
Scaling RPL to Dense and Large Networks with Constrained
Memory

Joakim Eriksson
RISE SICS and Yanzi Networks

joakim.eriksson@ri.se

Niclas Finne
RISE SICS and Yanzi Networks

niclas.finne@ri.se

Nicolas Tsiftes
RISE SICS

nicolas.tsiftes@ri.se

Simon Duquennoy
RISE SICS

simon.duquennoy@ri.se

Thiemo Voigt
Uppsala University and RISE
SICS thiemo.voigt@ri.se

Abstract
The Internet of Things poses new requirements for reli-

able, bi-directional communication in low-power and lossy
networks, but these requirements are hard to fulfill since
most existing protocols have been designed for data collec-
tion. In this paper, we propose standard-compliant mech-
anisms that make RPL meet these requirements while still
scaling to large networks of memory-constrained IoT de-
vices, where the RAM size does not allow to store all neigh-
bor and routing information. The only node that needs to
have storage for all the routing entries is the RPL root node.
Based on experimentation with large-scale commercial de-
ployments, we suggest two mechanisms to make RPL scale
under resource constraints: (1) end-to-end route registration
for downwards traffic and (2) a novel policy for managing the
neighbor table. By employing these mechanisms, we show
that the bi-directional packet reception rate of RPL networks
increases significantly, both in large and dense networks.
Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—wireless communication;
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing Protocols
General Terms

Algorithms, Design, Performance
Keywords

RPL, Scalability, Wireless Networking
1 Introduction

The need for reliable, bi-directional traffic in the Internet
of Things (IoT) is evident from the number of applications
that require interaction with the IoT devices. In lossy, multi-
hop IoT networks, RPL [17] is the most prevalent standard

Table 1. RAM consumption per entry in the neighbor
and routing tables in Contiki. The number of entries is
taken from existing commercial deployments—this con-
figuration consumes 1800 bytes of RAM for the tables.

Table RAM / entry Entries Content
Routing 50 bytes 20 IPv6 address for

route and next hop.
Neighbor 80 bytes 10 802.15.4 address,

link stats, RPL info,
IPv6 nbr info.

routing protocol, but it has been designed based on data col-
lection protocols such as CTP [10]. In application domains
such as smart offices and facility management, there may
be hundreds, or even thousands, of IoT devices monitoring
and controlling all sorts of activities and equipment. The re-
source constraints of many types IoT devices—e.g., Class
1 devices with approximately 10 kB of RAM [2]—entail
that there is insufficient memory available to store all rele-
vant neighbor information and route entries. Table 1 shows
the RAM usage of a Contiki configuration for a commer-
cial setting that with 20 routing table entries and 10 neighbor
table entries consumes almost 20% of the available RAM.
When we cannot store all neighbor and routing information,
the network topology cannot be structured optimally and the
performance may suffer.

In this paper, we identify two problems of RPL that can
severely degrade the performance in large-scale IoT net-
works, and propose two new mechanisms for mitigating
the problems. We implement these mechanisms in Con-
tikiRPL [16], a widely used open-source implementation of
RPL which is distributed with the Contiki operating system.
Problem 1: Network size.

A key challenge is to keep a stable topology when the
network size increases. As Figure 1 shows, in RPL’s stor-
ing mode, all nodes have to store route entries for all nodes
that have registered their IPv6 address for downward rout-
ing through them. This registration is done by sending an
ICMPv6 message called Destination Advertisement Object
(DAO). Nodes close to the RPL root have to store many route
entries if they are responsible for forwarding to a large sub-

126

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1

B

A

C

D

G

E F

IH J

node in C’s neighbor table

node in C’s routing table

Figure 1. Node C must keep information about its neigh-
bors (filled in green) as well as routing entries for its
sub-graph (circled in red). Scaling to networks denser
or larger than what the node can store in RAM is a chal-
lenge. We propose advanced neighbor table management
policies to handle dense networks, and design a reliable,
end-to-end route registration mechanism to scale to large
networks.

set of the topology. When scaling up the network size, these
nodes may not have enough memory to store all registered
routes. RPL also defines a message type for acknowledg-
ing DAOs (DAO ACK), allowing feedback between the node
that sends the DAO and the node that either accepts or rejects
the registrations. If the node that receives a DAO has insuffi-
cient space to store another route, it can send a negative DAO
ACK.

Whenever a node sends a DAO to register its IPv6 ad-
dress, this DAO will be forwarded all the way to the RPL
root. The root is the node that initiates the routing tree setup
and is the top of the topology. The forwarding is done on a
per-hop basis, which means that if a node is five hops away
from the RPL root the DAO will be sent five times, and thus
adding a route entry in each of the five nodes along the path
to root, including the root node itself.

The RPL standard does not fully specify how to handle
DAO and DAO ACK messages. Hence, the RPL implemen-
tations typically follow the minimal requirements of the stan-
dard, and therefore cannot scale to large networks. In such
implementations, a DAO is acknowledged by the next-hop
parent only, which limits such message exchanges to a sin-
gle hop rather than the end-to-end route to the root. A failure
to add the route some hops away from the node sending the
DAO will thus not be seen by the node, but only by the last
node that forwarded the DAO. Since the registering node will
assume that its registration was a success, a route from it to
the root will not be established.
Mechanism 1: End-to-End DAO ACKs.

