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Abstract
We present an extensible sensor research platform for

wearable and IoT applications. The result is a 30x30mm
platform capable of 500Hz motion and orientation sensing
using 98mW when logging the data. The platform can wake
up at programmed intervals using only 70uW in hardware off
mode. A maximum 0.6ppm time deviation between nodes al-
lows usage in a network for whole body movement sensing.
1 Introduction

Our work is motivated by sensor-based human activity
recognition which is key to smart-assistive systems. It ad-
dresses issues we experienced in prior work collecting large
scale datasets for human activity recognition [7] and takes
into account experiences reported by other researchers. The
key observations are: i) some applications require real-time
recognition and thus data streaming, whereas others perform
offline analysis which requires data logging; ii) multiple sen-
sors are generally improving recognition performance, thus
their recordings must be synchronised [4]; iii) using limb co-
ordinates instead of raw motion data is well suited for fine
gesture recognition, which thus requires orientation sensing
[8]; iv) some applications require high sample rate, espe-
cially in sports [2]; v) activity recognition can benefit from
novel sensors [5], and thus a platform should be extensible.

A secondary motivation is measurements over extended
periods of time at low sample rate (e.g. once per day), which
is common in Internet of Things (IoT) applications. Instead
of hardware event detectors [9] we combine true hardware
off with programmed wake-up through a real-time clock.
2 Hardware

The platform (fig. 2) comprises an ATmega1284p micro-
controller at 11MHz, 3V regulator and LiPo battery charger,
Micro SD slot, a single-chip 3D accelerometer, gyroscope
and magnetometer (MPU9250), a coulomb counter, and

USB and Bluetooth 2 interfaces. Classic Bluetooth allows
enough bandwidth for real-time analytics. It has a one of
the highest accuracy real-time clock (RTC) on the market
(DS3232M), with ±5 ppm accuracy over the entire temper-
ature range. It is used to timestamp the recordings of inde-
pendent nodes. We measured the drift of the RTC to be less
than 0.6ppm when nodes are at room temperature. Overall,
the platform is 30x30mm. It accepts extension boards on top
or bottom (fig. 1). One connector comprises the program-
ming interface, SPI interface, regulated power, USB power,
two GPIO which can also be used as ADC inputs, and an
open-drain line which can be used to wake up the system
from hardware off. This may be used to implement event de-
tectors using low-power analog circuitry [9]. The other con-
nector comprises the I2C interface, analog and battery power
and 5 GPIO pins, 3 of which can be used as ADC inputs.

True hardware off is achieved by turning off the power
regulator (LTC3553 in fig. 2). The system can wake up from
this mode when the power button is pressed, when a real-
time clock alarm occurs, or when a pin on the expansion
connector is pulled low. The logic to wake up the system
(power logic in fig. 2) is powered by the battery directly.
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Figure 1. PCBs and node fitted with a 160mAh battery.
Larger batteries can be employed if needed.

3 Firmware
The firmware offers a terminal interface over USB and

Blueooth to setup the node and start/stop data acquisition.
We designed the firmware to achieve high sample rate with
low jitter. No operating system is used to minimise over-
heads. However a comprehensive library abstracts the user
application from the hardware details. Most I/O library func-
tions rely on interrupt routines to exchange data with periph-
erals. The interrupt routines stores or reads the data from
memory buffers to which the library functions called from
user code can also access. The SD card interface however is
not interrupt driven and SD card writes are blocking.
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Figure 2. Extensible sensing platform for wearable and IoT applications.

Table 1. Power use in various modes.
Logging Streaming Idle

500Hz 100Hz 500Hz 100Hz No conn. BT conn. Off
98mW 94mW 200mW 184mW 18mW 92mW 70µW

Data logging uses an optimised FAT32. Log files are
pre-allocated contiguously on the SD card. This allows to
employ SD card “pre-erase” and “multi block writes” com-
mands which allow streaming writes of data, without having
to regularly update the FAT entries and cluster link. Only
when a file is closed is the FAT updated to reflect the size of
the file. With this we achieved 1KHz ADC sample rate with
jitter less than ±30µS [5].

The motion sensor data is converted into orientation
quaternions using a variation of Madgwick’s algorithm [3],
where the corrective step using the accelerometer and mag-
netometer is carried out at a fixed 12.5Hz. This allows to
keep the computation time below 1100µS and is instrumen-
tal to achieve 500Hz motion sensing. We did not observe
adverse effects thanks to the low noise of the gyroscope.

Timekeeping is obtained from a combination of an inter-
nal AVR timer and the RTC. The AVR timer provides a time
resolution of 1ms. A 1Hz RTC signal is used to regularly
reset the AVR timer. This ensures that the timekeeping error
is bound by the RTC timekeeping accuracy.
4 Characterisation

We minimised CPU power consumption by sleeping the
processor when busy-looping. In idle mode (i.e. waiting for
commands), the dominant power contribution is the Blue-
tooth radio, which we minimised by modifying the inquiry
and page scan window and duty cycling. This decreased idle
power by 19mW at the expense of slightly longer discov-
ery and connection time. In hardware off mode, the only
components directly powered by the battery are the coulomb
counter, the RTC and the power-up logic. The type of SD
card used has a significant influence on power use during
logging. Table 1 shows power use with a 32GB Samsung
EVO+ SD card; using a 32GB SanDisk Extreme instead in-
creased power use by 40mW.
5 Conclusion

BlueSense offers a better tradeoff and versatility for wear-
able sensing applications compared to many other plat-
forms. It is smaller at 30x30mm than commercial solu-
tions by Xsens (47x30mm for the wireless MTw), Shimmer

(51x34mm for the Shimmer3 IMU) and x-io technologies
(42x33mm for the x-IMU) and it offers higher sample rate
(500Hz) than the XSens MTw (120Hz) and many other plat-
forms [6], inluding highly miniaturised ones [1]. It is exten-
sible, as is the x-IMU. True hardware off also allows usage
in IoT applications. The bill of material is below £80 per unit
(excluding assembly) in batches of 30.

An AVR processor was used to reduce development time
by exploiting our large existing code base. The firmware
development time was nevertheless significantly underesti-
mated due to the highly specific needs of this platform re-
quiring a large number of new software modules. A lesson
learned for embedded systems development is that a more
modern microcontroller could have been used (e.g. an ARM
Cortex-M) while incurring only a very limited increase in
development time. The platform will be open-hardware1.
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