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Abstract

The Internet of Things (IoT) has become a reality: small
connected devices feature in everyday objects including chil-
drens’ toys, TVs, fridges, heating control units, etc. Sup-
ply chains feature sensors throughout, and significant invest-
ments go into researching next-generation healthcare, where
sensors monitor wellbeing. A future in which sensors and
other (small) devices interact to create sophisticated appli-
cations seems just around the corner. All of these applica-
tions have a fundamental need for security and privacy and
thus cryptography is deployed as part of an attempt to se-
cure them. In this paper we explore a particular type of flaw,
namely side channel information, on the protocol level that
can exist despite the use of cryptography. Our research in-
vestigates the potential for utilising packet length and timing
information (both are easily obtained) to extract interesting
information from a system. We find that using these side
channels we can distinguish between devices, different pro-
grams running on the same device including which sensor is
accessed. We also find it is possible to distinguish between
different types of ICMP messages despite the use of encryp-
tion. Based on our findings, we provide a set of recommen-
dations to efficiently mitigate these side channels in the IoT
context.
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1 Introduction

The expression ‘Internet of Things’ (IoT) can refer to a
multitude of objects and protocols, which share that they
have been purposefully designed for resource constraint en-
vironments. Whereas the typical TCP/IP network stack pro-
duces considerable overhead to achieve quality of service for
applications that are based on it, the nature of many IoT
‘things’ is such that a full implementation of it would not
be practical. Often ‘things’ are sensor, which are devices
that have to function on little resources (most importantly
power). Thus a whole host of new networking protocols have
been developed over the years to cater for such resource con-
strained devices: 6LoWPAN is the ‘tiny’ version of IPv6,
UDP tends to be used instead of TCP/IP, DTLS can be used
for end-to-end security or one can directly invoke 802.15.4
security which is part of 6LoWPAN, and finally CoAP(s) is
the replacement for HTTP(s). Thus there are two options
(802.15.4, and DTLS) to secure communications between
the ‘things’ and a server/gateway.

Implementing cryptography correctly and securely has
proven to be a massive challenge as evidenced by the multi-
tude of implementation attacks over the years. Triggered off
by research that showed how to utilise additional informa-
tion via timing and power side channels [13], many different
flavours of side channel attacks were discovered over the last
decade. Many attacks use phyiscal information (such as low
level execution timings or power consumption) to recover
secret keys, but many other attacks use protocol level infor-
mation (such as packet lengths, types of packets or protocol
messages) to recover information about plaintexts, devices in
the network, or the network itself. There exists a consider-
able body of work in the context of conventional, i.e. HTTPs
over TCP/IP network, but the applicability of (some) of these
attacks in the context of a typical IoT protocol stack is lack-
ing. This is the gap that we would like to address with this
work.

This paper is structured as follows: after reviewing some
relevant attack paths for HTTPs over TCP/IP in the following
subsection, we briefly explain our experimental network in
Section 2. We discuss the impact of packet length leakage
in Section 3, followed by an analysis of the response time
leakage in Section 4. We summarise our work in Section 5.

1.1 Related Work
Traffic Analysis is well studied in the context of encrypted
Internet traffic, especially for web applications based on



HTTPs and TCP/IP. The landmark study by Chen et al. [1]
discussed different side channel attacks against web applica-
tions and [23] studied the practicability of an attack specifi-
cally targeted Google and Bing search boxes. Later work by
Mather and Oswald [19] proposed the use of Mutual Infor-
mation to pinpoint the potential leakage points in web traffic.
For non-HTTPs applications, the papers [3], [29] and [2] de-
scribed attacks against encrypted text, voice and video traf-
fic respectively. Machine learning is widely used to analyse
the traffic, and behaviours of different classifiers are studied
by [10] and [6]. Based on all these published works we can
conclude that two features, the packet length and response
time, are the most exploited ones among all attacks. Differ-
ent countermeasures were studied by [30], [18] and [7].

Reflecting on IoT applications, we stipulate that most of
these attacks may still be applicable, as we intend to demon-
strate in this paper. Considering the future vision that IoT
devices could be indeed connected to the Internet with even
more sensitive data flowing over different networks, the task
of designing secure IoT applications becomes increasingly
challenging.

With regard to the aspect of protocol design, the recent
paper [21] summarised some known flaws of 6LoWPAN, in-
cluding its susceptibility to the Fragmentation Attack [12],
Sinkhole Attack [16], Hello Flood Attack [24], Wormhole
Attack [11] and Blackhole Attack [27]. In addition, [22] re-
ported certain problematic designs in 802.15.4 security [9].
However we do not discuss further these particular design
flaws as they touch on a different aspect of the security issues
in 6LoWPAN compared to what we address in this paper.

