
Securing the Integrity of Workflows in IoT

Prabhakaran Kasinathan
Siemens AG, CT IT Security, Munich, Germany

University of Passau, Germany

prabhakaran.kasinathan@siemens.com

Jorge Cuellar
Siemens AG , CT IT Security, Munich, Germany

jorge.cuellar@siemens.com

Abstract
In a multi-tenant, self-configuring IoT system, entities –

devices, services or "things" – might know each other or
might be complete strangers. The different owners will prob-
ably have different security goals and will want to impose
their own security policy rules on their own entities. Thus,
there is a need to negotiate a compromise and to interoperate
the security policies of the different components. How will
other devices react if a particular event arises?

In this paper we propose a framework to specify and man-
age workflows to be performed in a cyber-physical system,
without assuming the availability of a centralized manage-
ment system. Further, the method provides a formal back-
ground to guarantee the integrity of such processes and to
enforce a least privilege principle for the authorizations re-
quired to execute the tasks in the workflow. More precisely,
the proposed method a) supports the declaration of work-
flows to be executed in a given context, b) allow parties to
propose and accept (or reject) "contracts" that describe the
workflows in which they will participate, c) constrain an IoT
application to obey a prescribed workflow, and d) restrict the
access rights of subjects to secured objects for the execution
of their tasks in the workflow, but not more.

We propose to use Petri Nets and Smart Contracts to spec-
ify and enforce workflows. This concept can also be applied
to other application areas not restricted to IoT.
Categories and Subject Descriptors

H.4 [Information Systems Applications]: General
Keywords

Internet of Things, Workflow, Integrity, Security
1 Introduction

The EU Research Cluster on IoT (IERC) [20] defines
the Internet of Things (IoT) as an "infrastructure with self-
configuring capabilities based on standard and interoperable

communication protocols where physical and virtual things
have identities, physical attributes, and virtual personalities
and use intelligent interfaces, and are seamlessly integrated
into the information network". An IoT system thus interacts
with external entities, human users or services connected via
the Internet. Today, IoT services are offered both by con-
sumer appliances and by Industrial devices.

Internet of Things (IoT) applications are being used in
various areas including smart manufacturing, industrial con-
trol, intelligent logistics, transportation, medical and health-
care applications, smart grid, intelligent traffic, environmen-
tal monitoring, smart home, assisted living, agriculture, and
many more. In those applications, the main security con-
cern relates to the processes themselves. Except for privacy
of personal data, which is not our main focus here, confi-
dentiality is not as important as the availability and integrity
of the cyber-security processes, which are mission-critical.
Due to the nature of the devices used, which are often con-
strained in processing power and in communication capa-
bilities, IoT opens new vulnerabilities, in particular because
keys are often not well protected in the devices or the cryp-
tography on the channels is not too strong. Unfortunately,
those vulnerabilities in constrained devices or networks can
become the perfect entry point to escalate attacks to other-
wise well-secured elements, in particular for DoS attacks.

Securing the IoT must imply a particular form of re-
silience: even in the case of breaches in single devices or
networks, the system as a whole continues functioning cor-
rectly, due – partly – to redundancy of the data, but in partic-
ular because an attacker has no means to use the information
or privileges obtained to gain elevated access to further re-
sources.

Two relevant aspects of IoT applications are to be men-
tioned: self-configuration and multi-tenancy. The need for
self-configuration appears because new devices or things
may enter the application environment and should then –
without too much human involvement – collaborate with the
rest of the system. Also, some devices may fail, disappear
or lose their connectivity. In both cases the system must re-
adapt to the changes. Multi-tenancy refers to the fact that
devices or services belong to different owners with different
or competing goals. Those parties prefer to cooperate by ex-
changing information or collaborating on an activity than to
work on its own, because they will profit from information or
activities performed by another entity in exchange for other

252

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1



information or activities.
A workflow can be defined as a pattern of activities or

tasks to be completed in a particular partial order by the in-
volved entities, following predefined rules, in order to ac-
complish a specific goal or sub-goal. During the execution of
the workflow, the participants pass to each other documents,
information or further tasks, see [23]. One of the main ob-
jectives of our framework is to support dynamic workflows,
which respond to error conditions or based on resource allo-
cation or just-in-time (JIT) considerations, as well as multi-
tenant systems, where services, devices or things have dif-
ferent owners with different interests.

