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Abstract
Knowledge about the presence of persons in a waiting line

can help estimating the waiting time or guiding the decision
about opening a second line. However, existing presence de-
tection systems for waiting lines are either mounted at fixed
positions, take a long time to deploy, need a power connec-
tion or require users to carry devices. Past research on the
analysis of the Received Signal Strength Indicator (RSSI) of
a radio transmission indicates that it can be used to detect
the presence of persons. Here, the accuracy of the detection
is directly linked to the quality of the radio link. Radio links
based on Bluetooth Low Energy (BLE) offer a stable connec-
tion, but implement a mandatory frequency hopping scheme,
with the information about the current channel typically not
accessible. In this work we extend the concept of passive
presence detection to work on BLE radio links. We adapt
two RSSI based presence detection techniques and evaluate
their performance in experiments. The experimental results
indicate that it is possible to achieve a 92% accuracy using
BLE when compared to the ground truth.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous

General Terms
Passive presence detection, human queue monitoring

Keywords
Wireless, RSSI, BLE, waiting lines

1 Introduction
Waiting lines occur in everyday urban life, for example at

airports, supermarkets, amusement parks or coffee shops. A
waiting line consists of a service point where the available

resource, e.g. a cup of coffee, is distributed, and a queue-
ing area. If the time it takes to distribute a resource, i.e.
the service time, is greater than the time between arrivals of
new persons in the system, i.e. the interarrival time, people
will queue before the service point. Queueing areas are often
controlled by portable barrier poles connected by retractable
belts. Frequently, the layout of these barrier-systems needs
to be changed by moving the poles to a different position
and reconnecting them. For example in an airport rearrang-
ing the waiting line might be necessary to guide passengers
to a different check-in counter. While more people are ar-
riving, knowledge about the presence of persons in the wait-
ing line enables smarter decision making regarding the open-
ing of new service points or secondary lines to balance the
load. However, current systems estimating the attributes of
waiting lines are often installed at fixed positions and can
not be changed in their layout. Other systems require time-
consuming calibration after each layout change, which re-
duces their applicability. Thus a mobile queueing system
which is easy to deploy and supports arbitrary sensor posi-
tioning is required.

In recent years the Received Signal Strength Indicator
(RSSI) of radio transmissions has been analysed for its po-
tential to detect persons in indoor environments [9]. If a per-
son steps into the monitored area, i.e. the area covered by a
radio link [11], the human body will cause multipath fading
of the radio signals [21, 18]. Depending on the path the sig-
nals take, they can arrive at the receiver with lower or even
higher power. This interference is perceivable as a variation
in the received signal strength when comparing the values of
consecutive messages. To study the disturbances in the mon-
itored area, techniques based on e.g. recording and analysing
the mean RSSI or the RSSI variance have been introduced
[9, 18, 10, 1]. Algorithms based on these techniques have
been shown to detect the presence of persons with position-
ing errors of only a few centimetres. These algorithms can
also be used as a basis to estimate the attributes of waiting
lines [14]. Battery powered radio transceivers could be de-
ployed atop freely movable barrier poles which allows for a
flexible layout that is easy to change.

The challenges in designing a reliable detection algorithm
for such a system lie in the naturally fluctuating behaviour of
the RSSI. Variations in the signal strength caused by the en-

102

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1



vironment have to be differentiated from disturbances due to
human presence. For this reason, the presence of a person in
a more stable radio link is easier to identify than in a link that
is heavily fluctuating. Compared to radio links using other
wireless technologies, BLE radio links demonstrate greater
stability [5, 7]. This quality has the potential to benefit the
accuracy of presence detection algorithms immensely.

However, BLE transmissions are sent on multiple chan-
nels, each of which has it’s own RSSI level [6]. If the chan-
nels are not handled independently, channel switches can
cause changes in the RSSI that will influence the detection
performance of the algorithms. Furthermore, BLE imple-
ments a channel hopping scheme in which the information
about the current channel is typically not accessible to appli-
cation programmers.

Our goal is the creation of a mobile barrier-system capa-
ble of detecting persons passing through it. The desired char-
acteristics of this system are portability, a simple deploying
procedure and a high detection accuracy. Our contributions
extend the concept of passive presence detection to BLE ra-
dio links and adapt existing techniques to cope with the dif-
ferent BLE channels. Further, we design a prototype mobile
queueing system that can be used to estimate the presence
of persons in waiting lines. The prototype system is easy
to deploy, does not require additional infrastructure and sup-
ports arbitrary sensor positions. We validate its performance
in experiments to demonstrate the extended algorithm’s abil-
ities to be used as a basis for a freely deployable presence
detection system.

Apart from waiting lines the availably of such a system
would also enable different kind of application scenarios.
A mobile presence detection system could monitor conges-
tions at emergency exits guiding people to alternative escape
routes, or register trespassing at security sensitive locations.

This paper is structured as follows: First, we take a look
at the related work in the fields of passive presence detection,
BLE and queueing systems in Section 2. Then, we describe
the advantages and challenges of the BLE protocol in Sec-
tion 3. Section 4 presents our approach to create robust de-
tection algorithms based on BLE, while Section 5 evaluates
their detection performance in experiments. We conclude
with a summary of our results and a brief look into our fu-
ture work.

