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Abstract
We demonstrate a method to encode complex human ges-

tures acquired from inertial sensors for activity recognition.
Gestures are encoded as a stream of symbols which repre-
sent the change in orientation and displacement of the body
limbs over time. The first novelty of this encoding is to en-
able the reuse previously developed single-channel template
matching algorithms also when multiple sensors are used si-
multaneously. The second novelty is to encode changes in
orientation of limbs which is important in some activities,
such as sport analytics. We demonstrate the method using
our custom inertial platform, BlueSense. Using a set of five
BlueSense nodes, we implemented a motion tracking system
that displays a 3D human model and shows in real-time the
corresponding movement encoding.

1 Introduction
Inertial sensors and template matching algorithms have

been used successfully for activity recognition in healthcare,
well-being and sports applications [2]. Template matching
algorithms can be embedded on low-power sensor nodes [6].
Nevertheless, they are generally designed to work with a sin-
gle channel of data. In certain situation, such as in beach vol-
leyball movements analytics, this can be a limitation as mul-
tiple sensors are required to be employed on different body
parts in order to get and analyse the complexity of the move-
ments. For this reason, using them can become challenging
for complex gestures recognition.

Modern inertial platforms, such as XSens [5], Ethos [4]
and our BlueSense, can provide orientation data, generally as
quaternions. We present an encoding approach for complex
gestures that elaborate the orientation data provided by sev-
eral inertial sensors worn by the user. This method encodes
the position and the orientation of the user’s hand during a
movement as a single stream of symbols, simplifying the ap-

Figure 1. Setup of BlueSense on the user’s upper body.

(a) 3D, 15 symbols (b) 2D, 8 symbols

Figure 2. 3D and 2D codebooks examples. Different numbers of vec-
tors can be used in each codebook, in order to reduce or increase the
granularity of the displacement sampling.

plication of single channel pattern matching algorithms. It is
an extension of [7] with the novelty of including the rotation
of the hand during the movements in the encoding. This will
be important in future applications, such as sport analytics
and specially in beach volleyball gesture recognition.
2 Gesture Encoding

The system described in [7] computes the position of the
upper body joints using the 3D orientation of sensors placed
on each limbs and the torso of the user, as displayed in Fig-
ure 1. Combining these positions, the algorithm finds the
position of the hand in the 3D space. A gesture is then ex-
pressed as successive positions of the hand forming a tra-
jectory. Then, the trajectory can be sampled at regular time
intervals or after that a certain distance has been covered.
For each sample, the vector difference between two contigu-
ous positions is calculated. This vector is finally encoded
to a symbol using a codebook: this is a set of 3D unit vec-
tors equally distributed with respect to their direction (Fig-
ure 2). The symbol corresponding to the displacement vector
is given by the closest codebook vector. The coded symbols
are indexes in the codebook.

The method as described in [7] lacks of information about
the rotation of the hand during the movement. Two different
gestures can lead to the same displacement encoding, for ex-
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Figure 3. Example of encoding of two movements of a right arm, from t0 to t1 and from t1 to t2. At every instant ti, the displacement of the hand is
encoded with the dti, the rotation of the hand is coded with rti and the final encoding, computed using the Cantor pairing function, is represented by
the symbol eti.

ample if they have been performed once with the palm facing
upwards and another time with the palm facing downwards.
In order to overcome this issue, we introduced a second en-
coding for the rotation of the hand.

This extra encoding uses a 2D codebook (Figure 2) in or-
der to represent the rotation of the hand. Defining a starting
position encoding (for example the palm facing downwards
parallel to the ground is encoded as 1), it is possible to rep-
resent the rotation of the hand with the closest symbol in
term of angular distance. The two symbols for position and
rotation of the hand are eventually combined in order to ob-
tain a single symbol. As natural numbers are used to index
the codebooks vectors, this step is performed using a pair-
ing function. An example, the Cantor pairing function, is
presented in 1:

e(d,r) :=
1
2
(d + r)(d + r+1)+ r (1)

where d is the symbol for the displacement, r is the sym-
bol for the rotation of the hand and e is the final encoding.
The addition and product operators are the arithmetical op-
erations of sum and multiplication.

An example of the whole system can be observed in Fig-
ure 3. A 7-symbols codebook for the displacement and a
4-symbols codebook for the rotation are used.

3 Demonstration
In order to visualize the data provided by BlueSense

nodes, we created a motion tracking system which is pre-
sented in Figure 4. The system includes a set of 4 BlueSense
sensor nodes and two programs: SensHub and the 3D hu-
man model. The former collects the orientation data through
Bluetooth from the sensors, synchronizes them and forwards
them to the 3D model as single line of text through a TCP

Figure 4. Motion tracking system overview. The 3DHumanModel re-
ceives the data as a line of text through a TCP connection. Then it
parses this text in order to extract the quaternions to animate the 3D
model. At every rendering cycle, the 3D model is updated with the most
recent orientation data.

connection. The latter is a 3D human model developed us-
ing the JMonkeyEngine 3D engine [1]. The TCP connection 
allows to place SensHub and the 3DHumanEngine on two 
different devices, potentially in two different locations.

We were able to evaluate of the 3D model and the motion 
tracking system during the British Science Festival 2017 [3]. 
During the event, we deployed the system in a more complex 
simulation where people where asked to play a virtual beach 
volleyball game. We analysed the latency and the battery 
life of the sensors. The sensors are able to stream quater-
nions up to 500 Hz, but considering the framerate of the 3D 
rendering set to 60fps, we set the sample rate to 100 Hz. The 
latency is highly related to the hardware of the PC that runs 
the simulation. During the event it was acceptable for real 
time gaming. We also tested the battery life of the sensors 
that streamed the data for about 4 hours continuously.

In the future, we plan to employ the motion tracking sys-
tem to support the training of beach volleyball players.
4 Acknowledgments

U.K. EPSRC First Grant EP/N007816/1
5 References
[1] Jmonkeyengine, 3d game engine. http://jmonkeyengine.org/,

2017. [Online; accessed 28-November-2017].
[2] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, and

P. Havinga. Activity Recognition Using Inertial Sensing for Healthcare,
Wellbeing and Sports Applications: A Survey. Architecture of com-
puting systems (ARCS), 2010 23rd international conference on, pages
1–10, 2010.

[3] M. Ciliberto. ”How good are you in beach volley-
ball?”. https://www.britishsciencefestival.org/event/
how-good-are-you-at-beach-volleyball/, 2017. [accessed
28-November-2017].

[4] H. Harms, O. Amft, R. Winkler, J. Schumm, M. Kusserow, and
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