The other main motivation of our work is to provide an
access control that restricts the entities to do only what is al-
lowed in the workflow, but not much more. For this, we have
to support a workflow-driven access control, in contrast to
the commonly used mandatory (MAC), discretionary (DAC),
or role-based access control (RBAC), which have been well-
studied in the literature, see [18].

The rest of the paper is structured as the follows: sec-
tion 2 presents related work, section 3 describes two use
cases, section 4 describes our framework and the method
used to enforce secure workflows, section 5 presents how our
method can solve those two use cases and at the end, section
6 presents the conclusion and future work.

2 Related work
There has been extensive work on the specification and

enforcement of workflows; in particular, [4] studied how to
model and enforce workflow authorization constraints such
as separation-of-duties in workflows, but using a central-
ized workflow management system. Workflow-driven access
control is also well-known (see [12]), but mostly this requires
predefined workflows (not created on the fly as response to
unexpected conditions).

Petri Nets (see [16]) provide a graphical modeling tool
used to describe processes performing an orchestrated ac-
tivity, or in other words, a workflow (see [22]). Petri Nets
have the advantage that many properties such as liveness
(deadlock-freeness), reachability are easy to verify. (see
[15, 17, 9]). Atluri et al., [1, 2] studied how to model work-
flows using Petri Nets, but did not describe the implemen-
tation details. Huang et al., [10] presented a web-enabled
workflow management system and Compagna et al., [7] pre-
sented an automatic enforcement of security policies based
on workflow-driven web application, but both works pre-
sented a centralized architecture.

The IETF working group ACE [11] is developing secure
and efficient protocols for the IoT scenario with three ac-
tors: an authorization server, a client and a server (usually
constrained). The authorization server provides a token (rep-
resenting a permission) to the client to access a resource in
the server. We have similar requirements in our method, for
example, an authority of an entity in a given context can pass
tokens to another; but, for the purposes of workflows, we
need further types of tokens (not just permissions), as it will
be explained later.

Smart Contracts, introduced in [21], have become popu-
lar with the advancements in blockchain technology. Smart

contracts are often written to ensure fairness between partic-
ipating entities even when one entity may attempt to cheat
the other entity in arbitrary ways (see [8]). In [6] and [3]
an example of an IoT application using Smart Contracts and
Blockchains is presented. Bitcoins has a simple stack lan-
guage to express the rules and conditions for a successful
transaction and how new coins are produced and consumed.
Ethereum, which has popularized the use of smart contracts,
uses a Turing complete language to specify them. In [14],
the authors have studied the security of running smart con-
tracts based on Ethereum, and presented some problems
in Ethereum’s smart contract language solidity; they also
show some ways to enhance the operational semantics of
Ethereum to make smart contracts less vulnerable.
3 Use Cases

In this section we describe two Use Cases of IoT appli-
cations and their requirements. In Section 5 we will sketch
how our proposal can be used to implement the Use Cases in
a natural way.
3.1 Smart Manufacturing

Typical manufacturing plants produce few types of prod-
ucts in mass numbers. Nowadays, customers demand a
high variety of products, customized to particular needs,
with a high quality, but in smaller amounts. Manufactur-
ers should adapt quickly to supply-chain disruptions, errors
in manufacturing process and customer customization de-
mands, i.e., manufacturing plants should be flexible. Smart
Manufacturing improves the production agility, quality, and
efficiency in manufacturing process, see [13]. Zhekun et
al., [24] describes how RFID technology enabled smart-
parts in manufacturing industries to implement unique-
identification, communication between parts and manufac-
turing equipment; and to improve flexible and concurrent
product manufacturing, and quality of the products.
3.1.1 Smart Manufacturing Use-Case Problems

• The manufacturing company should be able to monitor
the production progress of an individual product, and
to track the location and use of the single parts in real
time.

• The manufacturing plant should be able to get infor-
mation from their suppliers and signalize the produc-
tion process accordingly i.e., to quickly adapt to supply-
chain changes, and to recover from errors during pro-
duction.