To address this problem, we design an end-to-end mech-
anism for DAO registration. We design this mechanism as
standard-compliant, using unmodified messages but defining
new rules and semantics for DAO and DAO ACK transmis-
sion. In addition, we make it possible to balance the topol-
ogy by transmitting routing table capacity in the periodically
transmitted DIO beacons of RPL. This feature further im-

proves the performance of the end-to-end DAO mechanism
and helps to reduce parent switching caused by full routing
tables.
Problem 2: Network density.

The second challenge is keeping a stable topology when
the network density increases. When density increases, each
node in the network will have more neighbors, at some point
more than can be stored in the nodes neighbor table [18].
Typically the limitation of storage in the table can be be-
tween tens to hundreds of entries. For example, in a deploy-
ment with of Yanzi Networks, the number of neighbors is
ten, which means that any deployment with more than eleven
nodes is a potential challenge. When a node’s neighbor table
is already full but it wants to add a neighbor to the table, it
has to discard old entries and hence loses link statistics and
other potentially useful information for the routing protocol.
Mechanism 2: Neighbor Selection Policy.

Our mitigation mechanisms consists of selecting the best
neighbors neighbors to keep in the routing table from a po-
tentially very large set of candidates. In RPL, all the neigh-
bors that are used as next hop for routes will need to be kept,
which limits the number of entries in the table for candi-
date parents. Our approach is to keep good neighbors in the
neighbor table and carefully select which of the new neigh-
bors are worth evaluating and adding to the neighbor table.
Contributions and Roadmap.

To address the challenges of routing reliably downwards
in large RPL networks, we make the following research con-
tributions.

• We identify and characterize the problem of scaling
RPL to large and dense networks where the nodes in
the network cannot store all requested route entries nor
all neighbors.

• We introduce two practical mechanisms to manage
routing tables and neighbor tables in large IoT net-
works.

• We evaluate the proposed mechanisms both in simula-
tion and through a large-scale commercial deployment,
demonstrating increased reliability in setups with hard
memory constraints.

Our paper proceeds as follows. In the next section, we de-
scribe the context and real-world motivation in more detail.
Section 3 discusses related work, and the necessary back-
ground on RPL required to follow the rest of the paper. In
Section 4, we present our mechanisms to improve the scala-
bility of downward routing in RPL with memory constraints.
After a short discussion on the implementation, we evaluate
these mechanisms in Section 6. Before concluding in Sec-
tion 8, we briefly discuss how the implemented mechanisms
have been used successfully in a large-scale commercial de-
ployment in Section 7.

2 Context and Motivation
The RPL routing protocol is used in commercial solu-

tions and is moving into several standards such as Zigbee
Jupiter Mesh intended for large-scale deployments. It is cru-
cial for RPL to scale to large IoT networks, where down-
ward connectivity is required and where nodes are memory-

127

constrained. Common low-cost IoT devices have signifi-
cant resource limitations (e.g., 16-32 kB RAM)—both due to
cost per device and energy consumption when adding RAM.
While using Flash memory sometimes is an option to extend
storage, it often has a lower cut-off voltage that will force it
to fail earlier than other components as the battery depletes.
Furthermore, the Flash itself has a limited lifetime due to
memory wear. In the context of this paper, we define scal-
able routing as the ability to handle networks that result in
more routing and neighbor table entries than nodes can store
in RAM.

In this paper, we focus on RPL’s storing mode of opera-
tion, where all nodes store routes to their sub-graph. An al-
ternative is non-storing mode, where nodes do not store any
routing entries and all routing decisions are made by the root.
Non-storing mode, however, has its own limitations, in par-
ticular the added per-packet, per-hop overhead of carrying
source-routing information. Also, many of today’s commer-
cial deployments are using storing mode, and some of them,
such as smart utility networks, have many hops. Switching
to non-storing mode in an already deployed network without
causing downtime can be a complex task, and will lead to
a higher packet header overhead when there are many hops.
Furthermore, although non-storing mode can scale to large
networks, neighbor table size restrictions may limit its per-
formance in dense environments. Hence, our neighbor ta-
ble management policies could be useful also for non-storing
RPL networks.

Several issues arise when scaling RPL to large networks
with bi-directional communication. First, the DAO route
registration is not fully specified which leaves many deci-
sions open for implementers. One of the decisions that are
left open is whether the DAO ACK should be sent in an end-
to-end manner or not. Typically implementers have inter-
preted that the DAO ACK should be sent between the each
DAO sender along the path to the root and its closest parent.
Hence, nodes accept a child without checking that routes can
be installed along the entire path. The second issue comes
from handling dense networks, i.e., networks where nodes
have more neighbors than they can store in their neighbor ta-
ble. These two issues limit the applicability of RPL, as the
network will collapse as soon as it grows beyond the antici-
pated size or density. This paper presents practical solutions
to both issues.