2 Our Experimental Network

Our experimental network is constructed using two differ-
ent devices. These are a TelosB and a CC2538. The TelosB
is a low cost sensor powered by an MSP430 with an AES
co-processor. It represents typical low-end devices. The
CC2538 is the high end device powered by an ARM Cortex-
M3 with multiple cryptographic processors including AES,
RSA, SHA-2 and ECC, suggesting that it is suitable to de-
velop secure applications.

Both devices are supported by the Contiki OS. We
adopted the default settings of the Contiki OS, except for en-
abling 802.15.4 security [9] for some experiments. Note that
the Contiki MAC [4] is chosen by default over TSCH [25].
For Layer 4 [8] and above protocols, we went with the widely
accepted combination of CoAP [?], and DTLS [?](optional)
over UDP [?]'. Table 1 summarises our choice of protocol
stack.

Table 1. Protocol stack for our experiments(* is optinal)

Physical

Link 802.15.4
Network 6LoWPAN
Transmission UDP
DTLS*
Application | CoAP/CoAPs*

'CoAPs is equivalent to CoAP over DTLS.

2.0.1 802.15.4 and DTLS

In our setting, there are two standards available for
packet encryption, namely 802.15.4 security [9] and DTLS
[?]. 802.15.4 security is provided by the noncoresec [15]
API, which implements 802.15.4 authenticated encryption
with AES-128 CCM* [5] using a hard-coded key shared
by the whole 6LoWPAN network. We chose tinyDTLS
as library for the DTLS protocols, because it provides a
minimum DTLS implementation that supports two cipher-
suites which are TLS_PSK_WITH_AES_128_CCM_8 [?] and
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [?] respec-
tively. Evidently, they both utilise AES-128 CCM* as the
packet encryption method.

3 Exploiting Packet Length Information

As our brief survey of traffic analysis via exploiting
packet lengths showed in Section 1.1, the packet length has
proven to be a powerful side channel for the classical Internet
protocols. It is worth noting that this side channel is ‘noisy’
in the classical Internet setting: websites or web applications
in this setting typically feature advertisements, which impact
on packet lengths; TCP/IP allows to fragment packets and
then reassembles them, a feature which is not presented in
UDP. Thus, due to the nature of UDP exploiting the packet
length as side channel should be easier in the IoT setting.

Clearly then, any web application style implementations
involving an IoT device will thus be extremely vulnerable to
attacks such as [1]. In the absence of this scenario for state-
of-the art IoT applications, it still sends a cautionary warning
to developers: binary responses (e.g. ‘yes’ vs. ‘no’, or ‘on’
vs. ‘off”) must always be coded via a binary variable and not
via strings because these will have different lengths, which
are directly visible via the packet length.

In the remainder of this section we will highlight further
problems that arise if packet lengths leak information.

3.1 Distinguishing ICMP Messages

The Internet Control Message ProtocolICMP) [?] per-
forms the management tasks in a network, such as link es-
tablishment and routing information exchange. As explained
before we utilise the open source system Contiki, which sup-
ports a (sub)set of the ICMP standard (we list the supported
ICMP messages in Table 2). Many ICMP messages are ideal
for network discovery and exploration, although the purpose
of ICMP is to send error messages to the source IP address
if standard IP packets fail to be transmitted correctly.

Generally, ICMP messages can be protected by either us-
ing the secure ICMP messages as described in [?], or relying
on the lower layer encryption provided by 802.15.4. Contiki
OS does not have the former implemented, hence 8§02.15.4
security is the only option currently. We simulated a 6LoW-
PAN network with 802.15.4 security enabled (with strongest
encryption and authentication). We configured the nodes to
also generate random UDP packets. Despite the fact that all
ICMP messages were encrypted, our experiments show that
several ICMP messages can be identified by their packet size
and MAC destination. Table 2 summarises the packet fea-
tures. The value x denotes the size of user defined data in
bytes.
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Table 2. Metadata of Contiki Supported Packets

Packet Size (bytes) | MAC Destination
DIS 85 broadcast
DIO 118/123 broadcast/unicast
DAO 97 unicast
NS 87 broadcast/unicast
NA 87 unicast
PING 101 +x unicast
UDP Multicast 85+x broadcast
UDP Unicast 107 +x unicast

Among the unicast packets, PING and UDP have at least
101 and 108 bytes?. Therefore, DAO can be uniquely iden-
tified as the shorter unicast packet of 97 bytes. For the same
reason NA and unicast NS can also be distinguished from
other packets by filtering packets of 87 bytes. Considering
that NA is sent as a response to NS according to the proto-
col, one can always identify the first being NS and second
being NA.