• The manufactured product should have production and
testing data available continuously for inspection and be
able to react to test results on real-time.

• The manufacturing plant should be flexible enough to
produce products with customer customizable options,
without compromising the quality.

3.2 Building Automation
Modern buildings are equipped with embedded devices

used within various automation systems, for instance, for
the purposes of lighting, heating, ventilation, physical safety,
etc. The devices contain sensors and actuators and collab-
orate autonomously. For example, the lighting system can
adjust the light intensity and color of a room based on the

253



ambient light available in the room; the security system can
alert the nearest emergency responders or fire-stations in case
of an emergency. In such a scenario, often it is required to
perform software-updates, quality-control inspection, fix se-
curity patches and upgrade the firmware on the devices. Usu-
ally, the building owner delegates the installation or mainte-
nance work to a contracting company. The RFC 7744 [19],
provides a summary of authorization problems that emerge
during the device life-cycle (commissioning, maintenance,
re-commissioning, decommissioning). In addition to the au-
thorization problems, the building owners may wish to en-
sure that only products with a certain provenance or quality
are installed, and that the process complies to standard oper-
ating procedures. The building owner may also wish that the
contractor obeys other conditions written on a contract.
3.2.1 Building Automation Use Case Problem

• The building owner wants to track the status of the en-
tire process remotely, for instance, installation or main-
tenance process in real-time.

• The building owner wants to monitor, enforce automat-
ically the agreed conditions with the contractor; for in-
stance, if the contractor breaks any agreed condition,
then a penalty can be enforced.

• The building owner wants to configure the installed de-
vices with custom-rules, and the new installed devices
should be interoperable with existing systems and de-
vices.

• The building owner should be able to give/revoke fine-
grained authorization permissions to the contractors en-
forcing the least privilege principle.

4 Specifying and Enforcing Workflows in IoT
In this section we present a framework and its components

for specifying and enforcing workflows in IoT. We describe
why we need such a framework by describing the require-
ments for an IoT system.

One of the problems in distributed multi-tenant IoT sys-
tems is the assumption that all of the humans, services, de-
vices, and things will follow a coherent set of rules. Since we
do not want to impose an external overarching authority to
force them to act according to a consistent overall workflow,
we propose a method that can be used by rather independent
agents (owned by perhaps different autonomous parties) to
collaborate in a workflow. Our framework allows different
entities to agree to play a part in a workflow by promising to
constrain its behavior in various ways. This point of view is
similar to the one of Promise Theory, see [5], but the methods
proposed for expressing the assumptions and commitments
are quite different.

In discretionary access control, the permission to use a
service is given by the owner of the service (or of the data).
This is a reasonable assumption in IoT, since the owner of the
device is the one that controls the keys or cryptographic ma-
terial that the device uses for authentication or authorization
purposes. We propose that the different tenants (or their de-
vices, based on policies established by the owners) share the
responsibility of creating and enforcing workflows in a de-
centralized and plug-and-play fashion. In the same way that

each owner is able to give permissions to access his owned
services, we also want that each different owner is the author-
ity, who is able to decide which sequences of tasks should be
performed on the devices or services.

A similar but somewhat different situation is well-known
from workflows in hospitals or public authorities: a person
may be asked to "take this document, bring it to office 205,
pay 10 Euros, obtain a signature, go to office 405 to obtain
a second signature (after some verification procedure) and
then go to office 101 to obtain further instructions". We call
this a partial workflow: the person agrees to follow the in-
structions in order to obtain a desired result or to progress in
that direction. The common feature of this type of situation
is that there are different authorities that decide which are
the different partial workflows that should be followed for a
successful cooperation.

In static access control systems, an entity has access rights
to a resource at any time, thus the entities may abuse the
permissions for purposes not foreseen. We want to have an
access control system where the entity (subject) may only get
the access rights (permissions) to access the resource (object)
for a defined step in a workflow and for a limited time period.
A workflow aware access control can be used to restrain an
entity or a malicious attacker – even if he gains access to the
system – from performing actions that are not specified in
the workflow.

The Workflows can also be used by organizations to im-
plement internal security policies and privacy procedures
within the application processes. The participating entities
are allowed to accept or reject conditions with respective
consequences, this provides flexibility within the workflow.