2 Related Work
In this section related works on presence detection and

queueing systems are discussed.
The detection of a person in the area covered by a ra-

dio link is a well-established research topic in recent litera-
ture, featuring various techniques. Each technique focuses
on analysing one or more measurable attributes of a radio
transmission, like the Time of Flight, the mean of the RSSI
or the variance of the RSSI.

For example, in [1] the Time of Flight of radio messages is
analysed using an array of five antenna pairs simultaneously
transmitting and receiving. When the signal is reflected from
a physical object, like a human body, the distance of the per-
son can be estimated as an ellipsis around the antenna device.
By overlapping five ellipses, one for each antenna pair, the

position of up to five people in a room can be approximated.
Alternatively, the RSSI of a radio transmission can be

used for detection purposes. In [4] these techniques are
coarsely divided into two classes based on either the mean
RSSI or the RSSI variance. An early work based on the
mean RSSI is [9], in which a correlation between the RSSI
of a radio link and a person obstructing it is established. If
the current RSSI is attenuated by one standard deviation be-
low the mean RSSI a detection event can be assumed. In
[18, 11] the RSSI is used to visualise the presence of a per-
son in a radio network. This procedure, called Radio Tomo-
graphic Imaging (RTI), allows to create an attenuation map
of the monitored environment. Nodes are deployed on the
edges of the monitored area, building a dense grid of radio
links. Disturbances introduced by the attenuation of the hu-
man body can be detected and the position of the disturbance
is pin pointed by overlapping the affected links. Techniques
based on the variance of the RSSI can be found in for ex-
ample [19] and [10]. In [19], building on the RTI system
of [18], the RSSI variance in the monitored area caused by
human motion is analysed. The introduced VRTI system is
shown to detect and track the movement of persons in real-
time. In [10] the results of the previous works are extended to
cope with the fluctuating behaviour of the RSSI. A long-term
variance, only updated in tranquil phases, and a frequently
updated short-term variance, which is heavily influenced by
the presence of a person, are computed and afterwards com-
pared. If the difference between the two is above a detection
threshold, an event is triggered. While variance based sys-
tems limit the influence of changes in the RSSI over time,
they also require variance inducing movement of the persons
in the monitored area. In waiting lines, where motionless
standing is an integral part of the process, this is not neces-
sarily the case.

All the works above are heavily based on the quality of
the RSSI. A stable connection can improve the detection ac-
curacy significantly compared to a connection with a very
fluctuating RSSI. Addressing this issue, in [20] radio links
are separated based on their quality and behaviour into anti-
fading and deep-fading links. Anti-fading links will expe-
rience an attenuation in the RSSI values when a person en-
ters the link, due to the dampening of the radio signal by the
human body. If a person enters the area affected by a deep-
fading link, the RSSI of the link may even rise. This can
happen because the signal distortion caused by the human
body can amplify the otherwise weak RSSI by creating new
paths for the radio waves, thus allowing for an increase in the
measured signal strength.

Most of the techniques mentioned above are using radio
technology based on the IEEE 802.15.4 standard. While
many discoveries applying to protocols based on this stan-
dard, e.g. the existence of anti-fading and deep-fading links,
also apply to BLE radio links, additional challenges have to
be addressed. The quality of BLE radio links is analysed in
[6]. It is shown, that all three BLE advertising channels can
have distinct mean RSSI values. The work also describes the
influence of fast fading effects on the RSSI of the BLE proto-
col. A conveyor belt is used to uniformly measure the RSSI
at different distances. It is observed that even slight changes
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in the position can influence the RSSI of a BLE radio link
greatly. In [7] this topic is expanded by further analysing
the effects of the different advertising channels. It is discov-
ered that the advertising channels exhibit fading at different
spatial positions. In [22] BLE is used for fingerprinting, a
state of the art scheme for indoor positioning. Here, the ad-
vertising channels are handled independently, which avoids
“smearing”[6] the RSSI over all channels and greatly im-
proves the localisation performance of the presented algo-
rithm.

Looking at queueing systems, current techniques estimat-
ing the presence of persons in a waiting line can be classi-
fied into participatory systems, requiring user participation,
or autonomous systems, which do not. Participatory systems
require users to carry devices, e.g. a smartphone with a spe-
cialised, traffic generating app installed [13, 17]. They are
making either use of one of the smartphones sensors, e.g. the
accelerometer [13], or the smartphones wireless capabilities
[17, 12, 16]. In this way, the accelerometer data of a smart-
phone transmitted to a server can be used to identify periods
of moving, i.e. “shuffling forward” or waiting [13]. Alterna-
tively, the RSSI of a smartphones WIFI can be used to esti-
mate the users distance to the service point. In [17] a single
signal monitor at the resource service point of the waiting
line is recording whether a WIFI signal grows stronger or
weaker. If the signal grows stronger, a person is approach-
ing the signal monitor, i.e. entering the line. If the signal
gets weaker quickly, the person is leaving the waiting line.
In both cases the number of connections can help to estimate
the number of people in the line. The above-mentioned tech-
niques require at least some users to carry additional hard-
ware, namely in the form of smartphones, to generate de-
tectable traffic. While smartphones are largely common in
urban areas with ownership rates nearing one hundred per-
cent [12], the issue these systems face is the users incentive
to participate [15]. Otherwise, not enough sensor data for the
analysis will be generated.

