
An RFID Based Secure Key
and Configuration Distribution for Contiki

Mine Cetinkaya
University of Bremen

mincetin@uni-bremen.de

Jens Dede
University of Bremen

jd@comnets.uni-bremen.de

Anna Förster
University of Bremen

afoerster@comnets.uni-
bremen.de

Abstract
Enabling secure communications in wireless sensor net-

works (WSNs) is a topic that is rapidly gaining traction both
in literature and in applications for industrial Internet-of-
Things (IoTs). The configuration of the nodes for secure
communications, i.e. the distribution of encryption keys and
the configuration setup, are mostly done using a physical
connection like USB or via the wireless channel. The se-
lection of the appropriate key and configuration distribution
schemes is always a trade-off between complexity, usabil-
ity and robustness against security breaches. In this work,
an easy-to-implement, open-source alternative to current key
and configuration distribution schemes for WSNs based on
Radio Frequency Identification (RFID) for Contiki is intro-
duced. The sensor nodes are equipped with inexpensive
RFID-readers that use RFID-tags to set the encryption key.
Using this scheme, a sensor node can be set up without the
necessity of reprogramming, transmitting a secret key via an
insecure channel or even opening the case.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-

cations Applications; B.4.0 [Input/Output and Data Com-
munications]: General

General Terms
Design, Security

Keywords
Wireless Sensor Networks (WSN), RFID, Contiki, En-

cryption, Key Distribution, Configuration, Secure Commu-
nication, Internet of Things (IoT)

1 Introduction
Sustaining the longevity of operation with minimum pos-

sible external intervention is central for any WSN, regardless

of its deployment environment or scale. The variety of pos-
sible application scenarios for WSNs covers a wide range,
starting from static scenarios like environmental monitoring,
to highly dynamic ones like in logistics. All scenarios de-
mand an easy, user-friendly way of setting up each single
node like setting the radio channel, transmit interval and en-
cryption key. In most application scenarios, the reconfigu-
ration of existing nodes, replacing malfunctioning nodes or
extending the network by adding new nodes also have to be
considered.

One crucial point during the setup or reconfiguration
phase of nodes is encryption. Secure communication gains
a significant importance, as listening to the network traffic
without permission or disruption of communication by hos-
tile parties should strictly be prohibited in most WSN scenar-
ios. In a broad sense, secure communication can be classi-
fied as disguising either the content, parties involved, and/or
the existence of communication. Sensor nodes in general
are constrained in processing power, amount of memory and
energy. Additionally, the network can be large in scale and
in a non-predefined topology. These two factors need to be
considered in the selection of suitable encryption algorithms.
Therefore, the majority of WSNs focus on symmetric algo-
rithms, like for example the Advanced Encryption Standard
(AES). The objective of the algorithm is to encrypt and de-
crypt the content of the data transferred using a certain key
which has to be known by all participating parties, i.e., a
network-wide key is used. The fact that in most cases en-
cryption and decryption are performed using the same key
necessitates the protection of this key to prevent third parties
from accessing it.

There are two possible ways to set a symmetric key as
the common network-wide key in a WSN. Either the key is
burned into the sensor node or sent over a wireless link dur-
ing the initial setup. The wireless link is considered insecure
as the unencrypted key is transported over an insecure chan-
nel. Furthermore, every time the network-wide key changes,
a physical or a wireless connection has to be made to deliver
the new key.

In this work, we propose a solution to address the above-
mentioned issues, based on the use of a light-weight RFID
driver module for Contiki. The solution centres around the
use of RFID readers deployed in sensor nodes to obtain the
encryption key and the configuration read from an RFID tag.
It is a very practical solution as the key and configuration dis-

258

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1



tributions are done without the necessity of a computer con-
nection to the sensor. Moreover, the content read out from
the RFID tag is written to the flash memory, which ensures
the availability of keys and the current configuration even
after device reset.