The work presented in the paper was motivated by a real
use case from Yanzi Networks, an IoT company that deploys
large RPL networks. Yanzi Networks uses Contiki OS as the
base platform for their IoT devices. The starting point of
using mainline ContikiRPL for routing was satisfactory at
first. However, as soon as the network grew beyond what
could be stored in the routing and neighbor tables the net-
work started falling apart. A straightforward solution is to
scale up the RAM beyond the expected size of the network,
but this adds both costs and increased energy consumption to
the devices while not solving the underlying issue. Further,
the network sizes expected today might be quite small com-
pared with what will be seen in the future with, for example,
long range, smart city applications with ubiquitous sensors.

3 Background and Related Work
This section describes the RPL protocol and reviews ear-

lier work on scalability in low-power wireless networks.

3.1 RPL Background
RPL is the standard protocol for low-power IPv6 rout-

ing defined by the IETF as RFC6550 [17]. It is a distance-
vector protocol, where the routing topology is a Destination-
Oriented Directed Acyclic Graph (DODAG) that is typically
rooted at a network border router. Each node is attached a
rank representing its distance to the root using some cost
function (e.g., the ETX metric).

The topology is built distributively with the pseudo-
periodic transmission of beacons (so-called DIO, DODAG
Information Object, messages). A node receiving a DIO may
choose to join the network. It will then maintain a set of
candidate parents, and will elect one preferred parent. The
preferred parent is used for upwards routing, i.e., routing to-
wards the root. By using a DIS (DODAG Information Solic-
itation) message, nodes can solicit a DIO message from one
or more RPL nodes. Nodes typically send DIS messages in
multicast when joining a network, and in unicast when ac-
tively probing a particular node.

RPL also enables arbitrary traffic patterns: nodes can be
targeted and reached from their IPv6 address. Routing from
the root to any node, or downward routing, is done by using
the reverse path in the DODAG. When routing downwards,
a node selects any child that has the destination in its sub-
graph, and uses this child as the next hop. Any pair of nodes
can communicate by routing first upwards to the root (or any
common ancestor) and then downwards to the destination.

For the next-hop selection during downward routing, RPL
offers two distinct modes of operations: storing and non-
storing mode. Storing mode is based on routing tables, while
non-storing mode uses source routing. In this paper, we fo-
cus on RPL’s storing mode of operation, for its fully dis-
tributed nature. Beside having a regular 1-hop neighbor ta-
ble, each node maintains a routing table with one entry per
node in the sub-graph, i.e., all downward nodes. The rout-
ing table stores the next-hop neighbor to forward messages
to each registered destination address prefix. Only the chil-
dren that are in the neighbor table can be selected as next
hops in the routing table because the neighbor table contains
additional information required for communication such as
the mapping between IPv6 and MAC addresses.

In storing mode, nodes maintain their routing table using
DAO (Destination Advertisement Object) messages. When-
ever switching parent, a node will send a DAO to the new par-
ent to ensure proper registration and route installation. The
parent will, in turn, relay that information upwards to trigger
routing table updates along the path to the root. Similarly,
No-Path DAO messages are used for route removal. RPL
defines an optional DAO-ACK mechanism, for the nodes to
acknowledge proper route installation/removal or notify fail-
ure. We call the message to achieve the latter DAO-NACK,
although it is simply a DAO-ACK message with a particular
status code.

128

RootBA

1. DAO 2. DAO

(a) Without DAO-ACK

RootBA

1. DAO 3. DAO

4. DAO-ACK2. DAO-ACK

(b) With DAO-ACK

RootBA

1. DAO 2. DAO

3. DAO-ACK4. DAO-ACK

(c) With end-to-end DAO-ACK

Figure 2. (a) Without DAO-ACK, node A is registered to B and then to the root without any confirmation. Any failure
in the path cause unreachability. (b) With DAO-ACK, node A gets a confirmation that B could register it, but does
not know if the full path was successfully created. (c) With our end-to-end DAO-ACK, B makes sure the registration
succeeded all the way to the root before sending an ACK back to A.

3.2 Related Work
Early work within sensor networking identified that sen-

sor nodes cannot be expected to hold complete neighbor ta-
bles as the networks can be very dense and there will be more
neighbors than can be stored in the limited RAM. Woo et
al. identify the need for neighbor management policies, and
suggest such a policy for data collection networks [18]. Their
problem is similar to the one we address with our neighbor
table policy, but their solution is not applicable to RPL be-
cause of differences in the underlying protocol, such as the
focus on data collection while we tackle the challenge of bi-
directional communication.

The Thread stack is an IPv6-based mesh solution, which
has been designed by Nest and standardized by the Thread
Group. Unlike RPL, however, it is designed for a maxi-
mum of 32 active routers. This limitation helps to make
it memory-efficient and to make it possible to ensure
that neighbor and routing tables contain fresh information.
Thread networks can scale to a few hundred devices in to-
tal, but in such networks most of the devices cannot act as
routers.