Autonomous systems employ sensors at fixed positions to
monitor the area of the waiting line, instead. Current tech-
nologies are generally based on cameras or beam-type sen-
sors, like laser-beam, light-beam or infra-red systems. Cam-
era based systems analyse the pictures or videos taken for
human presence by executing for example face recognition
algorithms. However, cameras only have a limited field of
view which requires adjustments when the monitored area
changes. They also raise privacy issues, since everybody in
the system could be identified. Beam-type sensor based sys-
tems use laser or light beams received by a light sensor. If
the beam is interrupted, for instance by a person crossing it,
the system triggers a detection event. However, the beams
must be adjusted precisely to hit the receiving light sensor, a
process not robust to position changes, and the light sensor
must be shielded from direct sunlight to avoid detection fail-
ures. An example for an autonomous radio based queueing
system is [14]. Here, the quality of radio links disturbed by
vehicles is analysed to estimate road occupancy and traffic
queue lengths.

The approach we are suggesting is RSSI based passive
presence detection of persons which does not require user
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Figure 1. First 15 minutes of the 18-hour measurement
to observe the long-term behaviour of a BLE radio link.

participation and that is not limited to absolutely fixed sensor
positions.

3 Challenges in using BLE for Presence De-
tection

Traditionally, most works in the area of passive presence
detection consider techniques based on the IEEE 802.15.4
specification for wireless communication or WLAN [9].
However, with the rising popularity of smartphones new
specifications have been introduced. A protocol based on
such a specification is Bluetooth Low Energy (BLE) [2]. The
BLE protocol was designed to replace the wiring between a
central device, e.g. a smartphone, and peripheral devices,
e.g. radio beacons. The design goals of BLE are to offer the
capabilities of wireless, short-range data transmission with
low energy costs [2]. BLE uses 40 channels in the spectrum
between 2402 MHz and 2480 MHz, each channel separated
by 2MHz. In comparison WLAN 802.11g/n uses only three
channels in the same spectrum, but each is 16.25MHz wide.
IEEE 802.15.4 uses 14 channels, each 5MHz wide. The three
BLE channels 37, 38 and 39, evenly distributed over the
spectrum, are used as primary advertising channels as spec-
ified in Bluetooth 4.2 [2]. Here, advertising messages are
broadcasted, typically by a peripheral. When a central device
receives an advertising message, it can initiate a BLE con-
nection. Information can be transmitted between connected
devices on the remaining 37 data channels, either from pe-
ripheral to central or vice versa. Since the introduction of
Bluetooth 5.0 it is also possible to re-purpose data channels
as secondary advertising channels. However, to avoid con-
flicts with older Bluetooth versions, only the three primary
advertising channels are used by default [3].

Passive RSSI based presence detection requires multiple
consecutive messages being sent whose RSSI values can be
compared to identify the disturbances indicating a person.
Using BLE, these messages can be broadcasted on the adver-
tising channels avoiding the time-consuming establishment
of an actual BLE connection. For the design of a presence
detection algorithm on top of BLE it is important to recall
that the different BLE channels can have their mean RSSI at
different levels [7]. Because of this, computations for each
channel have to be handled independently [22]. Otherwise,
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the different levels would cause sudden jumps in the RSSI,
which could in turn lead to false positives. This would occur
if the BLE channels are switched, and the RSSI is “smeared”
over all channels. Because of this, the RSSI variance com-
puted using all advertising channel of a BLE radio link is
high. In turn, the RSSI of each single BLE channel is very
stable. Figure 1 shows a section of an experiment recording
the RSSI of the three BLE advertising channels over a dura-
tion of 18 hours. Two radio nodes have been set up in a lab-
oratory environment at a distance of 1m. The results show
that, while all advertising channels have a different mean
RSSI level, the standard deviation around each mean on the
undisturbed channels is very low. In our experiment 217737
samples have been sent in total, which corresponds to 72579
messages per channel. The measured mean RSSI on each
channel was at −56.607dBm for channel 37, −57.426dBm
for channel 38 and −61.999dBm for channel 39, with re-
spective standard deviations of 0.312dBm, 0.486dBm and
0.017dBm. In comparison, the recorded standard deviation
in [5] of 33000 WiFi samples is at 4,72dBm. This behaviour
of the RSSI is promising when trying to analyse the distur-
bances in a BLE radio link to detect the presence of a person.
Fluctuations in a link less likely to be affected by the envi-
ronment could be a stronger indicator for human presence.