A further complication is that the devices may have been
provided by different manufacturers, have different specifi-
cations and implement "equivalent" tasks in a different man-
ner. This implies that the workflows must be specified at a
higher layer, abstracting away from implementation details
One of the main motivations of this work is to secure the
integrity of workflows in IoT applications.

First, we need a high level workflow specification lan-
guage to express a process in a given context as a workflow.
The workflow specification language should be amenable to
lightweight formal methods, so that the different parties can
reason locally about them.

Second, a workflow enforcement method is required to
make sure that the involved entities obey the agreed work-
flow. We do not impose a central authority to enforce work-
flows; but the owner to enforce the workflow activities on
their set of devices. For example, the owner of a constrained
IoT device can create a workflow for a client entity that needs
to access the IoT device; the client is enforced to execute the
workflow to access the service from the constrained device.

We believe that the way to secure a clear and consistent set
of rules in complex environments is using formal methods.
For this, we propose to use Petri Nets and Smart Contracts,
written in a simple declarative language. This also permits
the entities to reason locally about their possible choices and
their decisions, allowing plug-and-play configuration. Such
a local reasoning facility will be necessary to support the dy-
namic configuration of security policies, but that is not the

254



main focus of this paper.
4.1 Petri Nets for Workflow Specification

The advantages of using Petri Nets to specify workflows
are:

• Workflows specified in Petri Nets enable us to create
error free workflows because various properties of Petri
Nets such as reachability, liveness (deadlock-free), and
coverability [15, 22, 9] can be verified.

• Hierarchical Petri Nets can simplify the process of cre-
ating complex workflows by breaking them into smaller
partial workflows.

In traditional Petri Nets there are places, tokens and tran-
sitions. If there is risk of confusing the Tokens (markings)
in Petri Nets and the Tokens used for instance in ACE (say,
oauth Tokens) which are passed from one entity to another,
we call the later ones as oauth-tokens wherever necessary. A
transition may have one or more input places, and a place
may have one or several tokens. A transition fires if its in-
put places have sufficient tokens and as a result it produces
tokens in output places. Entities interacting with the Petri
Net workflow change their state from one place to another
via a transition firing. Extensions of Petri Nets such as col-
ored Petri Nets have enabled Petri Nets to represent different
types of tokens in one place.

In our Petri Net model for workflows, we introduce two
additional concepts:

• A new type of place (called an oracle) that can receive
tokens from an external source and it is represented as
star shape in our Petri Nets. Tokens can represent infor-
mation, endorsements or permissions, for instance im-
plemented as oauth-tokens.

• Some transitions within a Petri Net workflow have ad-
ditionally a smart contract, described in the section 4.2.

LEGEND

a place an oracle

a transition an activated transition

(a) (b)

Figure 1. Petri Net Workflow Specification

The Figure 1 shows a simple workflow specified as a Petri
Net. The oracle is represented as a star and all other places
are represented as circles. A place that contains or holds a
token is marked with a small black circle. The transitions
waiting for tokens are presented as squares without patterns,
and activated transitions ready for firing are shown as pat-
terned squares. In Figure 1 (a) shows that the first two tran-
sitions are enabled (ready to fire) because the input places
have tokens, and the Figure 1 (b) shows that those two transi-
tions have fired and as a result produced tokens in the output
places.

The subjects wanting to access protected resources inter-
act with the Petri Net workflow. A subject can be a process,
machine, or a human. The objects expose services which
are usually the protected resources in the workflow. A place
in the workflow can represent the state of both subjects and
objects, which we collectively call entities. A token in this
case can represent that the entity is available on the particu-
lar state in the workflow. In a more general setting, a token
might mean that the subject is ready for an interaction with
another subject.