Similarly, unicast DIO can be identified as the 123 bytes
packet followed by DIS, where the later has a unique 85 byte
size. However, there is a potential of false positive induced
by PING or UDP packets with user defined data crafted to
have the same packet length®. PING could be recognised by
its pair-wised appearance, as the response would have nearly
the same meta data as the original request, except the ex-
changed source and destination. For broadcast packets, DIS
can be easily identified by its unique 85 bytes packet size.
Others like broadcast NS can be identified by the followed
characteristic NA response; and packets of 118 bytes those
are periodically broadcasted are likely to be DIOs.

In summary, among all the packets, DAO, NA, NS, DIS
can be identified with certainty. DIO and PING cannot be
certainly identified but they both have significant characters.
Notice that the above contained all ICMPv6 messages sup-
ported by Contiki; therefore UDP packets can be reversely
filtered, although in some cases they get mixed with DIO
and PING.

Although leakage in ICMP messages does not directly
lead to any breach of application data, it would still be harm-
ful by providing the adversary with information about the
state of the network, including which nodes recently joined
etc. Specifically DAO is always sent from a child to its par-
ent and can be uniquely identified; therefore together with
MAC addresses the adversary may exploit it to draw a graph
that shows the parental relations in the network. In addition,
these information can also be exploited by attacks as in [17].

3.2 Distinguishing Different Devices

In the classical Internet world, ICMP has been well
known for its use for OS fingerprinting [26]. In the case of
the IoT, this could be possible as well (as different OS sup-
port different subsets of ICMP), however an additional at-
tack vector exists. This is because different IoT devices have

2PING can be sent without user defined data and UDP packets requires
at least 1 byte.
322 bytes for PING and 16 bytes for UDP.

different hardware limitations or drivers. We noticed that
our TelosB [20] discards all packets exceeding 127 bytes*
whereas our CC2538 handles packets even up to 160 bytes.
Therefore an adversary can immediately rule out TelosB
whenever a packet larger than 127 bytes processed by the
target.

4 Exploiting Response Time Information

The response time is another major feature that has been
previously exploited in Internet traffic analysis attacks. Like
in the case of exploiting packet lengths, we would expect
that the same attacks (as in the classical Internet setting) can
be applied to 6LoWPAN traffic. Indeed, like in the previous
section, we would expect that they will work even better be-
cause the accuracy of timing measurements can be greatly
improved for 6LoWPAN traffic: this is because there are
fewer noise sources in the traffic, the devices are physically
close to each other and uses RF to communicate, the adver-
sary can remove the RTT noises by measure the packets on
the server side, and the performance of the constrained de-
vices is low and hence gives a better resolution of the execu-
tion time.

4.1 Distinguishing Different Sensors

The first application of timing analysis that we describe
is to distinguish between different sensors that are accessed
on a device. For this purpose we set up an experiment on a
CC2538, which has three on-board sensors: Vdd, tempera-
ture, and an Ambient Light Sensor (short ALS). We access
these via CoAP [?], which is a protocol designed for con-
strained devices that provides an universal interface for ac-
cessing resources. CoAPs is the secure version which stands
for CoAP with DTLS.

Due to the different physical characteristics of the sen-
sors, there could be a variance of time that is required for
reading the measurements. We investigated whether such
variances could be observed through the packet response la-
tency. If this was the case, then an adversary could learn the
nature/purpose of sensors on a network by observing their
response time.

We thus set up an experiment on CC2538, using all three
sensors from “cc2538-demo”. We used CoAP from the “er-
rest-example” in the Contiki OS source code, as there is no
CoAPs implementation available. Although DTLS process-
ing would definitely have an impact on the response latency,
we argue that such impact would be independent to the sen-
sors being accessed; hence similar result can be equally ex-
pected for CoAPs. We carefully controlled other factors, in-
cluding URIs, data representation and code flow, to be uni-
form for all three sensors in order to guarantee a controlled
environment.

Table 3 summarises the result. It shows that ALS takes
about 2ms longer and hence can be easily distinguished. Vdd
and temperature have much more strongly overlapping distri-
butions, and thus are more difficult to distinguish. Neverthe-
less these results confirm our hypothesis: different sensors
have different latencies and these leak through the response
time. An adversary who is interested in finding out informa-
tion about devices on a network might thus be able to match

4MTU specified by 802.15.4 standard.



