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Abstract
In sensor networks, the sensor selection task is to activate

only a subset, possibly a small subset, of the sensors while
gaining as much utility as possible from the sensors. Most
solutions are centralized algorithms with full knowledge of
the network. We explore local algorithms for sensor selec-
tion. In these algorithms, each sensor independently decides
if it should be included in the selection based on knowledge
of its neighborhood alone. We design algorithms for increas-
ing levels of knowledge in terms of the neighborhood size
and demonstrate on randomly generated graphs representing
sensor networks the improvement possible with more knowl-
edge.
1 Introduction

The prospect of large scale sensor networks has driven re-
search in efficient data collection. One way is to select a sub-
set of sensors to predict the data of all other sensors [1, 2, 3].
Most prior work focuses on centralized algorithms that use
information about the entire network. Our contribution is the
design and study of local algorithms for sensor selection, in
which each node independently decides if it should be part
of the selected set only using information about nodes in its
neighborhood. The goal is to maximize the prediction qual-
ity while keeping to the budget requirements. The advantage
of this approach is that there is no overhead of centralized
control. We study how the overall prediction quality can be
improved by increasing the size of the neighborhood.
2 Model and Solutions

We model the sensor network as a graph of the pre-
dictability relationships between sensors. Each edge is as-
signed a weight from 0 to 1 indicating how well one node
predicts another. A node is said to be covered by those
predicting it. The level of coverage is defined by an aggre-
gate function of the weights of the edges from the predicting

nodes. A selected node fully covers itself. Let the weight of
the edge from node vi to v j be wi j and S be a set of nodes cov-
ering node v j. We consider three commonly found aggregate
functions [4]:

1. Maximum edge weight (MAX): maxvi∈S wi j

2. Sum of all incoming edge weights (SUM), truncated at
1: min(1,∑vi∈S wi j)

3. Total probability (PROB): 1−∏vi∈S(1−wi j). If edge
weights represent the probability that two sensors detect
the same event, then PROB is the probability that an
event detected by a sensor is detected by at least one of
the predicting sensors.

The optimization goal is to select k of n sensors with maxi-
mum coverage of all sensors in the network.

A naive solution when the entire predictability graph is
known would be to order the nodes by the sum of their out-
going edge weights and select the top k nodes. The best pos-
sible approximation of the optimal solution is to select the
nodes one by one, each time selecting the node that increases
coverage by those already selected the most [1]. We refer to
these as the “static” and “dynamic” greedy algorithms, re-
spectively, and use them as lower and upper bounds on a
good solution.

Local algorithms make decisions based on limited infor-
mation about the predictability graph. We define the follow-
ing hierarchy of knowledge available to sensors when mak-
ing their decisions:
• Local 0: A sensor has no information about its neigh-

bors.

• Local 1.0: The only information a sensor has is how it
predicts its immediate neighbors.

• Local 2.0: As implied by the previous cases, Local 2.0
means a sensor knows how it predicts its neighbors, and
how its neighbors predict their neighbors.

For the local algorithms, we assume that the weights of
all edges are defined by some probability distribution, and
that this distribution, the total number of sensors n, and the
budget k, are known to all sensors. The general design of our
algorithms is for a node to compute some combined value
of the all the edge weights it knows. If the combined value
is above some threshold, it randomly decides if it should be
included in the selection. The thresholds and probabilities of
being selected are set such that the expected number of nodes
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Figure 1. Coverage using various thresholds for the lo-
cal1sum

to be selected equals the budget. We designed the following
algorithms:
2.1 Local 0 (local random)

Since there is no information that can be used to make a
decision, each node decides to be selected with probability
k/n.
2.2 Local 1.0

For this level, we designed algorithms that are meant to
favor nodes with higher aggregate functions of their outgoing
edge weights, like the static greedy algorithm.

local1a Each node sums all of its outgoing edge weights.
If the sum is greater than some threshold t, it adds itself to
the selection with probability p.

local1b Each node counts the number of outgoing edges
whose weight is above some pivot value s. If this number is
greater than some threshold t, then select it with probability
p.
2.3 Local 2.0

Each node ranks itself amongst its neighbors according
to the sum of each nodes outgoing edge weights. It then
calculates the ratio r = b/l of how many of its neighbors
it defeated, where b is the count of neighbors beaten and l
is the total number of neighbor nodes. Then, as in the other
algorithms, if r is above some threshold t, select it with prob-
ability t.
3 Evaluation

We analyzed these algorithms on Edros-Renyi and
Barabasi-Albert graphs with 100 nodes whose edge weights
were randomly assigned from either a uniform or decreas-
ing or increasing Zipf distribution. We first determined that
for all cases and algorithms, the best threshold to use is the
one for which the expected number of selected nodes is as
close to the budget k as possible. Figure 1 shows the cov-
erage of a Erdos-Renyi graph by the local1 algorithm when
the threshold is such that 1, 1.4, and 1.8 sensors are within
that threshold and then randomly selected to meet the bud-
get. It shows that 1 is the best value. Figure 2 compares
the coverage by the different algorithms for the same graph.
This shows that while local0, random selection, is far worse
than static, the local1 algorithms are very close. Local2 is
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Figure 2. Coverage by local and global algorithms

slightly better than static, showing that with more informa-
tion and better algorithm design, it is possible to approach
near-optimal solutions.
4 Conclusions

We defined a hierarchy of local algorithms for sensor se-
lection and designed several algorithms for the first two lev-
els. We demonstrated in simulations on random graphs that
the random selection is not beneficial when unnecessary and
that increasing the level can give better results. The goal is
to see how much knowledge is necessary to achieve results
as good as the global solution.
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