
MorjeuV: Simulate Reality for the Orchestration of Deployed

Networked Embedded Systems

Richard Figura

CISS, Germany and University of

Duisburg-Essen, Germany

r.figura@ciss.de

Matteo Ceriotti

University of Duisburg-Essen,

Germany

matteo.ceriotti@uni-due.de

Sascha Jungen

University of Duisburg-Essen,

Germany

sascha.jungen@uni-due.de

Sascha Hevelke

University of Duisburg-Essen,

Germany

Tobias Hagemeier

University of Duisburg-Essen,

Germany

Pedro José Marrón

University of Duisburg-Essen,

Germany

pjmarron@uni-due.de

Abstract
Cyber-Physical Systems (CPSs) realise sensing and actu-

ating infrastructures available for diverse applications with
disparate requirements. These systems intertwine with the
surrounding environment, making system performance dif-
ficult to foresee. During and after deployment, the ability
to operate and validate the infrastructure is hampered by the
limited visibility and the costs of testing alternative config-
urations. We propose MorjeuV, a framework able to ana-
lyse the performance of the target application in a faithful
simulation. By calibrating the models with real measure-
ments, MorjeuV can compute a virtual copy of the target
system and reason about it. In particular, the visibility over
the system state allows a thorough analysis of performance
bottlenecks. Furthermore, the impact of alternative reconfig-
uration strategies can be tested beforehand. We instantiate
our ideas in a prototype, with which we show that MorjeuV
can suggest which nodes to activate in a physical infrastruc-
ture to control the application performance.
Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network
Architecture and Design
General Terms

Design, Measurement, Performance, Reliability
Keywords

Cyber-Physical Systems, deployment, simulation
1 Introduction

Cyber-Physical Systems (CPSs) offer the unique oppor-
tunity to precisely observe the real world with a flexible
technology. Due to their foreseen potentials, these systems

���

���

���

���

���

�

�� �� �� ��

�
��
��
��
��
��
��
���

(a) Throughput

�
���
���
���
����
����
����

�� �� �� ��

�
��
��
��
�
��
��

(b) Latency

����

����

���

����

����

�� �� �� ��

�
��
��
��
��
�
��
���

(c) Radio duty cycle

Figure 1. Application metrics for different real-life con-
figurations (blue) and corresponding simulations (gray).

are being deployed at larger and larger scales, e.g., to reach
the extent of cities [11, 20]. Such infrastructures are meant
to provide general-purpose monitoring services and serve a
variety of applications, possibly changing at runtime. Simil-
arly, dedicated infrastructures are being used in critical scen-
arios with strict requirements on, e.g., throughput, latency
and lifetime. This realises a complex design space and, con-
sidering also the peculiar impact of each individual deploy-
ment scenario on the system behavior, it makes the analysis
of alternative system configurations challenging.

In Figure 1, we report the behavior of the CTP routing
protocol [9] for different network configurations in our in-
door CPS testbed (details about the setup are provided in
Section 5.1). In particular, our goal was to identify the min-
imum set of devices necessary for the timely and reliable
delivery of information about events happening in any room
of our department. The different configurations correspond
to the activation of different subsets of nodes in the network.
Even small changes to the topology can have a significant
impact on the network operation, transforming a malfunc-
tioning system configuration (C1) into reliable ones (C3 and
C4). In this paper, we focus on the problem of identify-
ing which devices from a deployed infrastructure should be
used by an application to fulfil its requirements in terms of
throughput, latency and lifetime. In fact, the network graph
alone generated by different selections of nodes is unable
to describe the corresponding concrete application perform-
ance and, consequently, quantify the expected discrepancy
between such network and the target requirements.

In the literature (Section 2), analytical approaches,

145

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1



e.g., [15], have tried to model various aspects of the sys-
tem behavior in order to reason about its optimal config-
uration and operation. However, these approaches fail to
quantify the specific performance of a system in its opera-
tional environment. As a consequence, system design and
deployment resort to trial and error methods [32] in order
to test and optimise the system behaviour directly in the tar-
get scenario. The lack of visibility into the system state and
the possibly adverse conditions of the working environment
make exploring the parameter space impractical. Further-
more, this approach requires operations where the system is
deployed, increasing the maintenance costs and the time be-
fore the system can be reconfigured and adapted to changed
or unsatisfied application requirements. Finally, software
solutions [3, 33, 19] offer the possibility to define flexible
protocols or online reconfiguration techniques. These meth-
ods are, however, specific to a given network stack and/or
application and they typically assume that all the devices are
partaking in the application, forcing any solution to adhere
to the properties of the underlying physical infrastructure.

In this work, we introduce a simulation-aided planning
framework, MorjeuV (Section 3). Our approach relies on
the analysis of the application performance in a faithful sim-
ulation based on measurements coming from the target en-
vironment and system. By calibrating the models used in
simulation with measurements taken in the target environ-
ment, MorjeuV becomes able to compute a virtual copy
of the real system and reason about it. Specifically, by us-
ing simulation, it gains full visibility over the real system
state. This allows to realise a thorough analysis (Section 4)
of which devices provide a significant benefit or detriment to
the application performance. Furthermore, reconfiguration
strategies can be identified and alternative system configura-
tions can be tested beforehand, quantifying with a reasonable
accuracy the impact of each configuration on the real system.

In particular, our contributions are: 1) enabling faithful
simulations through the calibration of communication mod-
els with real measurements; 2) identifying and assessing
alternative application-agnostic reconfiguration strategies,
based on the analysis of the simulation output; 3) supporting
the analysis of the discrepancies between the selected recon-
figuration and the corresponding behaviour of the real sys-
tem in order to detect inaccuracies in the simulation models
as well as network instabilities or system changes; 4) design-
ing a concrete framework where the system information is
analysed, possible reconfiguration strategies are evaluated,
and reconfiguration actions are supervised during execution.

In the evaluation (Section 5) in our indoor testbed, we
demonstrate that MorjeuV is capable of suggesting changes
to the system infrastructure by accurately identifying areas
with bottlenecks and proposing suitable reconfiguration ac-
tions. We confirm that controlled changes to the infrastruc-
ture can have a huge impact on the application performance
and offer a larger degree of freedom in adapting the system
to changing application requirements. Notably, MorjeuV
is orthogonal to approaches that adapt software parameters.
Once MorjeuV has chosen an appropriate infrastructure and
topology, software approaches can still counteract dynamics
of the environment and the system, before MorjeuV is able

to apply alternative reconfiguration actions. From the dis-
cussion of MorjeuV (Section 6), we pave the way to its use
in the holistic design of complex CPS networks (Section 7).