Table 3. CoAP Response Latency for Sensor Readings on
CC2538

Average (ms) Range(ms)
Vdd 9.622 [9.388, 10.318]
Temperature 9.835 [9.525, 10.318]
ALS 11.651 [11.338, 12.031]

Table 4. PING Response Latency

CC2538 TelosB
Average(ms) 9.56 17.03
Range(ms) | [9.16, 10.06] | [16.49, 17.68]

the (known) behaviour of ‘interesting’ sensors to what they
observe on the network. We remark that this could be use-
ful even in the setting where the sensors transmit their data
unencrypted: after all they might return only some reading
without a unit of measurement; thus seeing their return data
might not as such reveal their nature.

4.2 Distinguishing Different Devices

As we observed before, different devices have differ-
ent underlying hardware and thus different computational
power. This implies that there could be the potential that
different devices take different amounts of time to process
the same message. Because ICMP messages are standard-
ised, they are particularly suitable for this purpose. Among
the different ICMP messages, PING is especially ideal for
two reasons:

1. It is mandatory in the ICMP standard.

2. It only swaps the source and destination address of the
packet; thus minimises different code path in protocol

processing.
Table 4 shows the PING response latency on CC2538 and

TelosB. The result confirms that these devices can be distin-
guished by PING response latency.

4.3 Distinguishing Programs

We remarked before that the functionality of a sensor is
potentially valuable information. For instance some sensors
might be predominantly passive, e.g. they might read the
temperature and report it back periodically, whereas some
sensors might control something upon receiving commands.
Thus knowing the functionality enables an adversary to make
(more) sense of the observed traffic in the network. This
could be done if a “fingerprint’ could be produced for differ-
ent programs. From an adversary’s perspective a positive re-
sult would imply that they could ‘fingerprint’ products which
are on the market and thus use this information to infer what
program is running on a target device.

To illustrate why this might work, we now look at Fig-
ure 1. It illustrates two sensors receiving the same service
request. In our example, at the time of receiving the request,
Sensor Node 1 was idle and hence responded immediately,
whilst Sensor Node 2 postponed the request for reading a
sensor. Clearly, the response time on Sensor Node 2 would
appear longer than that of Sensor Node 1.

Request Response

A

Sensor Node 1

A\ 4

Process Request

Request Response
A

Sensor Node 2 | Reading Sensor [T PPt E—— >

Figure 1. Variations in Response Time

In real life, most sensors are programmed in a loop; there-
fore the same code fragments are repeated through the life
time of a sensor. Each code fragment takes different time to
execute and hence the response times vary. This behaviour
could be statistically analysed and the resulting distribution
could be stored as a ‘fingerprint’ .

For this fingerprinting scenario, we must assume the ad-
versary has the pre-knowledge of potential programs and can
fingerprint them (or that they have access to a database that
contains this information). To identify an unknown program
running on target sensor, the adversary collects a new finger-
print and then matches it to available fingerprints. Clearly, to
effectively launch the attack, the adversary needs to be able
to send the request to a targeted sensor (requests with short
predictable processing time are preferable as they induce less
noise).

In practice, the request can be instantiated by several mes-
sages defined in the sensor network protocols. PING is ex-
ceptionally ideal as it is mandatory in the ICMP standard [?]
and has only negligible computation. Other options but not
excluded are Heartbeat in DTLS [?], Reset in CoAP [?], etc.

Figure 2 shows an example of PING packets captured on
an CC2538 running Contiki OS. The response time, which
refers to PING Response Interval, PRI, is defined to be the
time between a PING response and its last paired request.

No. v Time Source  Destination
198 4.667274 aaaa::1 aaaa::212

Protocol  Length Info
ICMPVG 86 Echo
ICMPVE
ICMPVE
ICMPVE

(ping) request id=ox64c4, seq=16,
80 Echo (ping) request id=ex64c4, seq=16,
80 Echo (ping) request id=ex64c4, seq=16,
80 Echo (ping) request id=ex64c4, seq=16,
ICMPVE 80 Echo (ping) request id=0x64cd,
TCMPVG 86 Echo (ping) request 1d-ox64cd, seq=16,
IEEE 8. 5 Ack
ICMPVG 80 Echo_(ping) reply id=ex64c4, seq=16, h|
TEEE 6. 5 Ack
aaaa::1 aaaa::212. ICMPVG 80 Echo (ping) request id=ex64c4, seq=17,

199 4.670572
200 4.674060

aaaa::1l aaaa::212,
aaaa::1l aaaa::212,
201 4.677277  aaaa::1l aaaa::212
202 4.680601  aaaa::l aaaa::212
203 4.06843069  aaaa::l aaaa::212
204 4.684724

205 4.701468 _ asaa::.. aaaa::l
206 4.701962
207 5.632173

Figure 2. Example PRI

Figure 3a shows the histogram of PRIs collected on the
“helloworld” example from Contiki OS. Values >12ms are
collected at 12ms. The result shows that most PRIs are clus-
tered around 9.5ms which consists with our result in Table 4.
The majority, roughly ranged [9.0, 10.3]ms, corresponds to
the usual response time as depicted by Sensor Node 1 in Fig-
ure 1.