Switching the advertising channel is part of a manda-
tory frequency hopping scheme BLE implements due to
which the advertising channels are changed in short inter-
vals. Channel information are only available with special
hardware or not at all. For example, [6] proposes the use
of a device with the operating system iOS7 installed, which
allows the API to access the channel information of the mes-
sage. However, often the BLE radio stack is a closed system
with no configuration possibilities, in which the information
about the advertising channel of the current message is hid-
den from the application programmer.

Furthermore, radio signals transmitted over the narrow-
band BLE channels are more highly influenced by fading
effects [6] than e.g. signals transmitted over WLAN. The
high susceptibility of a BLE towards fast fading excludes
presence detection scenarios, in which a constant movement
of the radio nodes is required, e.g. mounted on a robot or
drone. Also, BLE radio links are still experiencing the same
anti-fading and deep-fading behaviour as described for IEEE
802.15.4 radio links in [20]. Possible detection algorithms
have to account for these issues.

4 Approach
In this section, we describe how to use passive detection

based on the RSSI values of a BLE radio link in order to de-
tect the presence of persons in a waiting line. Passive RSSI
based detection allows to build systems which are flexible
to deploy, have a low set-up time and for which users do
not have to carry any device. Radio signals are transmitted
omnidirectional and can even pass through certain obstacles,
e.g. furniture or walls. There is no restriction to a field of
view, like in camera based systems, and no privacy issues,
since the identity of a person passing a radio link cannot be
inferred. Furthermore, the transmitter and receiver forming
a radio link can be freely deployed preferably on the edges

of the monitored area. They are not limited to fixed posi-
tions and do not need to be wall-mounted avoiding time-
consuming calibration of laser-beams. RSSI based detection
can be classified in techniques focused on the RSSI variance
or focused on the mean RSSI [4]. Variance and mean are
computed by analysing the changes in the RSSI of consecu-
tive messages send on the same radio link. A detection event
is triggered by these techniques when a person is assumed to
be in the radio link.

To determine which technique is better suited for the pres-
ence detection we extend one RSSI variance and one RSSI
mean based algorithm to work on BLE radio links and com-
pare their behaviour in the evaluation section.

4.1 RSSI Variance Based Technique
Detection algorithms based on the variance of the re-

ceived RSSI values are best suited to detect motion in a
monitored area since they analyse disturbances of the RSSI.
These disturbances are caused by the human body influenc-
ing the radio signals in a monitored area when a person enters
the radio link. The variance of a sample set of RSSI values
is computed as seen in Equation 1,

Var(x) =
1
n

n

∑
i=1

(xi−µ)2 (1)

for which in this case xi is the received RSSI value, µ is
the mean over all received RSSI values, i.e. the mean of the
sample set, and n is the number of all received RSSI values,
i.e. the magnitude of the sample set. During the runtime of a
detection system the complete sample set of all RSSI values
is not previously known. In order to use Equation 1 as a basis
for the variance based algorithm, we additionally introduce
a sliding window to our approach. Using a sliding window
with a window-size of varwindow, only the varwindow newest
values are considered for the variance computation. By do-
ing so we create a trade-off between the responsiveness of
the system and the accuracy of the variance computation. If
the sliding window is too large, the system will respond with
a delay to a reduced variance in the RSSI since old values
are still used in the computation. This can lead to a delayed
detection of a person entering or leaving the radio link. If the
sliding window contains too few samples, each new sample
will have a significant impact on the computed variance in-
troducing unsteady behaviour. This would lower the overall
accuracy of the computed value when used in the presence
detection. To determine the value for varwindow, we analyse
the time it takes a person to cross the monitored area. De-
pending on the walking speed and the body type we observe
a duration between 300 and 500ms. This equals three to five
samples at a message rate of 10 messages per second. For
this reason, we set the sliding window size varwindow to in-
clude varwindow = 10 RSSI samples in our experiments, dou-
bling the worst-case value. This way, we can accurately de-
tect changes in the variance while still keeping a high re-
sponsiveness. In order to compute the sliding variance, we
first create a sliding window with varwindow slots for each
BLE channel. Then, we compute a weighted mean applying
Equation 2.
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1: for i ∈ {37,38,39} do
2: if Channel = i then
3: Meani

current = EQ. 2(Meani
old ,RSSIi

current)

4: Meani
old = Meani

current
5:
6: slidingWindowi.add(RSSIi

current −Meani
current )

7: slidingWindowi.remove(oldestentry)
8:
9: Variancei = EQ. 1(slidingWindowi)

10: if Variancei > Tv then
11: detectionState = 1
12: else
13: detectionState = 0
14: end if
15: end if
16: end for
17: return detectionState

Figure 2. RSSI variance based detection algorithm.

The weight factor α is set to α = 0.9 so that the last re-
ceived RSSI value has an influence of 10% on the weighted
mean.