2 Related Work
The challenge of designing and planning low-power net-

worked embedded systems has been addressed in the liter-
ature from different perspectives. We discuss them in this
section, highlighting the unique contributions of our work.
Deployment Planning. The design of a system prior to de-
ployment, e.g., the choice of the actual position of stationary
sensors, is typically driven by application requirements and
domain knowledge. During deployment, several tools can be
exploited to understand the specific properties of the system
in the target environment [8, 12]. Such information can be
used to construct probabilistic models of communication and
sensing quality for the different possible node placements.
Based on this, it is possible to identify optimal sensor loc-
ations [15]. This data-driven approach shows good results
because it can describe the system in its operational environ-
ment through real observations. However, the generality of
the employed system models are inadequate to capture the
complexity of the specific software services and protocols
employed in practice. As such, these approaches are unable
to match application requirements like throughput or latency
resulting from a specific network software stack.

Even through factual knowledge acquired in the target
scenario, designing a working system involves a lot of phys-
ical trial-and-error [32] during deployment. In particular,
antenna orientations and small changes in the actual posi-
tioning might have huge effects on the final performance,
justifying solutions where the complete parameter space is
explored exhaustively [4]. Our approach, instead, exploits
measurements collected in the target environment to model
the behaviour of the physical communication layer. On top
of this, we make use of the unmodified application software
to profile the system and directly match the user require-
ments. In this manner, we can quantify the impact of al-
ternative plans in terms of requirements satisfiability.
Configuration Planning. In addition to the parameters de-
scribing the physical deployment, an appropriate configura-
tion for the services and protocols running in the system must
be identified. A first indication of the expected behaviour
can be gathered through simulation. While a variety of sim-
ulators can reproduce the behaviour of low-power networked
systems, e.g., [21, 18], they reproduce generic setups, whose
characterisation might significantly deviate from the actual
final performance. For this reason, some work [29] have pro-
posed the integration of measurements from the target scen-
ario to exhaustively explore the network parameter space.

Considering the large variety of network protocols and
their unique functioning, the selection of appropriate system
services requires frameworks able to identify the best net-
work stack fitting the deployment scenario [2]. Our work
extends and complements these approaches by using simu-
lation with real-world measurements from the deployment
without requiring knowledge of the employed software solu-
tions in order to perform system optimisation. In this way,
we realise an application-agnostic framework nonetheless

146



able to match actual user requirements of a concrete system
in its operational scenario. We achieve this not by changing
the parameters of the running network stack but by selecting
the set of nodes able to satisfy the application needs, exploit-
ing an alternative possibility for system optimisation.
Performance Estimation. The approaches aforementioned
rely, in different flavours, on models of the communication
quality and features. The widely used log-distance path
loss model [25] provides an analytical description of how
the wireless signal degrades over distance. Its use is often
justified by the low computational effort and the possibil-
ity to derive the environment-specific parameters from ob-
servations [23, 1]. Nonetheless, studies have demonstrated
the deviations of the predicted performance from the one ob-
served [14]. More detailed approaches, e.g., raytracing [27],
typically require an accurate characterisation of the environ-
ment to precisely calculate the paths followed by radio sig-
nals between senders and receivers. While accurate, these
models have high computational costs and require precise
maps of the scenario and the obstacles in within.

Recognising the difficulty of estimating real system per-
formance through simulation, the community has shifted to
the use of publicly available testbeds [10, 6] as reference
validation tools. Despite their ability to describe real sys-
tem behaviours, they represent specific configurations and
setups. As a result, the gathered insights are hardly ap-
plicable to other deployment scenarios and systems. In our
work, we provide an analysis of how well the performance
of a real system can be estimated through a simulation based
on the emulation of the individual devices [21] and an ex-
tended communication model calibrated with real measure-
ments. Through the analysis, we demonstrate that an appro-
priate simulation can offer a faithful description of the sys-
tem behaviour. This allows to perform extensive monitoring
and debugging as well as analysing reconfiguration strategies
in a convenient virtual environment before applying concrete
changes to the operational system.
System Monitoring and Debugging. The possibility of in-
specting and debugging the network performance is crucial
to ensure the correct functioning and identify possibilities for
optimising the system behaviour. This is particularly relev-
ant in the case of networked embedded systems with limited
visibility in the system state and scarce resources. In the
literature, it is possible to identify several approaches to in-
strument the running code in order to trace particular inform-
ation, e.g., allowing the correct reply of the complete system
behaviour a posteriori [16]. Different metrics can then be
extracted to identify problems or simply compare the per-
formance of similar solutions in different setups [24].

Monitoring and debugging systems online typically in-
volves significant resources. However, it has been demon-
strated that adaptation of common tools are possible [31].
Alternatively, useful metrics can be extracted without signi-
ficant impact on the system performance [13] or through the
deployment of secondary networks overhearing information
and reconstructing views of the events in the network [26].
By reconstructing a virtual copy of the real system, our ap-
proach allows all these approaches to run transparently in an

artificial environment with unconstrained resources. Further-
more, we show that in such setup it becomes possible to use
relevant informations about the system performance that are
available already without modifying or inspecting the actual
source code running on each device.
System Adaptation. With detailed informations about the
system, it becomes possible to adjust the behaviour of the
network. In particular, models of the different network proto-
cols can be then used to identify at run-time an optimal con-
figuration and apply it to the system to counteract changes in
the environment or in the application behaviour [33]. Other
approaches can exploit knowledge and measurements of the
behaviour of different network protocols in different condi-
tions to adapt the configuration of the running system based
on identified or learned rules [19]. Orthogonal to these ap-
proaches is the possibility to design or extend protocols to
make them self-adapt to the current situation of the system
and the environment with an appropriate tuning of the para-
meters [3]. Finally, if software solutions are not able to
make the system match the expected system performance,
it is possible to consider changes to the physical deployment
by physically adding or relocating devices [30].

Our approach complements these solutions. In particu-
lar, we identify strategies to select which nodes could im-
prove specific application metrics and validate if such se-
lection matches the actual requirements through simulation.
Once the selection is applied to the operational system, envir-
onmental dynamics could still affect the experienced beha-
viour. The aforementioned solutions could counteract such
changes without triggering our optimisation scheme. These
same schemes can, however, also exploit our framework by
validating their adaptation schemes before applying it.

3 Design
In this work, we tackle the problem of designing an arbit-

rary complex network of low-power wireless nodes match-
ing specific application requirements. In particular, we focus
on scenarios where an infrastructure of a variety of sensing
and actuating devices is available to be used by any applic-
ation, potentially changing over time. The MorjeuV frame-
work can nonetheless be extended to tackle also other types
of system design and application deployment.