The rest of this paper is structured as follows. A brief
overview of secure communication in Contiki is given in
Section 2. The implementation and evaluation of the RFID
driver module is described in Section 3. Section 4 explains
the workflow and the considered application scenarios in de-
tail. Section 5 discusses the possible improvements and ap-
plications for the proposed module. Section 6 is a concluding
summary.
2 Secure Communication in Contiki

Security and encryption, including the corresponding pos-
sible attacks, are various and widely discussed in literature
[9, 10]. As the focus of this paper is on easy-to-implement
key and configuration distribution, only the main principles,
namely authentication and encryption in Contiki, are briefly
described in this section:
Authentication ensures that the transmitted data has not

been changed during transmission and sent by the des-
ignated peer. Authentication does not include encryp-
tion, i.e., the packets can be read by everyone.

Encryption goes one step further and ensures that only
peers with the same key can decrypt and thus read the
transmitted information.

Both, authentication and encryption, are introduced to
Contiki as noncompromise-resilient link layer security1,
comply with the IEEE 802.15.4 standard [2] and use Ad-
vances Encryption Standard (AES)[3]. Krentz et al. [6]
added an IEEE 802.15.4 security sublayer to Contiki OS,
between the IPv6 over Low power Wireless Personal Area
Networks (6LoWPAN) adaptation layer and the 802.15.4
Medium Access Control (MAC) layer, as depicted in Fig-
ure 1. This link layer security ensures that all kind of traf-
fic is authenticated and/or encrypted and can be activated in
Contiki by including noncoresec_driver in the correspond-
ing configuration file.

To prevent replay attacks and filter out injected packets,
the Message Integrity Code (MIC) [1] and the frame counter
are used in the IEEE 802.15.4 secure frame of this link layer
security [6]. An illustration of the secure frame of Krentz et
al. [6] can be seen in Figure 2.

According to [6], the MIC field is generated via AES
128-bit CCM (Counter with Cipher Block Chaining Mode),
which is unique for each frame. The frame counter [5]
basically helps keeping track of the frames sent and helps
preventing replay attacks. Authentication is attained as de-
scribed in [5]: The transmitted frames contain a unique au-
thenticated MIC field and a frame counter. Both values have
to match the incremented frame counter value from the pre-
viously received packet. Otherwise, the received packet is
dropped.

1https://github.com/contiki-os/contiki/tree/master/
core/net/llsec/noncoresec

Figure 1. Proposed 6LoWPAN stack Krentz et al. (based
on [6])

Figure 2. 802.15.4 secure frame and MAC frame format
(based on [6])

Furthermore, the payload [6] of the 802.15.4 secure frame
can be encrypted using AES-128. The link layer security
module supports hardware-accelerated and software AES.
The payload encryption can also be activated in the con-
figuration file by increasing the security level value, i.e.
NONCORESEC_CONF_SEC_LVL to a minimum of 5. In this
mode, authentication and encryption are activated. The re-
quired keys can be distributed by the implementation pro-
posed in this paper.

3 Hardware and Software Implementation
The objective of this work is to implement an easy-to-use

RFID reader for sensor nodes which allows to read out the
content of an RFID tag and use it to configure the node. In
this section, the hardware setup and the software implemen-
tation are described in detail. The overall system consists of
a sensor node, an RFID reader connected to the sensor node
via SPI (Serial Peripheral Interface) and the corresponding
software implementation for reading data from RFID tags. In
the software implementation, the information read out from
the tag is used to configure the sensor node and set the key
for the encrypted communication.
3.1 Hardware Setup

For reading out data from an RFID tag, the following
hardware setup is used:

259

https://github.com/contiki-os/contiki/tree/master/core/net/llsec/noncoresec
https://github.com/contiki-os/contiki/tree/master/core/net/llsec/noncoresec


- As the sensor node hardware platform, Z1 nodes by
Zolertia2 are used.