Meancurrent = α∗Meanold +(1−α)∗RSSIcurrent (2)

The Meanold in Equation 2 is not based on a sliding win-
dow, but a weighted sum of all previous RSSI values. When
a new RSSI value RSSIcurrent is received, the difference of the
new value to the weighted mean is added to the sliding win-
dow for each channel respectively. After the sliding window
has been updated, all elements in the window for the current
channel are added and divided by the number of elements
following Equation 1 to compute the variance. Then, the new
RSSI value is used to update the weighted mean. When the
variance crosses a threshold Tv a detection event is triggered.
This threshold should be set to a value greater than zero to
account for small deviations in the RSSI. The values from
1dBm to 10dBm have been tested to determine Tv. While
a value, that is too low, triggers wrong detections, persons
crossing the monitored area can be missed using a value, that
is too high. In our experiments Tv is set to Tv = 5dBm which
is at the balance point between the two cases. The complete
algorithm can be seen in Figure 2:

The computation of the weighted mean is not suspended
during a detection event. If it were, the computed value
would not describe the variance of the RSSI anymore, but
instead the difference between the current RSSI and the last
computed weighted mean. This however is the basis of the
mean RSSI based detection.
4.2 Mean RSSI Based Technique

Detection techniques based on the mean RSSI analyse the
attenuation of a radio signal caused by the human body. Ba-
sically, the mean of all previously collected RSSI values is
computed and compared with the current RSSI measured at
that time. An event is detected when the difference of the two
values is above a certain threshold Tm. For the mean based
detection we once more compute a weighted mean applying
Equation 2. As done for the computation of the variance the
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Figure 3. Attenuation of a person standing in a BLE ra-
dio link plotted over the received signal strength of the
link.

weight factor α is set to α = 0.9 in order to weight the cur-
rent mean with 90% and every new value with 10%. Again,
this is done for each of the three channels individually.

However, the computation of the weighted mean is sus-
pended during a detection event. The RSSI values during a
detection event are deviating significantly from the weighted
mean in the tranquil phase. Updating the weighted mean
during the detection event would change the basis against
which the current values are compared and thus corrupt the
information about the empty link. As a result, a link could
be assumed empty while a person is actually standing in-
side the monitored area. For the same reason, the RSSI val-
ues recorded during the event may also not be used after the
event is over, but will instead be discarded.

It is also important to recall that the RSSI while influ-
enced by the distance of the radio nodes is also dependent
on the position of the nodes. This is due to the fast fad-
ing effect of a BLE radio link as seen in [6]. A radio link
can have a weak signal strength either because the sender is
far away or because the receiver is at a position where it is
affected by fast fading. For this reason, we design our detec-
tion threshold Tm to be purely based on the received RSSI not
including any information concerning the signal distribution
at different distances, like e.g. done in [1]. We accomplish
this by designing Tm based on a dynamic threshold Td , with
changing values based on the current RSSI. To determine the
function for the dynamic threshold, we perform an experi-
ment comparing the RSSI of an obstructed radio link with
the unobstructed behaviour of the same link. For this, we set
up one BLE radio link consisting of two nodes, mounted on
wooden poles. During the measurement we record the RSSI
on all three BLE advertising channels separately. First, we
measure the RSSI of the empty link. Then a person is step-
ping into the monitored area and we measure the attenuation
in the RSSI of the now obstructed link. The RSSI is gathered
in both cases for one minute. After each measurement, we
move the poles to a new position which changes the RSSI
on all channels. We repeat this measurement at 17 positions
with 12 different distances between the nodes ranging from
0.25m to 4m. The results can be seen in Figure 3.

In this figure, the attenuation in the RSSI is plotted over
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Table 1. States of the mean RSSI based detection algo-
rithm

State Description
0 No detection - empty link
1 Detection - person in link
2 No detection with reduced credibility
3 Detection with reduced credibility
4 Error
5 Calibration

the received signal strength for every measurement. A clear
trend is visible, indicating a smaller attenuation in the RSSI,
the lower the received signal strength is. This is in accor-
dance with the observations in [8], where a quadratic re-
lationship between the RSSI of a blocked and an empty
WLAN link is postulated. When plotted over the received
signal strength, a quadratic regression line can be computed.
However, the RSSI range we experience during our mea-
surements lies in a section of the quadratic regression that
is overlapping the linear regression of the same measure-
ment. Because of this, we can use a linear regression as an
approximation of the relationship for all further experiments
without decreasing the accuracy of the detection algorithm.
The function of the linear regression line computed from the
measured attenuation in the RSSI serves as a base for the dy-
namic threshold Td of the presence detection. However, the
linear regression line is only an average. It describes attenu-
ation in the average case when a person enters the monitored
area. We need the dynamic threshold to be smaller than the
average attenuation in the RSSI, since we are also interested
in detecting events that only cause a smaller than average at-
tenuation. Everything below the threshold is not considered
to be a detection event. Thus, we introduce a variable β by
which the dynamic threshold is lowered, defining the func-
tion for our dynamic threshold to Equation 3,

Td = 0.87∗RSSIcurrent +59−β (3)

in which RSSIcurrent is the current RSSI measured at that
time and β the variable lowering the dynamic threshold.