We now introduce MorjeuV as well as its underlying
simulation engine. We also discuss the application and net-
work metrics that we use as reference to study the system
behaviour. This design is then validated to demonstrate the
ability of the framework to accurately describe the behaviour
of a real system, enabling the analysis and reconfiguration of
operational systems (as presented in Section 4).
3.1 MorjeuV Framework

The literature on CPS deployments, as well as personal
experience, agrees on the strong interdependence between
the system behaviour and its operational environment. The
design of a system must then take this factor into account in
order to obtain the level of reliability required by the specific
application at hand. In systems employed, e.g., in precise
monitoring or in closed control loops, it becomes crucial to
quantitatively measure the expected system performance and
optimise the configuration based on a concrete analysis. This

147



Deployment Site

Operational System
Env-Sys

Measurements
Modelling

Simulation

Env-Sys
Models

Analysis

System Description &
Performance Metrics

Candidate
Configuration(s)

User

Application
Requirements

Deployment 
Knowledge

Blacklisted
Configurations

Predicted
Behaviour

Deployment Configuration

Ground 
Truth 

Validation

Real
Behaviour

Model
Deviations

Figure 2. MorjeuV framework and its use for deploy-
ment and reconfiguration planning.

analysis is challenging to perform during deployment as ex-
ploring the complete design space in the operational envir-
onment is impractical, forcing trial-and-error [32].

As recently recognized [29], simulation can be used to
support this analysis despite the typically argued discrepancy
between synthetic and real-world behaviour. The key is the
calibration of the models used in simulation based on actual
information coming from the real system and environment.
The result is a faithful virtual copy of the operational system,
which offers full visibility over the system state and allows
to analyse the configuration space.

Therefore, in MorjeuV, we start from real measurements
coming from the deployment site. As depicted in Figure 2,
such observations form the base on which to model both
the scenario as well as the properties of the system once
immersed in the target environment. An appropriate level
of detail of such system and environment description en-
ables the reproduction of the system behaviour in simulation,
where we gain full control and visibility. Together with fit-
ting network analysis techniques, the performance metrics
monitored in simulation provide information used to analyse
bottlenecks and identify alternative system configurations.
Exploring candidate setups in simulation in parallel allows
to find the most promising configurations for the operational
system and analyse different trade-offs.

When applied, the overall application performance of this
configuration can then be monitored. Deviations from the
expected behaviour due to inaccuracies of the models used
in simulation or physical changes of the operational envir-
onment and system can trigger MorjeuV to refine the de-
ployment description and to compute an alternative config-
uration. Through this cycle, it is possible to validate system
models and gather information of the impact of reconfigur-
ation strategies on system behaviour, constructing a specific
deployment knowledge. For example, it becomes possible
to identify links or nodes that are detrimental to the applic-
ation performance and blacklist them for a given period of
time from the possible configurations or refine the simula-
tion models with parameters fitting the observations.
3.2 Radio Model

In order to build an accurate virtual copy of a running
system, we base MorjeuV on the Cooja simulator [21]. The
available support for hardware emulation [7], in fact, allows

to replicate accurately the behaviour of individual nodes in
isolation. In addition, typical CPSs realise the goals of
the target application by exploiting distributed interactions
among device. Therefore, it is crucial to define an appropri-
ate model for communication. This is particularly the case
for low-power short-range wireless, where different place-
ments can significantly alter the properties of the resulting
system. In addition, the peculiarity of the deployment scen-
ario might have a significant impact, making the prediction
of the individual link features challenging.

Among the different possibilities offered in Cooja, we de-
cided to extend the basic DGRM model. This default com-
munication medium behaves in such a way that two concur-
rent receptions at a node always result in a collision, inter-
fering any ongoing communication. However, real-world
experimentation shows a deviation from this simple beha-
viour requiring more complex medium descriptions in or-
der to better replicate the functioning of a real network [17].
In MorjeuV, the actual link properties base on RSSI and
PDR traces, gathered from the real network deployed in its
target environment as in [29]. In addition, we describe in-
terference and message collisions through a signal-to-noise-
ratio (SNR) threshold in accord with previous studies [28],
also taking into account possible capture effects [5].
3.3 Metrics discussion

The analysis of the application behaviour and the identi-
fication of existing bottlenecks to use as input for possible
reconfigurations can base on a variety of metrics. While the
exhaustive exploration of the possible configuration space is
out of the scope of this work, we target metrics and recon-
figurations that can be computed without explicit informa-
tion of the actual application implementation. Therefore, we
limit ourselves to the traces that can be gathered from a de-
ployed system about link properties, e.g., PDR and RSSI,
as well as information about the application behaviour that
the simulator, in our case Cooja, can extract about the sim-
ulated network without modifying the application binaries.
While additional metrics and information can be included in
the overall MorjeuV framework, we experiment specifically
with analysis and reconfiguration strategies that are, there-
fore, independent from the deployed software stack.

With the collected PDR and RSSI informations regarding
each link, we can execute in simulation the binary of the tar-
get application and monitor different accessible metrics. In
particular, for traditional data-gathering applications along a
routing tree rooted at a sink, it is possible to monitor how
many messages are sent and received. By identifying the
unicast transmissions, it is possible to distinguish between
application packets and routing beacons. More complex pat-
tern matching algorithms can also be implemented to further
categorise different types of messages in more complex and
heterogeneous scenarios. Latency can similarly be tracked
under the assumption that the application data is not trans-
formed on the path from the source to the sink. Finally, life-
time can be estimated through the radio duty cycle, i.e., the
ratio of time the radio is kept active with respect to the overall
simulation execution. These metrics can be computed indi-
vidually for each node of the network or aggregated over the
whole network where the application is run. For the applica-

148



���

���

���

���

���

�

�� �� ��

�
��
��
��
��
��
��
���

(a) Throughput

�
���
���
���
���
���
���

�� �� ��

�
��
��
��
�
��
��

(b) Latency

�

���

���

���

���

���

�� �� ��

�
��
��
��
��
�
��
���

(c) Radio duty cycle

1

4 5 8 9

171511

2522

2016

30 31

(d) Stable routing tree
in C5

1

4 5 8 9

1715

11

2522

2016

30 31

(e) Routing tree in the
1st run of C7

1

4 5 8 9

1715

11

25

22

20

16

30

31

(f) Routing tree in the
2nd run of C7

Figure 3. Application metrics and routing trees for differ-
ent bootup orders and runs with the same set of nodes.

tion lifetime, a variety of estimations can be used, e.g., based
on the highest radio duty cycle or the average one.