- The RFID Reader is the NXP Semiconductors’ single
chip MFRC522 Reader that supports encoding / de-
coding of the signals, calculating checksums, detecting
transmission errors etc. [7, 4].

- As RFID tags, the MIFARE Classic 1 KB contactless
smart cards by NXP Semiconductors[8] are used.

The driver is developed for Contiki OS3. The core of the
entire RFID tag reading capabilities on the Z1 platform lies
in the successful communication between the RFID reader
module and the Z1 platform through the Serial Peripheral
Interface (SPI).

After accomplishing the successful communication be-
tween both, the Z1 node and the RFID reader, the next step
is to develop the remaining part of RFID library that enables
communicating with the RFID tag which is in proximity of
the RFID reader and reading out the tag’s content.

The complete hardware setup can be seen in Figure 3 that
shows the complete working module.

The white card and the blue tag in the front are two differ-
ent types RFID tags, the blue PCB is the RFID reader and the
red PCB is the Zolertia Z1 node. The RFID reader and the
Z1 are connected via SPI through jumper wires. The white
box in the background is part of the Z1 casing and contains
the batteries.

Figure 3. Zolertia Z1 node, NXP MFRC522 RFID
module, and two MIFARE 1 KB tags

The expansion connector of the Z1 node, as shown in Fig-
ure 4 (east port), has all required signals, more specifically,
the SPI port and the supply voltage. This port is connected
to the MFRC522 reader using jumper wires.

The following subsections describe the data stored in the
RFID tag more in detail.

2https://github.com/Zolertia/Resources/blob/master/Z1/
Hardware/Revision C/Datasheets/Zolertia Z1 datasheet
Revision C.pdf

3http://www.contiki-os.org

Figure 4. Z1 platform’s SPI Port layout

3.2 Content of an RFID Tag
An RFID tag contains several blocks with different pur-

poses. The first block of an RFID tag, i.e. block number
zero, is also known as the manufacturer’s block and cannot
be changed by the user. The first 4 bytes (or 5 bytes including
the checksum byte) of this block are known as the tag Unique
identifier (UID) and are unique for all RFID tags. The con-
tent of the other blocks after the block number zero depends
on the tag but can be set by the user. The proposed driver
has the flexibility to read out an arbitrary block from the tag.
Depending on the requirements of the application scenario,
one can use the manufacturer block as a key or set an arbi-
trary own key to one of the other blocks. The advantages and
drawbacks are described in the subsequent subsection.
3.3 Selection of the Encryption Key

It is known from cryptanalysis that a uniformly and ran-
domly generated 128-bit AES key shall have 128 bits of en-
tropy.

The key length is 16 bytes (128 bit), which corresponds
to 32 hexadecimal characters, denoted by L. The number of
symbols used to represent each hexadecimal character can
be denoted by N, which is 16 as hexadecimal numbers cover
the range from 0 to F. The Entropy, i.e. the degree of average
amount of information can be calculated as follows:

Entropy = log2 NL = log2 1632 = log2 2128 = 128 bits

Hence, this implies that an AES-128 key has key strength
of maximum 128 bits. Referring back to the discussion about
weak encryption, it is obvious that using the manufacturer’s
block of the RFID tag as an AES key will result into weak
keys. MIFARE 1KB type tags have only 32 bits (4 bytes) of
entropy as only 4 out of 16 bytes are random and 12 bytes
are set the same for this tag type. One can see the repeating

260

https://github.com/Zolertia/Resources/blob/master/Z1/Hardware/Revision C/Datasheets/Zolertia Z1 datasheet Revision C.pdf
https://github.com/Zolertia/Resources/blob/master/Z1/Hardware/Revision C/Datasheets/Zolertia Z1 datasheet Revision C.pdf
https://github.com/Zolertia/Resources/blob/master/Z1/Hardware/Revision C/Datasheets/Zolertia Z1 datasheet Revision C.pdf
http://www.contiki-os.org