ORPL is an extension of RPL that performs opportunis-
tic routing to achieve scalability in particular for downwards
routing [6]. By representing a set of reachable nodes as ei-
ther a bitmap or as a Bloom filter, ORPL can store this set in
a much more compact and hence memory-efficient way than
a routing table. In contrast to our work, ORPL is a departure
from the RPL standard.

@scale [4] is a large-scale deployment with around 500
devices that employs HYDRO, a predecessor of RPL, for
routing. To achieve scalability the authors use multiple load-
balancing routers. They find that even in static deployments
keeping the routing table dynamic and continuously discov-
ering nodes is key to achieve good performance. We share
these experiences, but we also provide concrete policies for
neighbor table maintenance under memory constraints.

Dawans et al. pointed out the challenge in scaling RPL
to dense networks, where not all neighbors can be stored in
the neighbor table [3]. The problem discussed is twofold: (1)
discarding information from good neighbors is obviously not
desirable, as we lose the opportunity to use them as backup
parent, but (2) discarding information from neighbors with
bad links also comes at a price, as the neighbor might be
added later again only to re-evaluate a bad quality link. The
paper suggests the need for a neighbor replacement policy
but does not investigate the topic further and rather focuses

on link probing.
Istomin et al. have evaluated RPL in a large-scale smart

city deployment where actuation, that is, downward routing
is important [11]. Their findings showed that the RPL imple-
mentations available at that time were not able to fulfill the
requirements. Our paper’s goal is to improve the situation by
making RPL scalable.

Judging the quality of links is an important issue for prob-
ing and adding links to the routing table. Fonseca et al.
have presented the four-bit wireless link estimator that has
shown to reduce packet delivery cost while maintaining a
high delivery rate [9]. Baccour et al. provide a comprehen-
sive overview of radio link estimation [1] whereas Rucke-
busch et al. find out that the choice of link estimators for
RPL depends on the scenario at hand [15].

Several research papers have studied reliability and load
balancing in large-scale RPL networks [7, 12, 13] The pa-
pers above achieve promising results, but do not specifically
address scenarios where the nodes’ memory is insufficient to
store all neighbors and routing entries.

4 Scaling RPL with Constrained Resources
RPL is designed to be flexible. In its most basic use case,

it can be configured for pure data collection, which entails
that any given node in the network needs to keep track of
only its best parent in the network to forward the traffic to.
This mode is very scalable because there is no need to store
multiple routes or neighbors. At the other end of the config-
uration spectrum are fully bi-directional routable networks
where all nodes can be addressed at any time. As long as
every node can store a route to every descendant in its sub-
graph in its routing table and there is an entry in the neigh-
bor table for each neighbor, it is easy to get RPL to operate
reliably. When these tables are too small, however, full con-
nectivity can no longer be guaranteed and hence RPL does
not scale.

In the following, we present mechanisms that enhance
RPL’s ability to scale to networks in which the constrained
memory of the nodes is insufficient to store all the informa-
tion that they would want in the best case.

4.1 Scaling with Network Size
In large networks, nodes are unable to store routes to all

descendants in their routing tables. A major issue is the reg-
istration of new nodes that needs to be propagated all the way
to the root node, and hence requires an entry in the routing
tables on all nodes on the path to the root. The problem is ex-

129

acerbated by the fact that nodes closer to the root have more
descendants than their children.
4.1.1 End-to-End Path Reservation

The mechanism used for registering downward routes in
RPL is the DAO, through which a node sends its routable
address upwards all the way to the root node. This is ei-
ther sent with best effort (see Figure 2a) or sent with request
for acknowledgment (DAO-ACK). For scaling, we use the
DAO-ACK (see Figure 2b). The RPL specification [17] is,
however, unspecific about DAO-ACKs: it just describes that
an ACK should be sent, and how it should be formatted.

In order to scale up and maintain reachability, it is crucial
that a DAO-ACK is not just processed by a node and its direct
parent, but that the full path up to the root is acknowledged.
We propose to use an end-to-end DAO-ACK (illustrated in
Figure 2c) where any node that gets a DAO forwards it as
the specification states, but waits for the response from its
parent before sending the DAO-ACK. This way of handling
the DAO-ACK makes it possible for nodes to know whether
the route was installed along the entire path to the root.

Initially, the ContikiRPL implementation always ac-
cepted new route registrations, by removing the oldest route
in case the routing table was full. This behavior, however,
scales poorly with network size. With our end-to-end DAO
mechanism, nodes with a full routing table decline new route
registrations and send a DAO-NACK back to the originator.

If a node does not receive a DAO ACK or NACK within
a short time after sending a DAO, it will retransmit the DAO
a few times. By contrast, if it gets a DAO-NACK, it will
attribute that to the specific path used, and try to select a new
parent.