In addition to metrics of direct interest to the application
that can directly be matched against user requirements, it is
also possible to measure specific network properties. These
metrics are relevant to study the functioning of the network,
to understand the bottlenecks and identify corresponding re-
configuration actions. In particular, we compute the routing
tree(s) of the paths followed by the data to reach the sink. By
identifying the destination of unicast transmissions of each
node, the data paths can be recognised and the overall rout-
ing structure employed by the application can be determined.
Once this information is available, it is of interest to compute
the tree edit distance [22], which counts the number of node
removals and additions necessary to transform one routing
graph into another. For convenience, in the rest of this paper
we count a removal followed by an addition as one opera-
tion. Finally, by looking at successive traces of PDR and
RSSI, it is possible to identify unstable links, whose quality
significantly changes over time. This metric, which we refer
to as link stability, is important to detect links that the system
should avoid to increase stability and reliability. Moreover,
the same metric can be exploited to identify links that the
simulation is unable to reproduce accurately.
3.4 Fidelity Validation

Simulation inherently introduces randomisation between
different system executions. This is justified by its typical
use in the analysis of unspecific setups in order to gather
generally applicable insights. Our goal is, instead, to study
a specific system and identify bottlenecks and reconfigura-
tion opportunities peculiar to such network. In particular,
random seeds are used in simulation to slightly alter differ-
ent executions and provide richer results. One consequence
is that nodes are started at different times and in different
orders. Assuming an identical system and software config-
uration, this can already have a significant impact on the ob-
served system behaviour. For example, it is possible that

���
����
����
����
����
���
����
����
����
����

�

�� �� ���

�
��
��
��
��
��
��
���

(a) Throughput

�
���
���
���
���
���
���
���

�� �� ���

�
��
��
��
�
��
��

(b) Latency

���

����

���

����

���

�� �� ���

�
��
��
��
��
�
��
���

(c) Radio duty cycle

Figure 4. Node-wise application metrics for simulations
(grey) based on real-world measurements and same boot
order of nodes in comparison to the reference real-world
system performance (blue).

�
����
�����
�����
�����
�����

����
���

�
��
�
��
��
��
��
��

(a) Routing beacons

�
���
�

���
�

���
�

���
�

����
���

�
��
��
��
��
�
��
�

(b) Graph distance from the reference base real-
world routing tree of multiple real-world execu-
tions and simulations

Figure 5. Routing metrics for simulations based on real-
world measurements and same boot order of nodes in
comparison to the reference real-world system perform-
ance (C8).

different routing paths are selected based on the timings of
the beaconing and routing procedures.

We studied this effect in real setups by performing a series
of repeated tests with nodes booted in different orders. We
selected 14 devices in our testbed (described in Section 5.1)
and randomly selected 3 different bootup orders and tim-
ings. Via serial, we controlled the boot of the different
devices. The different configurations were executed one after
the other in multiple runs to observe the behaviour in similar
conditions. The results are shown in Figure 3.

The figures show that deviations are indeed possible
and significant. Furthermore, different configurations might
show more variation between different runs than others. By
looking at the generated routing tree, the paths used to de-
liver data clearly differ from each other, explaining the dif-
ferences in performance between different system configur-
ations as well as the higher variability of results for config-
uration C7. Furthermore, the possible variations manifested
by the same configuration indicate the need to treat explicitly
the cases in which the network and the corresponding applic-
ation performance are unstable. We address this point while
discussing the reconfiguration strategies in Section 4.3.

The bootup order is one of the factors affecting the sys-
tem behaviour, which can be practically monitored and con-
trolled by looking at the local clock during typical time syn-
chronisation procedures. However, also hardware-specific
aspects can influence the network performance, e.g., clock
drifts or the use of random number generators in the soft-
ware itself. We exclude these elements from our study due
to their intrinsic erratic behaviour. Further elements, e.g., ex-

149



(a) Node throughput (b) Node latency (c) Node radio duty cycle

(d) System throughput (e) System latency (f) System radio duty cycle

Figure 6. Linear regression and 95% confidence interval for the relationship between simulated metrics and corres-
ponding real performance for all analysed network configurations.

Table 1. Pearson correlation factor over all experiments
for the system-level and node-level application metrics.

Pearson correl. Throughput Latency Duty Cycle
System-level 0.99 0.99 0.69
Node-level 0.94 0.96 0.92

ternal interference or environmental changes, require to ex-
tend both the communication model and the system analysis
in the time dimension. This is an exciting development of our
framework, which is part of our ongoing research agenda.

For testing the simulation fidelity, we compared the res-
ults measured in a real deployment with the ones obtained
from corresponding simulations. We run a traditional data
gathering application on 12 nodes in our testbed (the experi-
mentation setup is explained in Section 5.1). Figure 4 shows
the overall application performance for throughput, latency
and lifetime metrics for three different configurations. Even
though deviations are present, the general behaviour is pre-
served, supporting our goal of using simulation to perform
the system analysis of the operational network in simulation.

Figure 5 demonstrates that also routing metrics, e.g., the
number of beacons, are accurately reproduced in the artificial
setup. We also compare the routing graphs resulting from
multiple runs of the same network in simulation and in the
real setup. Figure 5b shows that simulation manifests a rout-
ing tree at an average distance of 0.5 edit operations. This
deviation is within the inherent variability of the network it-
self and therefore accurate enough to support our analysis.

In order to generalise our insights on the ability of
the simulation to accurately replicate the real behaviour of
the system, Figure 6 and Table 1 describe the correlation
between simulated and real-life behaviour both for the over-
all system metrics as well as for each individual node in each

tested configuration. Indeed, for all the metrics, all the points
closely follow a linear relationship, with a Pearson correla-
tion value close to 1. Just the system-level radio duty cycles
differ significantly from the reality with a Pearson value be-
low 0.7. Instead, the node-level simulated performance can
still be used reliably in the analysis of the corresponding real
system. These results ultimately support our choice of using
simulation to study the behaviour of a real network.

4 System Analysis and Reconfiguration
After discussing the approach, we turn our attention to

the system analysis that MorjeuV enables and the possible
corresponding reconfiguration strategies.

4.1 Reconfiguration with MorjeuV
The possibility to accurately reproduce the behaviour of

a real system in simulation, as described in Section 3, offers
the possibility to perform network analysis and optimisation
without the constraints of the actual resources available in
the deployed system. Once a virtual copy of the deployed
network is available, it becomes possible to investigate at an
arbitrary level of detail and complexity the functioning and
performance of each individual device and of the system as
a whole. In particular, the overall system target metrics can
be exploited to identify configurations not satisfying the user
requirements, detect unstable setups, or recognise discrepan-
cies between real and simulated behaviours.

In any of the aforementioned cases, MorjeuV can further
examine the system state in details in simulation, inspect-
ing the behaviour of the individual nodes. Considering the
gained visibility, it becomes possible to identify specific bot-
tlenecks, which can both be used to determine the causes of
instability or discrepancies from the expected performance
and point to areas of the system with potentials for optim-
isations. In the former, blacklisting can hide the highlighted

150



�
���
���
���
���
�

� � � �� �� �� �� �� �� �� ��

�
��
��
��
��
��
��
���

���� ��

(a) Throughput

�
���
���
���
���
����
����
����

� � � �� �� �� �� �� �� �� ��

�
��
��
��
�
��
��

���� ��

(b) Latency

�
���
���
���
���
�

� � � � �� �� �� �� �� �� �� ��

�
��
��
��
��
�
��
���

���� ��

(c) Radio on-time

Figure 7. Node-level application metrics for simulations (grey) based on real-world measurements and same boot order
of nodes in comparison to the reference real-world system performance (blue) for configuration C6.

nodes or links from the considered configurations. In the
latter, instead, the analysis can guide the search for reconfig-
uration options, speeding up the procedure.