1 Starting unicast sender :
2 Press the button & Place a tag in 5 sec
3 The tag’s UID is: cd 4c ef a5 cb checksum: cb
4 The tag block read out as:
5 cd 4c ef a5 cb 08 04 00 62 63 64 65 66 67 68 69
6 The tag block being saved as the new key:
7 cd 4c ef a5 cb 08 04 00 62 63 64 65 66 67 68 69

Listing 1. Reading Tag 1

1 Starting unicast sender :
2 Press the button & Place a tag in 5 sec
3 The tag’s UID is: 02 60 1b 2b 52 checksum: 52
4 The tag block read out as:
5 02 60 1b 2b 52 08 04 00 62 63 64 65 66 67 68 69
6 The tag block being saved as the new key:
7 02 60 1b 2b 52 08 04 00 62 63 64 65 66 67 68 69

Listing 2. Reading Tag 2

characters after the UID’s of two different tags in Listing 1
and Listing 2.

Comparing the UID values of two different cards in
Listing 1 and Listing 2 shows, that the UID of the card
in Listing 1 is CD 4C EF A5 CB. The rest of the bytes
are 08 04 00 62 63 64 65 66 67 68 69. The card in
Listing 2 is taken from the same batch has a UID of
02 60 1B 2B 52, however the rest of the bytes are equal,
i.e. also 08 04 00 62 63 64 65 66 67 68 69.

It is obvious, that using the manufacturer’s block as an en-
cryption key will result into a weak encryption and authen-
tication, which can be cracked easier by for example brute
force attacks, compared to a completely random key. On the
other hand, the usability is slightly higher as no separate key
has to be burned to the tag and depending on the application,
a weak encryption should be preferred over no encryption at
all. The effort of burning a unique key on a tag is quite low,
so this solution should be preferred whenever possible. The
next subsection will deal with the handling of the key.
3.4 Setting an AES-128 bit CBC key

For creating a uniformly and randomly generated AES-
128 bit key, there are several resources that can be re-
ferred to. One of the most common tools is OpenSSL4,
which is a cryptography library. Using OpenSSL, one cre-
ates a random 128 bit (i.e. 16 byte) key using the com-
mand openssl rand 16 | xxd -ps -u. The output of
OpenSSL is further processed by xxd which converts the bi-
nary output to a hexadecimal encoded output as required like
for example B22F373A8D6CC7677D3AC1E269479D80. This
key can be burned onto an RFID tag using standard hard-
ware and read out by using the proposed implementation.

In Contiki, the example apps unicast-sender and unicast-
receiver5 are extended by the proposed RFID driver mod-
ule. During the startup of the nodes, a particular part of an
RFID tag is read out and set as the encryption key for the

4https://www.openssl.org/
5https://github.com/contiki-os/contiki/tree/master/

examples/ipv6/simple-udp-rpl

link layer security. Furthermore, the key is stored on the sen-
sor node using the Coffee File System (CFS) of Contiki6 to
continue encrypted communication even after rebooting the
node. In normal operation, both nodes exchange messages
to show the functionality of all involved parts: encryption,
sensor node and radio interface.
3.5 Validation of the User-Interactive Module

In Subsection 3.4, the software setup has been described.
This subsection evaluates the complete system as described
by the flow diagram in Figure 5: (1) a card is present during
the boot: read a key out of it and store it to the flash, (2) no
card is present: the previously saved key or a default key is
retrieved from the flash.

Implementation-wise in both cases, the process flow starts
with the start of the node. A timer is started and the user has
a configurable period of time (e.g. 5 seconds) to place a tag
next to the reader and press a button. If a tag is present, the
content is read out and stored. If no tag is present and the
timer expired, the key is read from the flash. Afterwards,
the key is set for the encryption / decryption and the main
Contiki loop is started as depicted in Figure 5.