A workflow is defined to express and fulfill a particular
purpose. For example, a workflow can be defined such that
a subject may have access to append to a file (object) only
to log status of the completed activity, not for anything else.
A transition first evaluates whether the subject is allowed to
access the object; second it evaluates whether the authorized
subject is allowed to access the object for the particular ac-
tion defined in the workflow or not. If both conditions satisfy,
then an access token is granted to the subject for a limited
time period to complete the task specified in the workflow;
once the task is completed, the access is revoked. Workflows
are written such that the different entities work together to
complete a purpose.
4.2 Transition Contracts

In traditional Petri Nets, a transition fires when the input
places of the transition has sufficient tokens. To implement
a workflow-driven access control system in Petri Nets the
transitions should be able to verify conditions and evaluate
information encoded in the tokens.

We use the combination of Petri Nets and transition con-
tracts to specify and enforce sequences of atomic transitions
(transactions) and properties that must be satisfied during the
single transitions. The properties (or rules) for each transi-
tion may be seen as small smart contracts that restrict the
choices of the participants of the workflow for this step, or
they impose additional conditions on the required or created
during the transaction, and the Petri Net the restrictions in
the order that they perform the steps. The conditions on a
single transition will be simply called a transition contract
(or transaction contract). This combination allows us to cre-
ate multi-step smart contracts: say, in the first step a token is
created based on some conditions (which may verify authen-
tication or authorization status of participants), and then this
token can only be used in a subsequent transition in a partic-
ular way, determined by the Petri Net and the next transition
contracts.

A transition contract adds conditions to the firing of a
transition: the transition procedure takes inputs from the

255



entities which engage in the transition and from external
sources, like an authenticated data feed, processes them (in
particular, verifying the validity of the tokens), evaluates the
conditions described (as guarded commands) in the transi-
tion contract, and produces the outputs as expected and as
specified in those conditions. An output produced by the
transition contract can be a token representing a particular in-
formation or can even be a dynamically created partial work-
flow for one or more entities.

The Figure 2 shows a simple Petri Net where two transi-
tions (T1 and T2) have a pointer to the transition contracts
(TC (a) and TC (b)) respectively. We propose to use a sim-
ple guarded command (a conditionally executed statement)
language to write conditions on a transition contract, be-
cause of the security bugs (see [14]) and problems that ex-
ist in Turing complete smart contract languages such as in
Ethereum. Note: smart contracts do not always have to run
on blockchain, they can also be implemented between two or
more parties without blockchain technology.

In our method we show that it is possible to bind many
transition contracts grouped together in a sequence to en-
force a workflow specified in Petri Nets.

a b

o

c

d e

|cond → action

TC(a)

|cond → action-1
|else → action-2

TC(b)

T1

T2

Figure 2. Smart Contract: Petri Net with Transition
Contracts

4.3 Local Reasoning
IoT devices are manufactured by different manufactur-

ers possibly with various standards, therefore an IoT system
should tackle interoperability issues, authentication and au-
thorization problems. IETF standardization groups such as
ACE [11] are working towards addressing the authentication
and authorization problems.

To enable dynamic configuration of security policies, an
IoT system should support local reasoners. A local reasoner
is a software module that takes decisions by analyzing avail-
able facts, for instance, it uses on-device information and
contextual information from nearby devices to take deci-
sions. Let us consider a home automation system that has
access to your database (that contains your friends list), and
a security policy stating that your friends can have wifi ac-
cess in your home; if your friend is able to prove to the home
automation system that he is one of your friend, then the

friend’s device can get wifi access in your home. This will
allow devices to have plug-and-play functionality and they
can mutually authenticate between themselves.

5 Solving Use Cases
In this section we show how to solve the use cases pre-

sented in section 3 using our approach in a natural way.
5.1 Smart Manufacturing

A manufacturing plant should be able to produce cus-
tomizable products on demand, adapt to supply chain disrup-
tions, and recover from errors during the production process
with some level of automation. To realize such a manufac-
turing plant, we need to introduce some intelligence to the
parts and manufacturing equipment involved in manufactur-
ing process. The parts and equipment are smart because they
have embedded processors or at least an RFID to hold infor-
mation. The equipment has computing and communication
capabilities; therefore, they can read and write the workflow,
verify conditions, and can communicate with other equip-
ment and parts.