The major new benefit with this end-to-end DAO is that
as soon as the node gets a DAO-ACK for a sent DAO, it will
have the guarantee that there is a downward route registered
all the way up to the root, and it can perform bi-directional
communication. The design of this end-to-end DAO mecha-
nism complies with RFC 6550.
4.1.2 Topology Balancing

Reducing unnecessary traffic saves energy and band-
width. This is of particular importance when networks are
large or dense. In such situations, it is beneficial that nodes
provide information about the number of free entries in the
routing table to their children using RPL’s aperiodic beacons
(DIO). This prevents nodes from selecting parents whose
routing table is already full and sending the corresponding
DAO messages to them. For end-to-end reliability, not only
the parent’s routing table needs to have a free entry but also
all the nodes on the path from the parent to the root need to
have free entries. Therefore, nodes should not only announce
their free routing table entries but the number of free entries
of the most restricted routing table on the path to the root.
This number is the minimum of a node’s free entries and the
number of free entries announced in the parent’s DIO mes-
sages.

4.2 Scaling with Network Density
In dense deployments there will be nodes that cannot store

all their neighbors in the neighbor table. When this hap-
pens, many network protocol implementations start to per-

N

P

Root

CPCP

CCC

RPL root
Several hops away, not in N’s table

Preferred parent
Needed in N’s table

Candidate parents
The more in N’s table
the better N’s reaction to routing failures

Children
All registered children
must be kept in N’s table

Figure 3. Illustration of a neighbor table policy. Here,
the preferred parent, two candidate parents, and three
children are stored. Whenever a child attempts to regis-
ter, node N will check if there is space left in the neighbor
table before ACKing. If there is no space, it may decide
to free a slot by removing a candidate parent, depending
on the policy in use.

form poorly—they either do no longer add new neighbors
and therefore cannot maintain a good network topology, or
they continuously add and replace neighbor table entries,
causing undesirable churn.
4.2.1 Neighbor Management

To mitigate the network density problem, we suggest an
approach where a new neighbor is added to the neighbor ta-
ble only when there are indications that it is significantly bet-
ter than the currently worst neighbor in the table. The good-
ness of a neighbor can be derived from a number of factors
that are stored in the neighbor table.

The neighbor table of a low-power IPv6 implementation
(such as Contiki’s) typically contains, among other things,
the following information:

• Link ETX, an estimate of the link quality to the neigh-
bor;

• Link ETX freshness an indicator of how accurate the
link estimate is (freshness, transmission count, etc.);

• IPv6 reachability state required by the IPv6 neighbor
discovery protocol.

Whenever receiving a beacon (DIO) from a neighbor, the
following information can be obtained:

• Link RSSI, the signal strength of the link from the
neighbor;

• RPL Rank, the position of the neighbor in the RPL
topology;

• RPL Metrics used to compute the node’s rank in case
it selects the neighbor as preferred parent.

4.2.2 Neighbor Table Policy
We describe next how to decide whether to add a neigh-

bor to the neighbor table or not based on the above infor-
mation. Typically a new neighbor is added when receiving

130

DIOs and IPv6 neighbor discovery messages. While in some
implementations the decisions about adding new neighbors
is distributed over different parts of the stack, we advocate
to centralize the decisions about the addition of a neighbor
to a new neighbor table management module. This makes
it possible to avoid adding neighbors that either are likely to
be worse than the ones in the table or that may not be useful
for other reasons, such as when they intend to join another
network.

The default neighbor policy in Contiki is to always add
new neighbors as they appear. The neighbor that is removed
from the table when it is full is the oldest neighbor that is not
locked. Locking occurs when a neighbor is either a preferred
parent (upward routing) or a child (downward routing). In
dense networks, there are situations where nodes lock all of
their entries to the preferred parent and current children. This
makes it impossible to keep track of other candidate parents,
which is essential for robust topology maintenance.

In many other 6LoWPAN implementations, the policy is
to add neighbors as long as there is room and then no longer
add new neighbors when the neighbor table is full.

We propose a novel neighbor policy for RPL that main-
tains one preferred RPL parent, a few neighbors that are
good candidate parents for upward connectivity and then a
set of children or next-hop neighbors used for routing traffic
downwards. This allocation of the table makes it possible to
switch the preferred parent at any time, as there are always
several parents in the table. It also removes the problem that
all entries are locked and hence a parent switch is impossible.

With our policy in place, nodes are able to switch parent
even in dense environments. This however, also comes with
a risk: a node might discover a promising parent, decide to
switch to it, only to discover that the link is actually worse
than initially estimated. To mitigate this issue, we extend our
policy so as to only ever select parents whose link estimate is
fresh. In order to help obtain fresh estimates, we extend our
mechanism with a periodic link probing feature. Periodically
(e.g., every 2 min), nodes select a probing target (the current
parent if not fresh, else another candidate parent) and sends
a unicast DIS to it, so as to assess the link quality in both
directions and obtain a rank update from the neighbor.

Using our neighbor policy we always keep the preferred
parent in the table, provision some fixed space for children,
and use the remaining space for candidate parents, used as
backup should the preferred parent fail. In a neighbor table
of size N, we can handle 1 preferred parent, M children, and
N −M−1 candidate parents, as illustrated in Figure 3. This
policy avoids the scenario where the table gets filled with
the preferred parent and children only, leaving no space for
candidate parents. Such a scenario would be detrimental to
the reliable operation of RPL, because it would not maintain
link estimates to backup parents.