In MorjeuV, in fact, reconfiguration could in principle in-
volve the exhaustive exploration of the feasible system con-
figurations. As the analysed system grows, however, the
amount of resources required to compute the necessary sim-
ulation runs might become prohibitive. Also considering the
possibility to gain visibility into the network state, identi-
fying the current bottlenecks can significantly reduce the
alternative reconfiguration options to explore, thus increas-
ing scalability. Once such setups are identified, they can
be tested in simulations in parallel. If a candidate recon-
figuration fulfils the application requirements, it can then be
either applied or further analysed inside MorjeuV to recog-
nise possible additional improvements.
4.2 Bottleneck discussion

Once the virtual copy of the real network has been ex-
ecuted in simulation, it is possible to analyse the different
system and node metrics with the goal of identifying prob-
lems and bottlenecks. Figure 7 shows, exemplary for C6,
the match of the node-level performance between simulation
and real world. This confirms that the obtained information
can be used to identify the bottlenecks with respect to spe-
cific target application requirements. An exhaustive descrip-
tion of possible bottlenecks is outside the scope of this paper,
also considering their dependence on the specific application
and scenario at hand. We now focus on different bottlenecks
that we were able to study in our indoor experimental setup.
Weak Link Reliability. While the link performance of a
given system is already evident through the performed mon-
itoring, in simulation MorjeuV can identify the links utilised
by the application. Depending on the routing protocol, the
underlying topology might route data through links with low
packet reception rates. This implies that retransmissions are
required, increasing energy consumption and latency. With
high error rates, also the network reliability can be affected,
through either dropped messages or overflowing buffers.
High Node Workload. Even with reliable routing paths
made by links with good reception rates, it is possible that
the routing tree has crucial nodes in charge of supporting
more workload than the average. In simulation, such a bot-
tleneck can be identified either by recognising a high radio
duty cycle of an individual node or by diagnosing a low
throughput or a high latency of a set of nodes delivering data
to the same ancestor node in the routing tree. Moreover, de-
pending on both how well the nodes see each other and the
density of the network, collisions can be present.

1

2

3 4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

Before reconfiguration

Routing path

Replaced node

New path after reconfiguration

(a) Routing tree before and after reconfiguration

���
����
���
����

�

�� �� ��

�
��
��
��
��
��
��
���

���� ��

(b) Throughput before

���
����
���
����

�

�� �� ��

�
��
��
��
��
��
��
���

���� ��

(c) Throughput after

�

���

����

����

�� �� ��

�
��
��
��
�
��
��

���� ��

(d) Latency before

�

���

����

����

�� �� ��
�
��
��
��
�
��
��

���� ��

(e) Latency after

�
����
���
����

�

� �� �� ��

�
��
��
��
��
�
��
���

���� ��

(f) Radio duty cycle before

�
����
���
����

�

� �� �� ��

�
��
��
��
��
�
��
���

���� ��

(g) Radio duty cycle after

Figure 8. Behaviour of a network with a weak link before
and after the replacement of a node.

Long Routing Paths. The last case we focus on is of par-
ticular interest for large-scale networks. If leaf nodes are far
from the sink, it is possible that a high number of nodes need
to be traversed in order for the data to reach the final destina-
tion. As this happens, latency in particular increases. While
routing protocols have become extremely good at identifying
shorter and more effective paths exploiting existing nodes,
our design framework adds the possibility to analyse altern-
ative configurations with a different selection of nodes, un-
veiling an alternative parameter space for reconfiguration.
4.3 Reconfiguration Strategies

In our testbed setup, we tried to identify atomic examples
of bottlenecks in order to analyse the possible applicable re-

151



1

2

3 4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

Before reconfiguration

Routing path

Added node

Additional path after reconfiguration

(a) Routing tree before and after reconfiguration

���
����
���
����

�

�� �� �� �� ��

�
��
��
��
��
��
��
���

���� ��

(b) Throughput before

���
����
���
����

�

� �� �� �� �� ��

�
��
��
��
��
��
��
���

���� ��

(c) Throughput after

�

���

����

����

�� �� �� �� ��

�
��
��
��
�
��
��

���� ��

(d) Latency before

�

���

����

����

� �� �� �� �� ��

�
��
��
��
�
��
��

���� ��

(e) Latency after

�
����
���
����

�

� �� �� �� �� ��

�
��
��
��
��
�
��
���

���� ��

(f) Radio duty cycle before

�
����
���
����

�

� � �� �� �� �� ��

�
��
��
��
��
�
��
���

���� ��

(g) Radio duty cycle after

Figure 9. System behaviour of a network with high work-
load at a node before and after the addition of a node.

configurations and experiment with them.
Replace a Node to Repair a Weak Link. In Figure 8, two
network configurations with the resulting performance are
shown. In this case, the problem is a weak link between node
12 and node 10. Even though an alternative configuration
can be identified in which node 12 is replaced by node 16, the
simulation of such new setup shows no benefit in applying
the proposed change. This demonstrates that reasoning in
simulation about possible changes to a running system can
avoid reconfigurations that are, indeed, unable to improve
the performance. For this specific case, replacing a node is
not sufficient, requiring new nodes to be added.
Add a Node to Distribute Workload. Another basic scen-
ario that we could find in our testbed stresses node 10 as
throughput bottleneck, as shown in Figure 9. In particular,
it is possible to recreate a test case in which the resulting
routing tree makes node 10 handle the traffic from 4 chil-
dren. This has a clear impact on the network throughput.
However, by looking in the surrounding of node 10, it is pos-
sible to identify the presence of node 8, which could take the
workload of, at least, node 15. By running the simulation of
the corresponding configuration, we can clearly identify that
not only reliability improves, but also latency. On the other

1

2

3 4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

Before reconfiguration

Routing path

Added node

Additional path after reconfiguration

(a) Routing tree before and after reconfiguration

���
����
���
����

�

� �� ��

�
��
��
��
��
��
��
���

���� ��

(b) Throughput before

���
����
���
����

�

� �� �� ��

�
��
��
��
��
��
��
���

���� ��

(c) Throughput after

�

���

����

����

� �� ��
�
��
��
��
�
��
��

���� ��

(d) Latency before

�

���

����

����

� �� �� ��

�
��
��
��
�
��
��

���� ��

(e) Latency after

�
����
���
����

�

� � �� ��

�
��
��
��
��
�
��
���

���� ��

(f) Radio duty cycle before

�
����
���
����

�

� � �� �� ��

�
��
��
��
��
�
��
���

���� ��

(g) Radio duty cycle after

Figure 10. System behaviour of a network with high
latency before and after the addition of a node.