Let us consider that a customer places a customized order
that requires some customizable parts and a core part to pro-
duce the final product. A part is able to listen to a request
from an equipment, for instance, an assembly unit; and can
reach a particular place in a given time. A partial workflow
that describes what types of parts are required and the assem-
bly instructions are uploaded to the core part. When the core
part is ready for assembling, the equipment sends a request
for the required parts; if the necessary parts and assembling
machine are available, then they all agree and reach the as-
sembly unit on a particular time. This enables JIT manufac-
turing.

Additionally, particular conditions can be checked and en-
forced via a workflow. For example, we can define that the
assembled product should pass the stress test with a certain
criteria to proceed to next step in a workflow, else a new
workflow is uploaded to fix that error. In this way, the work-
flow can be used for enforcing production methods and stan-
dards. The equipment can reason locally about the produc-
tion process errors, disruptions in supply chain, and can re-
cover from them. Once the tasks described in a workflow
are completed, then a new partial workflow is uploaded to
the part by the equipment. The workflow status enables the
manufacturing company to monitor the status of the produc-
tion, parts and equipment involved in real time. This enables
the manufacturing plant to gain production agility, quality
and efficiency, and to realize the of JIT model. This use case
shows how our method can fit within the existing manufac-
turing systems.
5.2 Building Automation

Assume that a contracting company agrees to maintain
the existing building automation devices, install new devices
and configure them with custom configurations, provided by
the building owner, and to finish the work in time or incur
some penalties.

A workflow is defined to express the above conditions by
the building owner and as agreed by the contracting com-
pany. Let us consider that the workflow can be uploaded to a
computing device (for example, a handheld or smartphone)

256



which has a generic software application capable of execut-
ing any Petri Nets workflows and transition contracts speci-
fied within them. The participants involved in the workflow,
for example, building owner, contracting company and their
employees are able to interact with their handhelds.

Let us consider that as the first step the building owner or
an authorized employee presses a button on his handheld and
approves the contractors to begin the work; this event cre-
ates a signed-token in an oracle and enables a transition. The
transition may point to a transition contract to verify whether
the token is from an authorized employee or not. Assume
that the transition contract is able to verify the signature of
the token using pre-configured certificates, if the token is
valid, then the transition contract can create an oauth-token
for the contractor to access the devices for maintenance pur-
poses. Similarly, tokens (can also be permissions or informa-
tion) required by the contractor for other purposes defined in
the workflow are created. After completing the authoriza-
tion step, the next transition of the workflow may point to a
transition contract that may point to the custom configuration
file chosen by the building owner to be installed on the de-
vices. The contractor uses the configuration file to configure
the devices.

The contracting company might want to enforce specific
conditions by creating partial workflows on their employees,
and these workflows can be provided together with the main
workflow provided by the building owner. Here we show
that the owner of the task is able to create dynamic partial
workflows for other entities to complete a task or resource
that he owns. In this way by we have realized a distributed
workflow management system. This use case shows how we
can execute and enforce a workflow in a distributed setting.

Transition contracts obtain inputs from the devices de-
scribing their provenance, verify the results, and if the results
are as expected, then the Smart Contract can pay the contrac-
tor with the amount that was agreed, else appropriate penalty
is enforced.

6 Conclusion and Future Work
In this paper, we have described a new framework for se-

curing the integrity of workflows in an IoT application by
using Petri Nets and Smart Contracts. The method provides
flexibility for entities interacting within a workflow; for in-
stance creation of dynamic partial workflows. By integrat-
ing workflow driven access control, our method enforces the
least privilege principle to authorize entities participating in
the workflow. We have also studied two real world use cases
and provided a solution to tackle those use-case problems.

As future work we intend to define a simple transition
contract language, create a user-friendly tool to create, ver-
ify, and enforce workflows in an IoT application environ-
ment, implement a simple reasoner that can fit inside con-
strained IoT devices, and to evaluate our distributed work-
flow enforcement model.

7 References
[1] V. Atluri and W.-K. Huang. An Authorization Model for Workflows.

Computer Security - ESORICS 1996 - Proceedings of the 4th Eu-
ropean Symposium on Research in Computer Security, 1146:44–64,
1996.

[2] V. Atluri and W.-K. Huang. A Petri net based safety analysis of work-
flow authorization models. Journal of Computer Security, 8(2/3):209,
2000.