Our neighbor table policy operates as follows:
• When a neighbor table is empty new neighbors can al-

ways be added.

• When a table is full and there is a new candidate neigh-
bor, we take different actions based on what type of
message it makes itself known through.

– DIO: Add the neighbor if there is indication that
this is a potentially better parent than the worst of
the current parents. E.g. RPL rank is better and
the link is expected to be good based on its RSSI.

– DAO: Add the neighbor if there is room for an-
other child and send a DAO ACK. Else discard the
DAO and send a DAO-NACK. Children already in
the table are never evicted but may expire due to
DAO lifetime timeout.

– DIS: Add the neighbor if the DIS is a unicast
transmission, and there is room for another child.
Else, ignore the DIS.

The neighbor policy problem and parts of the proposed
mechanism is also described in an IETF draft within the
LWIG working group.

5 Implementation
We implement the proposed mechanisms in the Contiki

operating system [5]. There is, however, nothing that pre-
vents the implementation of the mechanisms in other oper-
ating systems. The end-to-end DAO ACK mechanism has
been implemented as modifications to the Contiki RPL stack.

For the neighbor table policy mechanism, we have cen-
tralized neighbor management to a new module in Con-
tikiRPL. This avoids letting different layers take decisions
on which neighbor to keep based on information local to the
layer only. Instead, the centralized module has the exclusive
right to decide which neighbors to add or evict according
to the current policy. In the evaluation we make use of a
neighbor table with information from many modules includ-
ing link statistics, RPL routing protocol state, IPv6 addresses
and their states.

6 Evaluation
In this section we evaluate the proposed mechanisms de-

scribed in Section 4. For this purpose, we use the COOJA
simulator [14, 8] since it allows us to compare scenarios
with different network stack settings under repeatable con-
ditions, that is, without any external effects that would in-
troduce randomness. COOJA executes deployable Contiki
firmwares. The simulated devices are Arago Systems’ WiS-
Motes, which include a Texas Instruments MSP430 micro-
controller and a CC2520 radio that is compliant with IEEE
802.15.4. The communication stack configuration includes
an 802.15.4 CSMA MAC protocol in non-beacon enabled
mode, 6LoWPAN, and and IPv6 with RPL operating in non-
storing mode.
6.1 End-to-End DAO

The end-to-end route registration mechanism is designed
to make RPL handle the case when nodes cannot store all
the routes needed in the routing table. This is the case when
the network is large and dense. Typically the nodes that are
closer to the RPL root have too small tables when the net-
work grows since these nodes have to forward the down-
ward traffic to all nodes below in the graph and therefore
need to store many routing entries in the table. The first ex-
periment evaluates the effectiveness of the end-to-end reg-
istration mechanism and its impact on the reliability of bi-
directional communication.

131

Figure 4. The topology used in our simulations. The root
is node 1. The green disk shows node 25’s radio range,
while the gray disk shows its area of interference.

6.1.1 Setup
The first evaluation of the end-to-end DAO registration

is made in COOJA to be able to control the communication
range.

All simulations contain one RPL root that has memory
to store all nodes in the network so that the root will never
limit scalability. All other nodes use a limited routing table
that can store 10 routes. In our experiments all nodes send a
short UDP message to the root once per minute and the root
responds with a reply. Successful reception of the reply is
counted as packet delivery.

In the first experiment the network consist of one RPL
root and 30 nodes, as depicted in Figure 4.

We compare four different RPL configurations, each for
one hour:

• Baseline No scalability mechanism enabled

• Balance With DIOs containing topology balancing in-
formation (see §4.1.2)

• DAO-ACK With our end-to-end DAO-ACK (see
§4.1.1)

• Balance and DAO-ACK With both topology balancing
and end-to-end DAO-ACK

The metric for the evaluation is the bi-directional packet de-
livery ratio (E2EPDR) for all the messages sent from the
node (including the response from the RPL root).

6.1.2 Results
Figure 5 shows the simulation results. As expected, the

effect of using balancing together the baseline configura-
tion is insignificant. The baseline by itself converges to an
E2EPDR of 92 percent after one hour, while the second con-
figuration, with balancing information in DIOs, converges to
an E2EPDR of around 92 percent as well. The main rea-
son for packet loss during the warmup period in RPL in this
configuration is due to routing topology inconsistency. This

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 10 20 30 40 50 60

E
2
E
 P

D
R

Time (minutes)

RPL Network Warmup

Balance and DAO ACK
DAO ACK
Baseline
Balance

Figure 5. RPL network warmup time using four differ-
ent configurations. Both experiments using DAO ACK
reach 98 percent E2E PDR. Adding information about
free routes and neighbors in the DIOs makes it reach that
level faster (Balance and DAO ACK).

happens when a node switches between one parent and an-
other. During the switch it will first send a deregistration - a
DAO with zero lifetime - and then a new registration. During
this time the node itself will shortly be disconnected. Also
the all children below this node will also be disconnected and
possibly not even realizing it immediately and thus getting a
longer disconnect before re-registering.