Figure 5. Flow diagram for the RFID Module

If connected to a laptop for debugging, the terminal out-
puts for each node programming a new key are depicted in
Listing 3 for the sender and Listing 4 for the receiver.

The terminal outputs in Listing 5 and Listing 6 show the
case when the user-button is not pressed for the sender and
the receiver, respectively.

6http://anrg.usc.edu/contiki/index.php/Contiki_Coffee_
File_System

261

https://www.openssl.org/
https://github.com/contiki-os/contiki/tree/master/examples/ipv6/simple-udp-rpl
https://github.com/contiki-os/contiki/tree/master/examples/ipv6/simple-udp-rpl
http://anrg.usc.edu/contiki/index.php/Contiki_Coffee_File_System
http://anrg.usc.edu/contiki/index.php/Contiki_Coffee_File_System


1 Starting unicast sender :
2 Press the button & Place a tag in 5 sec
3 The tag’s UID is: cd 4c ef a5 cb checksum: cb
4 The tag block read out as:
5 26 b5 28 7b a2 63 7c be c7 a6 0a b9 fd f0 f7 ff
6 The tag block being saved as the new key:
7 26 b5 28 7b a2 63 7c be c7 a6 0a b9 fd f0 f7 ff
8 IPv6 addresses: fd00::c30c:0:0:1469
9 fe80::c30c:0:0:1469

10 Sending unicast to fd00::c30c:0:0:12fd
11 Sending unicast to fd00::c30c:0:0:12fd

Listing 3. Start UnicastSender and setting of a new key

1 Starting unicast receiver :
2 Press the button & Place a tag in 5 sec
3 The tag’s UID is: cd 4c ef a5 cb checksum: cb
4 The tag block read out as:
5 26 b5 28 7b a2 63 7c be c7 a6 0a b9 fd f0 f7 ff
6 The tag block being saved as the new key:
7 26 b5 28 7b a2 63 7c be c7 a6 0a b9 fd f0 f7 ff
8 IPv6 addresses: fd00::c30c:0:0:12fd
9 fe80::c30c:0:0:12fd

10 Data received from fd00::c30c:0:0:1469 on port
1234 from port 1234 with length 10: ’Message
0’

11 Data received from fd00::c30c:0:0:1469 on port
1234 from port 1234 with length 10: ’Message
1’

Listing 4. Start UnicastReceiver and setting of a new key

1 Starting unicast sender :
2 Press the button & Place a tag in 5 sec
3 Button not pressed in 5 sec
4 Previous key found
5 The previously saved key to now be set is:
6 26 b5 28 7b a2 63 7c be c7 a6 0a b9 fd f0 f7 ff
7 IPv6 addresses: fd00::c30c:0:0:1469
8 fe80::c30c:0:0:1469
9 Sending unicast to fd00::c30c:0:0:12fd

10 Sending unicast to fd00::c30c:0:0:12fd

Listing 5. Start UnicastSender without pressing the
button

1 Starting unicast receiver :
2 Press the button & Place a tag in 5 sec
3 Button not pressed in 5 sec
4 Previous key found
5 The previously saved key to now be set is:
6 26 b5 28 7b a2 63 7c be c7 a6 0a b9 fd f0 f7 ff
7 IPv6 addresses: fd00::c30c:0:0:12fd
8 fe80::c30c:0:0:12fd
9 Data received from fd00::c30c:0:0:1469 on port

1234 from port 1234 with length 10: ’Message
0’

10 Data received from fd00::c30c:0:0:1469 on port
1234 from port 1234 with length 10: ’Message
1’

Listing 6. Start UnicastReceiver without pressing the
button

In this case, the timer expires without any button pressing
event, hence, the previously saved key is retrieved from the
memory. The messages displayed to the user for both sender
and receiver nodes are giving the same information, such as
the 16 byte long key that was previously saved is set again.
This behaviour can also be seen in the demo video which is
available on Youtube7.
3.6 Power Consumption