[3] A. Bahga and V. K. Madisetti. Blockchain Platform for Industrial
Internet of Things. Journal of Software Engineering and Applications,
9:533–546, 2016.

[4] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforce-
ment of authorization constraints in workflow management systems.
ACM Transactions on Information and System Security, 2(1):65–104,
1999.

[5] M. Burgess and S. Fagernes. Promise theory - A model of autonomous
objects for pervasive computing and swarms. In International Confer-
ence on Networking and Services 2006, ICNS’06, page 118. IEEE,
2006.

[6] K. Christidis and M. Devetsikiotis. Blockchains and Smart Contracts
for the Internet of Things. IEEE Access, 4:2292–2303, 2016.

[7] L. Compagna, D. R. dos Santos, S. E. Ponta, and S. Ranise. Aegis:
Automatic Enforcement of Security Policies in Workflow-drivenWeb
Applications. Proceedings of ACM on Conference on Data and Appli-
cation Security and Privacy - CODASPY ’17, pages 321–328, 2017.

[8] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi. Step
by Step Towards Creating a Safe Smart Contract: Lessons and In-
sights from a Cryptocurrency Lab. IACR Cryptology ePrint Archive,
2015:460, 2015.

[9] J. Esparza. Decidability and complexity of Petri net problems—an
introduction. In Lectures on Petri Nets I: Basic Models, page 55.
Springer, Berlin, Heidelberg, 1998.

[10] W.-K. Huang and V. Atluri. SecureFlow: A Secure Web-enabled
Workflow Management System. Proceedings of the fourth ACM work-
shop on Role-based access control - RBAC ’99, pages 83–94, 1999.

[11] IETF ACE Working Group. Authentication and Authorization for
Constrained Environments (ACE). The Internet Engineering Task
Force (IETF), 2017.

[12] K. Knorr. Dynamic access control through Petri net workflows. Pro-
ceedings - Annual Computer Security Applications Conference, AC-
SAC, 2000-Janua:159–167, 2000.

[13] Y. Lu, K. Morris, and S. Frechette. Current Standards Landscape for
Smart Manufacturing Systems. National Institute of Standards and
Technology, NISTIR, 2016.

[14] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making
Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security - CCS’16,
pages 254–269, New York, New York, USA, 2016. ACM Press.

[15] T. Murata. Petri Nets: Properties, Analysis and Applications. Pro-
ceedings of the IEEE, 77(4):541–580, apr 1989.

[16] C. A. Petri. Communication with automata. http://edoc.sub.uni-
hamburg.de/informatik/volltexte/2010/155/pdf/diss_petri_engl.pdf,
1966.

[17] W. Reisig. Petri Nets : an Introduction. Springer Berlin Heidelberg,
1985.

[18] R. S. Sandhu and P. Samarati. Access Control: Principles and Practice.
IEEE Communications Magazine, 32(9):40–48, sep 1994.

[19] G. Selander, M. Mani, and S. Kumar. Use Cases for Authentication
and Authorization in Constrained Environments. IETF RFC 7744,
2016.

[20] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and
challenges for realising the Internet of Things. Cluster of European
Research Projects on the Internet of Things, European Commision,
3(3):34–36, 2010.

[21] N. Szabo. Smart Contracts: Building Blocks for Digital Markets
Copyright, 1996.

[22] W. M. P. van der Aalst. Verification of workflow nets. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), volume 1248,
pages 407–426. Springer, Berlin, Heidelberg, 1997.

[23] WfMC. Workflow Management Coalition, 2009.
[24] L. Zhekun, R. Gadh, and B. S. Prabhu. Applications of RFID Tech-

nology and Smart Parts in Manufacturing. In Volume 4: 24th Comput-
ers and Information in Engineering Conference, volume 2004, pages
123–129. ASME, jan 2004.

257


	Introduction
	Related work
	Use Cases
	Smart Manufacturing
	Smart Manufacturing Use-Case Problems

	Building Automation
	Building Automation Use Case Problem


	Specifying and Enforcing Workflows in IoT
	Petri Nets for Workflow Specification
	Transition Contracts
	Local Reasoning

	Solving Use Cases
	Smart Manufacturing
	Building Automation

	Conclusion and Future Work
	References