The final two configurations both use the end-to-end DAO
ACK. They reach an E2EPDR of 98 percent. The use of
balance information is of higher value when the DAO ACK
is turned on. This is due to the lack of feedback of failure
when DAO ACK is not available which means that the nodes
do not pick a new parent but stay with a parent that could
not store its downward route. In the other case, when DAO
ACK is enabled, the information from the DIO can be used to
avoid picking another parent does not have room for routes
and to slightly speed up the selection.
6.2 Neighbor policy

One of the main challenges when scaling to dense net-
works is to handle the neighbor tables. The assumption is
that the neighbor table can only hold a limited number of
neighbors and that sometimes there are more neighbors than
entries in this table. The problem that occurs when replacing
a neighbor in the table with a new one that might be better
is that it is hard to understand the quality of the new neigh-
bor before we discard the old one. Picking wrong neighbors
might cause RPL to switch to what might look like a better
upstream parent but that fails to be one in the long run.

In the experiments in this section we evaluate the ef-
fectiveness of the neighbor table policy described in Sec-
tion 4.2.2.
6.2.1 Setup

To isolate the impact of the limited neighbor table this
setup includes a large routing table but a neighbor table with
a limited number of entries. In each simulation, the root node
has large enough tables but all the other nodes are limited to
ten neighbors in the neighbor table. The simulated network

132

consists of the RPL root and 30 other RPL nodes. We vary
the network density by changing the range of the transmis-
sions. We evaluate the end-to-end PDR.

We compare four different neighbor table policies:
• Hard-Lock - add neighbors until the table is full - then

keep them until timeout;

• LRU Overwrite - always add neighbors based on least
recently used model;

• Soft-Lock / Contiki Baseline Using Contiki’s out-of-
the-box neighbor table, which basically locks the pre-
ferred parent and children, but does not provision space
for candidate parents;

• Our neighbor policy Our novel policy, which keeps
a fixed number of entries for candidate parents and that
evaluates each new parent based on the expected quality
before adding.

All four described neighbor table policies are used in sim-
ulations with the same set of nodes. Nodes run the same ap-
plication as in the experiment in the previous section: one
node acts as the RPL root and runs an UDP echo server and
the other nodes send one packet per minute to the RPL root.

In the simulation we increase the transmission range in
order to increase the density.
6.2.2 Results

Figure 6 presents the results. The two best policies are
the Soft-Lock and our novel policy. Since the simulation is
static and the quality of the links does not change over time
these two are expected to behave similar - with the possibil-
ity of the soft-lock policy to perform slightly better as it will
not need to reserve any alternative parents but can use all
the neighbor table entries for downward routing (e.g. used
as next hop). The hard lock policy locks the first ten nodes
it sees and therefore it will end up with less possibilities of
adding children in cases where the table is already filled with
parents only. Finally the LRU policy only works well for
low densities when the number of neighbors is low and all
can be stored in the table. As soon as the network gets dense
and there are more neighbors than can be stored in the table,
the LRU policy starts to remove neighbors that are used for
downward routing - causing failures. As we increase den-
sity by increased range this policy will recover slightly when
most nodes can reach the root node as they will register im-
mediately to the root, thus minimizing the risk of losing the
downward route due to another node on the path removing
the route (or the next hop).

7 Large-Scale Commercial Deployment
This section reports on large-scale deployments we per-

formed in collaboration with Yanzi Networks. The first
deployment is a smart office application, with a total of
1000 nodes split in several networks of 120 or more nodes.
The nodes are sensors and actuators such as motion detec-
tors, temperature and humidity sensors, and smart plugs. The
sensors feed data into cloud applications that analyze the
work environment and visualize the data in various ways. We
use an ARM Cortex M3 SoC, which features 16 kB RAM,
256 kB flash and a built-in IEEE 802.15.4 radio. Since the
application layer, security protocols, IPv6 and MAC-layers

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

E
2
E
 P

D
R

Density (range in simulator)

RPL Scalability - NBR Policy

Policy
Soft-Lock

Hard-Lock
LRU

Figure 6. End to end PDR of an RPL network using vary-
ing implementation of neighbor table policy. The density
of the network is varied by changing the communication
range from a setting giving less than 10 neighbors in the
table to a setting where most nodes are in range - e.g, giv-
ing 25-30 neighbors.

buffers take a large portion of the available memory, we were
constrained to run with only 10 neighbor entries and 20 route
table entries, way below the density and size of the differ-
ent physical networks. With the help of the mechanisms in
this paper, we deployed all networks successfully, with all
nodes becoming addressable in spite of the harsh memory
constraints.

The second deployment is an even more dense installa-
tion. Also this networks includes the scalability improve-
ments in this paper. This network shown in Figure 7 consists
of more than 500 nodes on one single gateway. In this fig-
ure, the red nodes have recently (last 30 minutes) changed
their parent in the topology, yellow nodes changed a while
ago (up to four hours ago), and the blue nodes are very sta-
ble and have not changed their parents during the last four
hours. Since there is a significant risk of packet loss while
switching parent in a storing mode RPL network, a stable
topology is typically also giving less packet loss.