side, however, the number of nodes increases as well as the
average radio duty cycle. With respect to this last aspect, it
is worth noticing that lifetime nonetheless improves because
the maximum radio duty cycle in the network is still lower
than the initial configuration.
Add a Node to Reduce Latency. In Figure 10, we show a
simple network where the generated routing tree has all the
nodes inline. Latency is significantly high due to the length
of the routing paths. However, adding a new node could ad-
dress this situation by offering an alternative, shorter path to
the sink. In fact, it is possible to identify a potential bene-
fit in adding node 10, which has good links with nodes 11
and 1, the sink. The simulated performance, confirmed by
real experimentation, demonstrates the significant benefit in
latency, as well as in the other metrics.
Replace a Node to Be Close to the Sink. A similar scenario
as the one previously tackled is depicted in Figure 11. In this
case, the network throughput is high but with a high latency.
Instead of considering adding a node, we try to replace one
without changing the sensing coverage, i.e., considering only
nodes in the same surroundings for possible removal or addi-
tion. Indeed, replacing node 15 (in the same area of 17) with
node 9 (in the surrounding of node 10) significantly impacts

152



1

2

3 4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

Before reconfiguration

Routing path

Replaced node

New path after reconfiguration

(a) Routing tree before and after reconfiguration

���
����
���
����

�

�� �� ��

�
��
��
��
��
��
��
���

���� ��

(b) Throughput before

���
����
���
����

�

� �� ��

�
��
��
��
��
��
��
���

���� ��

(c) Throughput after

�

���

����

����

�� �� ��

�
��
��
��
�
��
��

���� ��

(d) Latency before

�

���

����

����

� �� ��

�
��
��
��
�
��
��

���� ��

(e) Latency after

�
����
���
����

�

� �� �� ��

�
��
��
��
��
�
��
���

���� ��

(f) Radio duty cycle before

�
����
���
����

�

� � �� ��

�
��
��
��
��
�
��
���

���� ��

(g) Radio duty cycle after

Figure 11. System behaviour of a network with high
latency before and after the replacement of a node.

latency, being the added node closer to the sink than the re-
moved one. Interestingly, this change has a clear impact only
on one system metric, leaving the others unchanged.
5 Evaluation

After presenting atomic examples of the potential impact
of our framework on guiding the overall system perform-
ance, we evaluate our approach in a testbed representative
of an indoor setup. We present the scenario and describe the
performed experimentation and the corresponding results.
5.1 Experimental Setup

Our experimentation was performed in an indoor testbed
at our department. The system is made of 32 TelosB devices
connected via USB cables to Raspberry Pies, which in turn
are controlled from a central station, responsible also of gath-
ering the information sent by each device via serial. The
scenario is made of different rooms used as offices or labor-
atories, including a long corridor without devices.

Due to our previous experience, we based our experiment-
ation on a traditional data gathering application based on the
CTP routing protocol [9]. The system is configured to use
node 31 as sink, channel 26 and power level 3. Each node in
the active subset monitors environmental features, e.g., tem-
perature and humidity, and sends a message every second,

E
30

29

28

27

31 32

-2%

-20%

-22%

-64%
-65%

-10%

-3%

-1%

Figure 12. Links affected by the presence of the elevator
at the same floor. The link demonstrating a change in
PDR are depicted with the corresponding quality change.

with a wake-up interval of one second. Periodically, stat-
istics about the device and protocols behaviour are reported
over serial. The other nodes stay silent. The activation is
driven by a central application, which also allows to specify
the bootup order (in simulation and reality). The power level,
message rate and wake-up frequency are selected to stress
problems in the network.

Each system run takes 30 minutes, giving enough time
for the routing protocol to stabilise. The relevant metrics are
monitored after this initialisation phase is completed. Before
each run, we execute for 30 seconds another dedicated ap-
plication in charge of measuring the PDR and RSSI of the
existing links. This information is then employed to con-
figure the corresponding simulation environment, where the
analysis of the system is performed in order to identify bot-
tlenecks and evaluate reconfiguration options. In a real sys-
tem, we expect this information to be gathered on demand or
whenever a reconfiguration of the system takes place.

A full experimentation cycle, therefore, incurs the execu-
tion of the link monitoring application for 30 seconds on all
the devices in the network. Each node is then reprogrammed
with the data gathering application binary and only a target
subset activated. The behaviour of the real network is then
monitored for 30 minutes, during which we execute 5 simu-
lation runs in parallel of the same application configuration
and node selection. Based on the simulation, we identify
bottlenecks and corresponding changes to the set of active
nodes. We then re-run the same experimentation cycle chan-
ging the set of active nodes correspondingly. In this way, we
use the real system execution to validate the fidelity of the
simulation, while the simulation results are used as meant in
the MorjeuV framework to reconfigure the system.

5.2 Blacklisting
As we want to target a stable application behaviour

matching defined user requirements, blacklisting unstable
configuration options is crucial to avoid foreseeable perform-
ance degradations once a configuration is applied. Moreover,
filtering out such setups allows to speedup the analysis pro-
cess. To this end, before considering system reconfigura-
tions, we let MorjeuV process subsequent networking traces
to identify possible sources of system instability.

In our specific scenario, the presence of an elevator has
a significant impact on the links involving the nodes in its

153



surrounding. Upon detecting a variation in the application
performance, the corresponding link informations can be
used to identify significant changes in the network topology.
As reported in Figure 12, the presence of the elevator can
cause a decrease up to 60% PDR depending on the relative
position of the devices. This analysis allows MorjeuV to
identify blacklisting rules. In particular, configurations in-
cluding any of the pairs of nodes (28,29) or (27,30) should
be blacklisted. While adaptive protocols could address the
same problem, they would first have to experiment the condi-
tion and trigger an adaptation every time the elevator reaches
or leaves the floor, with corresponding transition phases in
which the application requirements might not be satisfied.
MorjeuV, instead, is able to avoid the situation once such
condition has been experienced. Similarly, the same ap-
proach can be exploited to detect conditions depending on
the time of the day, e.g., the interference caused by appli-
ances such as microwave ovens or the presence of people,
and schedule corresponding reconfigurations.

5.3 Impact of Alternative Configuration
Strategies

We now turn our attention to the combined use of monit-
oring and simulation data in the MorjeuV framework to ana-
lyse system performance and evaluate reconfiguration op-
tions. As a reference use case, we take the collection of
periodic data from the different offices at our department.
To achieve that, we require that at least one sensor device
in each room is active and that the data is collected at a
central station corresponding to node 31. This recreates the
most challenging scenario in our testbed, with a potentially
high tree depth and different bottlenecks in order to reach the
set of nodes at the opposite side of a long corridor without
devices deployed. Furthermore, the aforementioned impact
of the elevator is more significant. Being closer to the sink, it
can affect the part of the network with the highest workload.
In particular, we look into three case studies, manifesting
different bottlenecks and possibilities for improvement.
5.3.1 Scenario 1: Add Node

The first network C11 satisfies the requirement of a sys-
tem with one node in each office, employing the minimum
number of devices to create a connected network. The map
of the deployment and the corresponding application per-
formance are reported in Figure 13. Throughput, latency and
radio duty cycle are affected by the fact that the entire traffic
has to be funneled through the connection between node 15
and node 28. This is then recognised as a bottleneck. Adding
a node in this case should offer to the routing protocol mul-
tiple alternatives to convey the data to the sink, sharing the
workload and offering multiple alternatives to identify the
best routing paths in the most critical area.