We further plotted the upper outliers, mostly ranged [12,
2000]ms, in Figure 3b. Unfortunately we do not have a solu-
tion to investigate the exact cause of such delay, as we were
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Figure 3. helloworld PRIs

unable to control the code execution that requires environ-
mental interaction within a timing critical context. Never-
theless, we suppose these outliers correspond to the extended
response time as depicted by Sensor Node 2 in Figure 1. The
distribution described by Figure 3b is the fingerprint of the
“helloworld” example.

The result in Figure 3 shows a clear gap between the usual
PRIs and extended PRIs. In fact other applications we exper-
imented also showed the same property. This implies that an
adversary can easily draw a threshold by observing the whole
PRI distribution and then filter out the fingerprint. In our ex-
periments the threshold is set to 12ms but any other values
within the gap would also work.

We collected the fingerprints for three programs taken
from the Contiki OS examples:

broadcast This program periodically broadcasts a constant
message.

powertrace This program records the power consumption
and broadcasts a constant message.

Sensorpayload This program is based on the ‘“er-rest-
example” embedded together with sensor accesses
taken from “cc2538-demo”. It captures a real case sce-
nario where three different sensors, namely Tempera-

ture, Vdd and ALS, are being accessed through CoAP.
Specifically for “Sensorpayload” we collected finger-

prints for 8 different scenarios where different sensors are
being accessed. For each program we independently col-
lected 2 fingerprints for comparison.

During the experiments we realised that most of the fin-
gerprints do not adhere to common distributions; therefore
we used a non parametric test, the Kolmogorov-Smirnov
Distance [14], as our test statistic. This is a well understood
statistic with previous uses in side channel analysis [28].

By adapting our distinguisher to utilise the minimum KS
distance, we were able to identify 13 out of 20 fingerprints
successfully. The ‘overlapping’ fingerprints are mainly due
to the “Sensorpayload” program, which access different sen-
sors, but otherwise has identical program code. Thus we did
expect that the different instantiations of it would lead to very
similar fingerprints.

5 Conclusion

In this paper we explore, for the first time, the use of
packet lengths and response times, which are protocol level
side channels, as means to recover information about IoT
‘things’. We do this experimentally, which we base on two
extremely popular devices running on a popular open source
OS, with a typical stack of protocols. Whilst we do not cover
a wide range of devices, the fact that two of the most popular
devices show the characteristics that we hypothesise, gives
credibility to our results. Our results show that it is possi-
ble (in principle) to recover information about a device and
its function (i.e. the hardware and the software that runs
on it) via inspecting encrypted traffic that it produces. We
also point out that ICMP messages can be distinguished from
each other despite the use of encryption.

Although 6LoWPAN is a relatively experimental standard
and most smart devices today are still based on WiFi, we
reasonably argue that the same attacks could be mounted
on these devices as well since WiFi packets contains all the
same leakage. For instance, in IFTTT based applications,
such as WeMo, such leakage may reveal the user specified
“receipts” which results into a severe privacy and security
issue.

In order to mitigate the leakage that is given by packet
lengths, previous works recommend padding [6]. We echo
this recommendation. Whilst padding to MTU is considered
inefficient for the Internet, it is in fact highly appropriate for
6LoWPAN because:

e [t completely hides the length of original plaintext.

o 6LoWPAN has only a low MTU of 127 bytes; therefore
the overhead is acceptable.

o It induces negligible computational overhead.
With regard to the leaking information about the device or

OS, we suggest strictly applying the standard MTU to elim-
inate the differences in drivers. Although there is a potential
of performance downgrade, it will also improve the compat-
ibility among different devices.



In order to mitigate the leakage given by response times,
the natural countermeasure is to write time-constant code,
which is known to be notoriously difficult. But two ap-
proaches are available to a software developer:

e Randomly delay the response. This essentially adds
noise to the measurements of the adversary.

e Use a threshold response time, i.e. a request is either

responded at a predefined time or not responded at all.
Within the context of 6LoWPAN the second method is rec-

ommended as most 6LoWPAN application would tolerate
missing packets and timer is available on most platforms.
However, the threshold must be carefully chosen to preserve
the functionality of the 6LoWPAN application.
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