, due to industry-wide
scaling of code bases as projects develop, manual code anal-
ysis becomes an inefficient, arduous and - in some cases -
impossible task [5]. More so than ever, we rely upon the use
of automated tools to provide error detection.

In recent years, static analysis tools have evolved way be-
yond simple pattern matching; incorporating developments
such as abstract syntax trees (AST) for semantic evaluation
and control flow graphs (CFG) to measure all possible exe-
cution paths of a program. The latter is a characteristic of
modern state-of-the-art tools such as CodeSonar, which uses
deep analysis techniques for scanning distributed systems.
As these systems continue to grow, the appropriate scaling
of static analysis tools will be critical. Researchers have pro-
posed that the security coverage of static analysis tools will
assist IoT developers to maintain their software more effec-
tively, without creating hindrances in the system develop-
ment life cycle [9].

7 Conclusions and Future Work
This paper evaluated several ways in which researchers

can address the challenges of securing IoT devices. In par-
ticular, we used a number of quite different static analysis
tools for finding potential vulnerabilities at the operating sys-

14https://tinyurl.com/yd22ekvd

tem level. We put our focus on assessing the security of a
popular IoT operating system called Contiki, by carrying out
static analysis on its code base, resulting in the identification
of two major vulnerabilities and a number of other minor is-
sues, that have since been reported and patched.

We have demonstrated the effectiveness of deploying
static analysis tools to improve system stability, by locat-
ing and patching some critical flaws in Contiki, with the
assistance of state of the art tools including CodeSonar,
Flawfinder and Cppcheck. Further to this, we have deter-
mined a general measure of bug density of the operating
system, as well as an overview of software metrics obtained
through the use of SLOCCount.

This work served as a pilot and a feasibility study for our
approach in leveraging static analysis techniques for finding
security vulnerabilities in IoT software. The results from our
preliminary study have so far been promising. We plan to in-
vestigate the effectiveness of our approach by running it on
other IoT systems, or even on more generic operating sys-
tems such as Android. Lessons learned from this investiga-
tion will allow us to develop and refine a more robust frame-
work to assist software developers to implement more secure
IoT software.
8 References
[1] S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and

K. Yelamarthi. Vulnerable C/C++ code usage in IoT software sys-
tems. In Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum
on, pages 348–352. IEEE, 2016.

[2] M. B. Barcena and C. Wueest. Insecurity in the Internet of Things.
Security Response, Symantec, 2015.

[3] T. Borgohain, U. Kumar, and S. Sanyal. Survey of Operating Systems
for the IoT Environment. arXiv preprint arXiv:1504.02517, 2015.

[4] L. Casado and P. Tsigas. Contikisec: A secure network layer for wire-
less sensor networks under the contiki operating system. Identity and
Privacy in the Internet Age, pages 133–147, 2009.

[5] B. Chess and G. McGraw. Static Analysis for Security. IEEE Security
& Privacy, 2(6):76–79, 2004.

[6] R. H. Cobb and H. D. Mills. Engineering software under statistical
quality control. IEEE Software, 7(6):45–54, 1990.

[7] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight and
flexible operating system for tiny networked sensors. In Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference
on, pages 455–462. IEEE, 2004.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of
Things (IoT): A vision, architectural elements, and future directions.
Future generation computer systems, 29(7):1645–1660, 2013.

[9] R. Huuck. IoT: The Internet of Threats and Static Program Analysis
Defense. In EmbeddedWorld 2015: Exibition & Conferences, page
493, 2015.

[10] B. Joffe. Six Key Internet Of Things
(IoT) Trends To Watch For In 2018.
https://www.forbes.com/sites/benjaminjoffe/2017/07/25/hardware-
trends-2017-complete-slides-and-some-analysis/, 2017.

[11] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. DDoS in the IoT:
Mirai and Other Botnets. Computer, 50(7):80–84, 2017.

[12] I. Skerrett. IoT Developer Survey 2017.
https://www.slideshare.net/IanSkerrett/iot-developer-survey-2017.

[13] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw. ITS4: A static vul-
nerability scanner for C and C++ code. In Computer Security Appli-
cations, 2000. ACSAC’00. 16th Annual Conference, pages 257–267.
IEEE, 2000.

[14] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh. IoT security: ongoing challenges and research opportunities.
In Service-Oriented Computing and Applications (SOCA), 2014 IEEE
7th International Conference on, pages 230–234. IEEE, 2014.

283