One identified reconfiguration (C12) considers node 30,
which would be able to take the workload of the nodes from
the right side of the testbed and deliver data directly to the
sink. The second possibility (C13) involves node 16, which
could take the same role of node 30 but delivering data to
node 28 better sharing the channel with node 15. The result-
ing simulated application performance underlies the signific-
ant higher benefit of C12 to improve throughput and latency.

���

���

���

���

���

�

���
���

���

�
��
��
��
��
��
��
���

(a) Throughput

�
���
���
���
����
����
����

���
���

���

�
��
��
��
�
��
��

(b) Latency

����

����

���

����

����

���
���

���

�
��
��
��
��
�
��
���

(c) Radio duty cycle

1

2

4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

C11

Added node in C12

Added node in C13

3

(d) Map of nodes

Figure 13. Application metrics behaviour for scenario 1.

For the radio duty cycle is, instead, more beneficial to select a
configuration where the nodes handling most traffic are able
to hear each other. These conditions allow the MAC layer to
optimise channel sharing and minimise interference.
5.3.2 Scenario 2: Replace Node

Considering the impact of the elevator, we
tested MorjeuV in a setup, shown in Figure 14, involving
the link between node 28 and node 30, the most affected one
by the presence of the elevator, without blacklisting it. In
C14, node 29 can significantly affect the communication of
node 28, which is responsible of handling the traffic of the
whole part of the network above the corridor. The network
is then affected by two problems, one is the link crossing the
elevator that should be blacklisted and the high workload
carried by node 28 along the connections with node 15
and node 16 (differently from the scenario discussed in
Section 5.3.1, where only one link could be used).

In this case, MorjeuV identifies two options for changing
active nodes. C15 considers avoiding the link crossing the
elevator, which also creates a connection between the newly
selected node 30 and node 19, thus splitting the traffic into
two flows merging only at a sink. A similar characteristic is
also achieved in C16 by selecting node 20. In this case, how-
ever, the unstable link crossing the elevator is preserved. The
resulting application behaviour sees a clear benefit in terms
of throughput and latency in both configurations. However,
the unstable link still present in C16 causes a higher stand-
ard deviation and a higher radio duty cycle, supporting the
choice made during blacklisting.
5.3.3 Scenario 3: Remove Node

For the last scenario, shown in Figure 15, we tried to
identify a redundant configuration offering multiple paths to
the sink. In particular, we focused on the connection across
the main corridor selecting node 14 and 15 on one side and
node 28 and 30 on the other. All these nodes are able to

154



���
���
���
���
���
�

���
���

���

�
��
��
��
��
��
��
���

(a) Throughput

�
���
���
���
���
���
���
���
���

���
���

���

�
��
��
��
�
��
��

(b) Latency

����
����
���
����
����
����
����
���

���
���

���

�
��
��
��
��
�
��
���

(c) Radio duty cycle

1

2

4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

C14

Replaced node in C15

Replaced node in C16

3

(d) Map of nodes

Figure 14. Application metrics behaviour for scenario 2.

communicate with each other with the exception of the ab-
sent link between node 15 and 30. This setup would seem
beneficial thanks to the offered redundancy. However, at the
same time, it can affect the resulting application behaviour.

As shown initially in Figure 1, C2 experiences a through-
put lower than 90%. Among the possible reconfigurations,
the removal of a node would also decrease the overall sys-
tem costs. In this case, node 14 becomes a candidate for
removal considering that it is able to connect only to a subset
of nodes that are neighbours of node 15. By testing this con-
figuration in simulation, it is already possible to see that the
throughput and latency improve, providing indeed a better
and more stable performance. Interesting enough, MorjeuV
could react at the cases when redundancy would be needed
by reconfiguring the network looking at the resources avail-
able in the specific moment.

6 Discussion
In this section, we discuss the applicability of MorjeuV

during system lifetime, its limitations and possible improve-
ments as well as further developments.
MorjeuV in the System Lifecycle. Our approach bases on
the availability of monitoring traces in order to create an
accurate virtual copy of the real system. Therefore, nodes
should be already deployed to allow MorjeuV to study the
system behaviour. Alternatively, a pilot deployment should
be carried out. Already available traces from similar scen-
arios are hardly applicable to our approach because each en-
vironment likely has different properties. To best meet the
requirements of these scenarios, modelling techniques need
to be introduced. In our currently ongoing work, we indeed
demonstrate that it is possible to fully characterise an envir-
onment through in-site measurements and provided descrip-
tions, e.g., maps. This allows not only to better match the
aforementioned scenarios, but also to extend the reconfigur-

���

���

���

���

���

�

�� ��

�
��
��
��
��
��
��
���

(a) Throughput

�
���
���
���
����
����
����

�� ��

�
��
��
��
�
��
��

(b) Latency

����

����

���

����

����

�� ��

�
��
��
��
��
�
��
���

(c) Radio duty cycle

1

2

4 6

5

7 8

10

9 17
15 14

11 12 13 18 21 24 25

26
232220

1916

30
29

28

27

31 32

C2

Removed node in C3

3

(d) Map of nodes

Figure 15. Application metrics behaviour for scenario 3.

ation space to also consider, e.g., possible benefits offered by
freely relocating devices.

Our current framework, instead, applies preferably to
generic network infrastructures where devices are already in-
stalled in the environment and available to different users and
applications. In this scenario, we envision the iterative exe-
cution of reconfiguration steps where the addition, replace-
ment, removing of active nodes is repeated until the user re-
quirements are satisfied. The identification of unstable links
and their temporary blacklisting allow to counteract environ-
mental dynamics. In this process, MorjeuV might sacrifice
optimality in order to reduce the search time and increase
robustness against foreseeable changes in the environment.

Our approach is complementary to existing ones that re-
quire knowledge about the software running in the system
and target the optimisation of the software network paramet-
ers. In fact, once MorjeuV identifies a network topology
where to run the application, traditional software adaptation
protocols can be employed to quickly reconfigure the net-
work stack in case of system or environment dynamics. If it
is not possible to counteract the degradation of the applica-
tion performance, MorjeuV can newly be triggered.
Open Challenges. Simulation is a resource-intense process,
in particular for large-scale systems. While we were able to
execute the simulation runs for our scenario in real-time, the
time required to reproduce the behaviour of systems can sig-
nificantly grow with the number of devices and links, even
more in the case of systems spanning a full city. Nonetheless,
we believe that MorjeuV can further promote advancements
in the field of simulation to support its applicability, consid-
ering its potential benefits for system design.