As seen in Figure 3 the curve described by Equation 3
cross the 0dBm line. This is an issue, because it means that
there is a set of radio links with weak signal strength whose
RSSI does not change when a person enters the link. In Fig-
ure 3 it can also be seen that the anti-fading and deep-fading
effects described in [20] apply to BLE radio links, when used
for presence detection. To account for these circumstances,
we introduce a weak link threshold WLT . Events based on
radio links with a mean RSSI below this threshold are judged
to be not as reliable as events on radio links with a mean
RSSI above WLT . The value of WLT is set to the RSSI at
the crossing point of Equation 3 with the x-axis, after which
the described effects might occur.

Furthermore, if Equation 3 was used as dynamic threshold
without further restrictions, it would trigger false detection
events on links with an RSSI level in the range of the cross-
ing point. Since the threshold on those links would be set
close to zero, even RSSI values that are perfectly in line with

1: for i ∈ {37,38,39} do
2: if Channel = i then
3: if (State = 0)∨ (State = 2) then
4: Meani

current = EQ. 2(Meani
old ,RSSIi

current)

5: Meani
old = Meani

current
6: end if
7: Td = EQ. 3(RSSIi

current)
8: if Meani

current −Td > RSSIi
current then

9: detectionState = 1
10: else
11: detectionState = 0
12: end if
13: if Meani

current <WLT then
14: if (Meani

current −RSSIi
current > Tg)∨

(Meani
current −RSSIi

current <−Tg) then
15: detectionState = 3
16: else
17: detectionState = 2
18: end if
19: end if
20: end if
21: end for
22: return detectionState

Figure 4. Mean RSSI based detection algorithm.

the mean RSSI computed during the tranquil phase would be
seen as detection event. To avoid this, we introduce an ad-
ditional constraint on the event detection. If the difference
to the mean RSSI is smaller than a global threshold Tg, it
is ignored and no event is triggered. The threshold Tm now
follows Equation 4.

Tm =

{
Td , if Td > Tg.

Tg, otherwise.
(4)

Based on this rationale, we introduce six possible output
states for the detection algorithm, as seen in Table 1.

State 0 is the no-detection state for links with RSSI val-
ues above WLT . Respectively, state 1 is the detection state
for this case. State 2 is the no-detection state for links with
a RSSI below WLT and state 3 the detection state. We as-
sume a reduced credibility for events of the last two types.
State 4 is reserved for invalid operations and will be entered
in the case of an error. State 5 is the calibration state of the
system. Since the weighted mean is computed for all three
channels separately, if an event was to occur before a channel
had a chance to receive a message, the initial computation of
the mean would not be based on the tranquil phase when the
link is empty. This would influence the detection algorithm
by introducing wrong values for the weighted mean to com-
pare against. In the worst case, if a very low RSSI value
were chosen as the mean, the system could wrongfully iden-
tify RSSI values of an empty link as detection events. This
would stop the computation of the weighted mean and lock
the system in a state of constant detection. To avoid this, the
detection algorithm stays in the calibration state 5, until at
least one message was received on each channel. The dura-
tion of the calibration phase depends on the value of the scan
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Figure 5. Set-up of the prototype queueing system.

interval set for the BLE radio link, after which the channel is
switched. While the algorithm still performs correctly even
without a calibration phase (assuming that no disturbance of
the system occurs, before each channel had a chance to set its
mean) the calibration phase was introduced as an additional
measure to secure the robustness of the system.

After the initial calibration, the mean based detection op-
erates as follows: When a new RSSI value is received, it is
first checked, whether the system is in a tranquil phase with-
out detection. If so, a new weighted mean and the threshold
Tm are computed. If the current RSSI is smaller than the
weighted mean subtracted by the threshold Tm, but greater
than the weak link threshold WLT , a new state 1 detection
event is triggered. If the current RSSI is lower than WLT ,
it is checked, whether an event on an anti-fading or deep-
fading link has occurred, which we then assign a reduced
credibility. This is done by checking whether the mean mi-
nus the current RSSI is larger than the global threshold Tg,
or, in case of a deep-fading link, is smaller than −T g. In
both cases a state 3 event is triggered. The complete mean
based algorithm can be seen in Figure 4.

5 Evaluation
We evaluate the extended detection techniques in a

laboratory-setup, as seen in Figure 5. Radio nodes are
mounted atop wooden poles to simulate a setup similar to
that of a corridor framed by cord-connected barrier poles as
found in waiting lines e.g. in airports or coffee shops. The
monitored area in our experiments is a corridor of 1x4 me-
ters, comparable to a queueing area. The corridor is crossed
by four radio links, each made from two nodes on opposite
sides of the waiting line. We assume the positions of the
nodes are known and every node is aware the ID of its part-
ner node on the other side of the corridor.