8 Conclusion
This paper sheds some light on the RPL scalability prob-

lem for bi-directional traffic and in constrained memory. We
introduce an end-to-end DAO registration mechanism, which
enables scaling to large networks, using a constant space for
routing entries. We also present a neighbor table manage-
ment policy, to scale to dense networks, using a constant
space for neighbor entries. Our simulations and commer-
cial deployment show that with these two mechanisms, RPL
can scale far beyond the number of neighbors and routes that
can be stored in RAM.

9 Acknowledgments
Thanks to the development team at Yanzi Networks for

the intense discussions during the course of the work. The
work is partly supported by the distributed environment
Ecare@Home funded by the Swedish Knowledge Founda-
tion, 2015-2019.

133

Figure 7. A deployed, very dense RPL network with more
than 500 nodes. The nodes have room for 10 entries in the
neighbor table and 20 entries in the routing table.

10 References
[1] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A.

Boano, and M. Alves. Radio link quality estimation in wireless sensor
networks: a survey. ACM Transactions on Sensor Networks (TOSN),
8(4):34, 2012.

[2] C. Bormann, M. Ersue, and A. Keranen. RFC 7228: Terminology for
Constrained-Node Networks, May 2014.

[3] S. Dawans and S. Duquennoy. On Link Estimation in Dense RPL
Deployments. In Proceedings of the International Workshop on Prac-
tical Issues in Building Sensor Network Applications (IEEE SenseApp
2012), Clearwater, FL, USA, Oct. 2012.

[4] S. Dawson-Haggerty, S. Lanzisera, J. Taneja, R. Brown, and D. Culler.
@ scale: Insights from a large, long-lived appliance energy WSN. In
Proceedings of the International Conference on Information Process-
ing in Sensor Networks (ACM/IEEE IPSN), Beijing, China, 2012.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proceedings
of the IEEE Workshop on Embedded Networked Sensor Systems (IEEE
Emnets), Tampa, Florida, USA, Nov. 2004.

[6] S. Duquennoy, O. Landsiedel, and T. Voigt. Let the Tree Bloom: Scal-

able Opportunistic Routing with ORPL. In Proceedings of the Inter-
national Conference on Embedded Networked Sensor Systems (ACM
SenSys 2013), Rome, Italy, Nov. 2013.

[7] S. Duquennoy, B. A. Nahas, O. Landsiedel, and T. Watteyne. Or-
chestra: Robust Mesh Networks Through Autonomously Scheduled
TSCH. In Proceedings of the International Conference on Embedded
Networked Sensor Systems (ACM SenSys 2015), Seoul, South Korea,
Nov. 2015.

[8] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón. COOJA/MSPSim: Interoperability Test-
ing for Wireless Sensor Networks. In SIMUTools 2009, Rome, Italy,
Mar. 2009.

[9] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Four-bit wireless
link estimation. In Proceedings of the Workshop on Hot Topics in
Networks (ACM HotNets), Atlanta, Georgia, USA, Nov. 2007.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collec-
tion tree protocol. In Proceedings of the International Conference on
Embedded Networked Sensor Systems (ACM SenSys), Berkeley, CA,
USA, 2009.

[11] T. Istomin, C. Kiraly, and G. P. Picco. Is RPL ready for actuation? A
comparative evaluation in a smart city scenario. In European Confer-
ence on Wireless Sensor Networks, pages 291–299. Springer, 2015.

[12] H. Kim, J. Paek, and S. Bahk. QU-RPL: queue utilization based RPL
for load balancing in large scale industrial applications. In 12th An-
nual IEEE International Conference on Sensing, Communication, and
Networking, SECON 2015, Seattle, WA, USA, June 22-25, 2015, pages
265–273, 2015.

[13] M. Michel, S. Duquennoy, B. Quoitin, and T. Voigt. Load-Balanced
Data Collection through Opportunistic Routing. In Proceedings of the
International Conference on Distributed Computing in Sensor Systems
(IEEE DCOSS 2015), Fortaleza, Brazil, June 2015.

[14] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. In Proceedings of the First
IEEE International Workshop on Practical Issues in Building Sensor
Network Applications (SenseApp 2006), Tampa, Florida, USA, Nov.
2006.

[15] P. Ruckebusch, J. Devloo, D. Carels, E. De Poorter, and I. Moerman.
An evaluation of link estimation algorithms for rpl in dynamic wire-
less sensor networks. In 6th EAI International Conference on Sensor
Systems and Software, Oct. 2015.

[16] N. Tsiftes, J. Eriksson, and A. Dunkels. Low-Power Wireless IPv6
Routing with ContikiRPL. In Proceedings of the International Con-
ference on Information Processing in Sensor Networks (ACM/IEEE
IPSN), Stockholm, Sweden, Apr. 2010.

[17] T. Winter (Ed.), P. Thubert (Ed.), and RPL Author Team. RPL: IPv6
Routing Protocol for Low power and Lossy Networks, Mar. 2012.
RFC 6550.

[18] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In Proceedings of
the International Conference on Embedded Networked Sensor Systems
(ACM SenSys), pages 14–27, Los Angeles, California, USA, 2003.
ACM Press.

134