Table 1. Energy consumption of the complete system
(Transmitting and receiving data requires additional 22-25 mA)

Bare Z1 0.2 mA
Z1 + RFID 12 mA
Z1 + RFID, RFID LED disabled 10 mA
Z1 + deactivated RFID 1 mA

For wireless applications, the battery lifetime and there-
fore the energy consumption are essential. Therefore, sev-
eral measurements were performed to state the influence of
the RFID reader on the overall energy consumption. Table 1
lists the results from that measurement. It has to be men-
tioned, that all values were measured using a multimeter. In
fact, the current drawn by the Z1 is higher if the radio inter-
face is in receive and transmit mode (additional 22-25 mA).
During the measurements, the ContikiMAC has been used
which reduces the receive and transmit periods only to very
short peaks which are neglected in this comparison.

The bare Zolertia Z1, i.e. without the RFID reader, re-
quires approximately 0.2 mA. Connecting the reader and
keeping it active continuously increases the current to
12 mA. If the LED on the reader is removed, the current
is reduced by 2 mA to 10 mA in total. Disabling the RFID
module by setting it to reset mode further reduces the overall
current to 1 mA.

The focus of this implementation is on cheapness and
easy-to-use with off-the-shelf hardware. Therefore, the en-
ergy consumption has not been optimized to the extent as it
is possible with a custom hardware design and additional cir-
cuits. Nevertheless, this section gives a brief overview of the
current system energy requirements. One should also con-
sider that a slightly decreased battery lifetime might be ac-
ceptable compared to the increased usability and flexibility
of the proposed system.
4 Application Scenarios

The application scenarios for the proposed RFID driver
could be numerous. One main application lies in the field
of logistics and the monitoring of goods. Here, sensor net-
works can be used to detect unwanted transport conditions,
like shocks caused by wrong handling or environmental con-
ditions like humidity and temperature being out of a defined
range. In this scenario, the following challenges are identi-
fied as the most important ones for using RFID:

Short-time The transport of goods in general is short-time,
i.e., the transport takes at maximum a couple of days.
This results in the need for an easy reassignment of
nodes to customer, transport vehicle, etc.

7https://youtu.be/FZiLjATBjj8

262

https://youtu.be/FZiLjATBjj8


Transportation condition Depending on the goods, the
conditions might be challenging, like high humidity and
low temperature. To protect the sensor node, the casing
needs to be sealed, which complicates opening the case
for cheap.

Easy of use Logistic processes in general are highly opti-
mized for time. Therefore, the handling of the nodes
needs to be simple, easy and quick.

Depending on the application scenario, these challenges
can be easily adapted to other scenarios. Especially when
sensor nodes are operated by users without a technical back-
ground, the easy of use challenge is crucial: one cannot ex-
pect the user to open the case for reconfiguring the node.

The implementation in the work is designed to read out
a configuration from an RFID tag which allows a quick re-
configuration of the nodes, operates in a sealed casing and is
easy to use even by inexperienced users and thus is ideal for
the described application scenario.
5 Discussion

This section discusses open points and possible improve-
ments for the current implementation.

Number of keys The number of supported keys could be in-
creased to set several keys like pair-wise, group-wise
and network-wise keys. This increases the security and
flexibility of the overall system.

Setting a key In the current setup, the user presses a button
on the node to set the key. This can be optimized es-
pecially when dealing with a high number of nodes by
using other triggers. A reed switch could be used to
trigger the readout with a magnet located close to the
RFID tag.

NFC The given approach can be extended to NFC (Near
Field Communication) which will further ease the key
distribution as mobile phones could be used instead of
RFID tags.

Energy The energy consumption can be reduced by only
enabling the RFID reader if it is required.

Key storage Depending on the hardware and the encryption
requirements, one should take into account where to
store the key and the configuration. In case of storing
the key in an external flash memory, an attacker could
desolder the chip and read out the key manually. This
issue should be considered depending on the applica-
tion scenario.