We define an event as a person crossing the monitored
area of one radio link. We further define a match as an event,
that has been detected by the used algorithm within 0.6s dif-
ference to a recorded ground truth. A false negative is de-
fined as an event that has not been detected, and a false posi-
tive as a detection without the monitored area being crossed.
To evaluate the performance of the different parameter we
use the metrics of precision, recall and the F1-score. The
precision is a measure of how many of the detected events

are actual matches. It answers the question whether the de-
tected events are correctly identified. The precision is com-
puted following Equation 5.

precision =
truepositives

truepositives+ f alsepositives
(5)

The recall is a measure of how many matches out of all
events have been identified. It indicates whether an event has
been missed. The recall is computed following Equation 6:

recall =
truepositives

truepositives+ f alsenegatives
(6)

The F1-Score is a combination of both and is computed
following Equation 7:

F1-score = 2∗ precision∗ recall
precision+ recall

(7)

When entering or leaving the monitored area a person’s
body is not fully emerged in the radio link. In this transition
phase changing attenuation values e.g. caused by arm or leg
movement can trigger multiple detections for one event. To
avoid miscounting the events in the evaluation, multiple de-
tections are combined into a single event if they occur in an
interval of 1s after another. As described in Section 4.1, this
value is again based on the time it takes a person to cross the
monitored area of a link.

As ground truth of the detection, we use a laser-beam
type system against which we compare the detection algo-
rithms. For this, we aim wall-socket powered laser-pointers,
also mounted on adjustable wooden poles, at the light sen-
sors of smartphones. If a person enters the monitored area
of our prototype set-up, the presence of her body inflicts dis-
turbances in the radio link of the BLE transceivers, which
will cause a detection event. Simultaneously, the beam of
the laser-pointer is interrupted and a ground truth detection
event is triggered. Both systems send their events to the same
sink, connected to a PC. Whenever a message from the de-
tection system or the ground truth system is received, it is
combined with a timestamp generated by the PC, so that the
messages can be set in direct relation to each other.
5.1 Implementation

To establish the radio link, we use the ATMEL Xplained
Pro evaluation platform, which is equipped with an AT-
MEL SAMB11 Bluetooth 4.1 module, including an inte-
grated MCU and a BLE transceiver. Messages are sent on
the three primary BLE advertising channels from the trans-
mitter to the receiver of one radio link. The transmitter is
mimicking the behaviour a BLE beacon by broadcasting one
message every 100ms. The receiver receives all messages
and filters them for the ID of its partner node on the opposite
side of the corridor. In our experiments, scan interval as well
as scan window of the BLE receiver are set to the maximum
value of 10.24s. With this, the calibration phase has a dura-
tion between 10.25s to 20.49s, depending on the timing of
the first message in the first scan interval.

For the receiving node it is not possible to derive the chan-
nel on which the message was sent from the link layer of the
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(a) EX1: Variance when standing in the link.
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(b) EX2: Variance for the first twenty-five link cross-
ings.
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(c) EX1: Detection compared to the ground truth.
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(d) EX2: Detection compared to the ground truth.

Figure 6. Results of the variance based detection experiments EX1 and EX2.

BLE transmission. However, it is possible to set the channel
on which the advertisement messages are sent on the trans-
mitter. Exploiting this, we include the information about the
current advertising channel into the payload of each mes-
sage. Then, we send exactly one advertisement message and
stop the BLE advertising. We repeat this process for ev-
ery message while cycling through the advertising channels.
This way, in each message the information about the channel
on which it is send is accessible to the algorithms. By mod-
ifying only the transmitter, any BLE capable receiver can be
used to obtain this information without the need for a special
API.

5.2 RSSI Variance Based Detection
To determine the detection performance of the extended

techniques and their use in queueing systems, we first anal-
yse the effects of a person in a single BLE link. For this, we
perform two experiments with different challenges for the
algorithms. For each experiment, we analyse the behaviour
of the RSSI and compute the mean and the variance. In the
first experiment, EX1, a person is entering the BLE radio
link, keeps standing still in the line of sight between the ra-
dio nodes for one minute, and then leaves the link. The ex-
periment tests the algorithms ability to handle continuous at-
tenuation and is repeated 5 times. In the second experiment
EX2, a person is crossing the radio link multiple times at a
constant speed. The speed is regulated by markers on the
floor and a metronome. The metronome gives a beat of 60
beats per minute, while the markers are 50cm apart. Every
time a metronome beat is heard, the person takes a step on a
marker. This way a speed of 0.5m/s is maintained. For this
experiment the link is crossed at least 50 times, while the
algorithms ability to detect movement is tested.

An exemplary result of the first experiment EX1 using
the variance based algorithm can be seen in Figure 6. In
Figure 6(a) variance and RSSI follow the scale of the left
y-axis. The variance is downscaled by factor 250 to fit the
graph. The information about the BLE channel, on which
the current message is received, is on the right y-axis. As
seen in the figure, each of the three BLE channels has its
own mean RSSI level, as described in [7]. This is accounted
for in the calculation of the weighted mean as described in
Section 4.

Figure 6(c) compares the result of the detection based on
the variance algorithm with the ground truth. The light level
used as ground truth, and measured by the light sensor, fol-
lows the scale of the upper right y-axis. Its main purpose is
to indicate whether a person is in the monitored area. A low
light level of ’0’ means that the beam between laser and light
sensor is interrupted and a person is standing in the link. A
high light level of ’1’ indicates that the laser beam is not in-
terrupted and the link is empty. The detection state follows
the lower right y-axis, while the RSSI follows the left y-axis.