Similarly, the well-known discrepancy between simula-
tion and reality might make MorjeuV take decisions det-
rimental to the application performance. Even if this is pos-
sible, a worsening of the application performance would then

155



trigger a new reconfiguration analysis. In this step, MorjeuV
would be able to blacklist the previously taken choice. Fur-
thermore, this information could be used to identify which
specific conditions manifested a discrepancy, highlighting
specifically events and scenarios that the simulation models
are not able to match. This allows to improve and refine sim-
ulation engines as well as gather new knowledge about the
interplay between the system and the environment.
7 Conclusion

In this paper, we introduced MorjeuV, a framework that
allows to analyse real systems through accurate simulations,
increasing visibility in the system state. This information can
be used to reconfigure a running deployment tuning different
parameters based on specific metrics and user requirements.
In our work, we focus explicitly on metrics that do not re-
quire application or software knowledge to gain general ap-
plicability. We demonstrate that through this approach the
application performance of a traditional application can be
controlled by appropriately selecting which nodes to activate
in a deployed network infrastructure.
8 Acknowledgments

The authors would like to thank Alexandr Krylovskiy for
his preliminary analysis on the approach feasibility.
9 References
[1] A. AlSayyari, I. Kostanic, and C. E. Otero. An empirical path loss

model for wireless sensor network deployment in an artificial turf en-
vironment. In Proc. of ICNSC, 2014.

[2] J. Ansari, E. Meshkova, W. Masood, A. Muslim, J. Riihijärvi, and
P. Mähönen. Confab: Component based optimization of wsn protocol
stacks using deployment feedback. In Proc. of MobiWac, 2012.

[3] C. A. Boano, K. Römer, and N. Tsiftes. Mitigating the adverse effects
of temperature on low-power wireless protocols. In Proc. of MASS,
2014.

[4] M. Bocca, A. Luong, N. Patwari, and T. Schmid. Dial it in: Rotating
rf sensors to enhance radio tomography. In Proc. of SECON, 2014.

[5] B. Dezfouli, M. Radi, K. Whitehouse, S. A. Razak, and H.-P. Tan.
Cama: Efficient modeling of the capture effect for low-power wireless
networks. ACM Trans. Sen. Netw. (TOSN), 11(1):20:1–20:43, 2014.

[6] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. Indriya: A
low-cost, 3d wireless sensor network testbed. In Proc. of TridentCom,
2011.

[7] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón. Cooja/mspsim: Interoperability testing
for wireless sensor networks. In Proc. of SIMUtools, 2009.

[8] R. Figura, M. Ceriotti, C.-Y. Shih, M. Mulero-Pázmány, S. Fu,
R. Daidone, S. Jungen, J. J. Negro, and P. J. Marrón. IRIS: Effi-
cient Visualization, Data Analysis and Experiment Management for
Wireless Sensor Networks. EAI Endorsed Transactions on Ubiquit-
ous Environments, 14(3), 2014.

[9] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and
P. Levis. Ctp: An efficient, robust, and reliable collection tree pro-
tocol for wireless sensor networks. ACM Trans. Sen. Netw. (TOSN),
10(1):16:1–16:49, 2013.

[10] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with
Sensor Network. In Proc. of RealMAN, 2006.

[11] ICE Gateway. https://www.ice-gateway.com.
[12] T. Istomin, R. Marfievici, A. L. Murphy, and G. P. Picco. Trident: In-

field connectivity assessment for wireless sensor networks. In Proc.
of ExtremeCom, 2014.

[13] M. Keller, J. Beutel, and L. Thiele. The problem bit. In Proc. of
DCOSS, 2013.

[14] D. Kirov, R. Passerone, and M. Donelli. Statistical characterization of
the 2.4 ghz radio channel for wsn in indoor office environments. In
Proc. of ETFA, 2016.

[15] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Robust sensor
placements at informative and communication-efficient locations.
ACM Trans. Sen. Netw. (TOSN), 7(4):31:1–31:33, 2011.

[16] O. Landsiedel, E. M. Schiller, and S. Tomaselli. LibReplay: Determ-
inistic Replay for Bug Hunting in Sensor Networks. In Proc. of EWSN,
2015.

[17] H. Lee, A. Cerpa, and P. Levis. Improving wireless simulation through
noise modeling. In Proc. of IPSN, 2007.

[18] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and
scalable simulation of entire tinyos applications. In Proc. of SenSys,
2003.

[19] D. Minder, M. Handte, and P. J. Marrn. Tinyadapt: An adaptation
framework for sensor networks. In Proc. of INSS, 2010.

[20] R. N. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain,
and J. B. andMatt Welsh. Citysense: An urban-scale wireless sensor
network and testbed. In Proceedings of the IEEE Conference on Tech-
nologies for Homeland Security, 2008.

[21] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. In Proc. of SenseApp,
2006.

[22] M. Pawlik and N. Augsten. Tree edit distance: Robust and memory-
efficient. Information Systems, 56(Supplement C):157 – 173, 2016.

[23] G. E. Perez, A. Alsayyari, and I. Kostanic. Comparison of the
propagation loss of a real-life wireless sensor network and its com-
plimentary simulation model. In Proc. of HPCC-CSS-ICESS, 2015.

[24] D. Puccinelli, O. Gnawali, S. Yoon, S. Giordano, and L. Guibas. End:
A topology-aware collection metric for sensor networks. In Proc. of
SenSys, 2010.

[25] T. Rappaport. Wireless Communications: Principles and Practice.
Prentice Hall PTR, 2nd edition, 2001.

[26] M. Ringwald, K. Römer, and A. Vitaletti. Passive inspection of sensor
networks. In Proc. of DCOSS, 2007.

[27] K. R. Schaubach, N. J. Davis, and T. S. Rappaport. A ray tracing
method for predicting path loss and delay spread in microcellular en-
vironments. In Proc. of VTS, 1992.

[28] D. Son, B. Krishnamachari, and J. Heidemann. Experimental study
of concurrent transmission in wireless sensor networks. In Proc. of
SenSys, 2006.

[29] M. Strübe, F. Lukas, B. Li, and R. Kapitza. DrySim: Simulation-aided
Deployment-specific Tailoring of Mote-class WSN Software. In Proc.
of MSWiM, 2014.

[30] G. Tuna, V. C. Gungor, and K. Gulez. An autonomous wireless sensor
network deployment system using mobile robots for human existence
detection in case of disasters. Ad Hoc Netw., 13:54–68, 2014.

[31] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: A
comprehensive source-level debugger for wireless sensor networks. In
Proc. of SenSys, 2007.

[32] X. Zheng, C. Julien, M. Kim, and S. Khurshid. Perceptions on the
state of the art in verification and validation in cyber-physical systems.
IEEE Systems Journal, PP(99):1–14, 2015.

[33] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele. ptunes:
Runtime parameter adaptation for low-power mac protocols. In Proc.
of IPSN, 2012.

156