Besides these changes, the whole work flow of setting the
key can be optimized from a cryptographic point of view. In
the current implementation, a certain part of the RFID tag
is used as a key. To prevent accidental or malicious recon-
figuration of the nodes and further secure the overall pro-
cess, the key could be signed by an authority which can be
checked by every node. Using this approach, a node will
only accept keys and configurations signed and thus autho-
rized by a certain party. A potential problem for this kind of
implementation are the memory and CPU constraints of the
cheaper current available wireless sensor nodes. The authors
are confident, that the coming generations of sensor nodes

will offer sufficient resources for high level encryption for
small money.
6 Conclusions

Secure communications are a vital requirement in many
of the WSN scenarios. Security can be achieved by en-
crypting communications. This requirement necessitates the
distribution of keys to sensor nodes to perform the encryp-
tion and decryption. There are different approaches to dis-
tribute keys and configurations in WSNs. In this work, an
RFID based key and configuration distribution approach is
designed and implemented. An important aspect considered
in this work is the ease of distribution when deploying mod-
ified keys and configurations. It is a practical solution allow-
ing for instantaneous change of keys or usage of previously
stored keys, even for a high number of nodes.

The proposed RFID hardware configuration itself is
equally simple, modular and easy to implement, requiring no
additional effort other than connecting the reader module via
jumper wires to the microcontroller board. It can be adapted
to other hardware platforms that are available in Contiki OS
and other use cases. The system is evaluated by setting an
encryption key for the link layer security in Contiki which
offers an AES-128 encryption at the link layer. This eases
the deployment of encrypted wireless sensor networks dras-
tically.

The RFID driver module implemented in this work is
available at the Contiki Github repository8. Additionally, a
video7, demonstrating the different use cases, is made avail-
able online.
7 References
[1] IEEE Standard for Information Technology - Telecommunications and

Information Exchange Between Systems - Local and Metropolitan
Area Networks - Specific Requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999),
pages 1–1076, June 2007.

[2] IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std
802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pages 1–314,
Sept 2011.

[3] J. Daemen and V. Rijmen. AES proposal: Rijndael. 1999.
[4] K. Finkenzeller. RFID Handbook Fundamentals and Applications In

Contactless Smart Cards, Radio Frequency Identification and Near-
Field Communication, Third Edition. Wiley, Chichester, 2010.

[5] K.-F. Krentz and C. Meinel. Handling Reboots and Mobility in
802.15. 4 Security. In Proceedings of the 31st Annual Computer Se-
curity Applications Conference, pages 121–130. ACM, 2015.

[6] K.-F. Krentz, H. Rafiee, and C. Meinel. 6LoWPAN Security: Adding
Compromise Resilience to the 802.15. 4 Security Sublayer. In Pro-
ceedings of the International Workshop on Adaptive Security, page 1.
ACM, 2013.

[7] NXP Semiconductors, Hamburg, Germany. MFRC522 Standard Per-
formance MIFARE and NTAG frontend Datasheet. Rev. 3.9.

[8] NXP Semiconductors. NFC Type MIFARE Classic Tag Operation.
Rev. 1.3, AN1304.

[9] A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor
networks. Commun. ACM, 47(6):53–57, June 2004.

[10] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary. Wireless sensor
network security: A survey. Security in distributed, grid, mobile, and
pervasive computing, 1:367, 2007.

8https://github.com/contiki-os/contiki/pull/2084/

263

https://github.com/contiki-os/contiki/pull/2084/

	Introduction
	Secure Communication in Contiki
	Hardware and Software Implementation
	Hardware Setup
	Content of an RFID Tag
	Selection of the Encryption Key
	Setting an AES-128 bit CBC key
	Validation of the User-Interactive Module
	Power Consumption

	Application Scenarios
	Discussion
	Conclusions
	References