As seen in Figure 6(a) the RSSI is influenced for as long
as a person is standing in the link. However, the RSSI only
experiences high variance when the person is entering or
leaving the monitored area. During the period the person is
standing motionless, the recorded variance is close to zero.
This is because the variance is induced by fluctuations in the
RSSI value. Even if a person is attenuating the radio link, for
as long as the magnitude of the attenuation does not change,
there is no variance. That is why during our experiment there
is a duration in which no variance based detection is regis-
tered, despite a person still standing in the monitored area.
The spikes in the variance, visible around 90s and 160s, are
caused by the switch from one BLE advertising channel to
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(a) EX1: Difference to the mean RSSI when standing
in the link.
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(b) EX2: Difference to the mean RSSI for the first
twenty-five link crossings.
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(c) EX1: Detection compared to the ground truth.

-100

-50

 0

 50

 100

 150

 0  50  100  150  200  250  300

0
1
2
3

0

1

R
S

S
I (

dB
m

)

S
ta

te
Li

gh
t L

ev
el

Time (s)

Light Level
Detection State

RSSI

(d) EX2: Detection compared to the ground truth.

Figure 7. Results of the mean based detection experiments EX1 and EX2.

the next. The transition from the unobstructed to the ob-
structed link occurs between two scan intervals on the same
channel. Because of that, there is a difference in the mean
RSSI of that channel. The RSSI in the interval while the link
is not obstructed is much higher than the attenuated RSSI of
the obstructed link. This causes the RSSI values in the slid-
ing window to be dissimilar and thus increases the variance.

Figure 6 also depicts an example of the first half of the
second experiment EX2 for the variance based algorithm.
In Figure 6(b) information about the BLE channel, the vari-
ance and RSSI are shown, whereas Figure 6(d) gives a closer
view on detection state, RSSI and ground truth. Out of the 52
times the link was crossed in total, 51 events have been cor-
rectly identified by the variance based algorithm and no false
positives have been recorded. With this, the variance based
algorithm achieves a precision of 100%, a recall of 98.1%
and a F1-score of 99%. Since the person crossing the link
is in constant motion, the variance based algorithm is well
suited to detect these events.

However, as observable in Figure 6(d) as well as in Fig-
ure 6(a), there is a delay after a person leaves the monitored
area, before the variance returns to the level of an empty link.
As mentioned in Section 4, this is caused by the sliding win-
dow used for the variance computation. The attenuated RSSI
values recorded during the detection are still affecting the
variance computation until they have been replaced. Since
the sliding window has varwindow = 10 slots, and messages
are sent every 100ms, the experienced delay is 1s. This effect
reduces the responsiveness of the variance based algorithm.
It also could cause some issues if the variance based detec-
tion is used during the operation of a queueing system. If
two people entered the waiting line quickly after another, the
delay could cause the system to only recognise one event,

instead of two, thus missing the second person.

5.3 Mean RSSI Based Detection
To use the mean based detection algorithm, we first need

to calibrate the dynamic threshold Td , because it influences
the accuracy of the algorithm. For this, we optimise the val-
ues for β, by which the linear regression line is lowered, and
for the global threshold Tg, describing the minimum differ-
ence between current RSSI and the weighted mean. We test
the mean based detection algorithm in the same two exper-
iments EX1 and EX2 and on the same datasets we use for
the variance based algorithm: First, a person is standing in
the link, then the link is crossed by a person walking at a
constant speed.

An example of one of the five runs of the first experiment
can be seen in Figure 7. The RSSI, the difference to the
mean RSSI and the BLE channel are shown in Figure 7(a),
while Figure 7(c) shows the RSSI, the detection state and the
ground truth. Additionally, the weak link threshold WLT ,
below which we deem the detection to be less reliable, has
been included in the graph.

As can be seen, when a person enters the monitored area,
the RSSI drops which is registered by the algorithm. The
state of the system is changed from state 2 ‘no detection
with reduced certainty’ to state 3 ‘detection with reduced
certainty’, since the RSSI level of the link is below WLT .
When the channel changes and the RSSI level is above the
threshold, the detection state changes to state 1 ‘detection’.
After the person leaves the link, the detection state goes back
to state 2 ‘no detection with reduced certainty’, or in the case
of the channel above the threshold to state 0 ‘no detection’.
The person is detected for the complete duration of their stay
in the monitored area, even while standing motionless.
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Figure 8. Detection performance when changing Tg.
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Figure 9. Detection performance when changing β.

Figure 7 also depicts the first half of an example for the
walking experiment EX2, in which the radio link is crossed
52 times. The graph is plotted following the description for
the standing experiment of the mean RSSI based detection
with Figure 7(b) showing the difference to the mean RSSI
and Figure 7(d) depicting the comparison between detection
state and ground truth. Like in the case with the variance
based algorithm, 51 out of the 52 crossings have been de-
tected. (It is interesting to note that the event, which has not
been detected, is not the same for both algorithms.) With
this, the mean RSSI based detection algorithm also proofs
suitable for passive presence detection.

To further evaluate the influence of the global threshold
Tg, we first set β to 5dBm, which lowers Td by the magnitude
of one standard deviation of the computation for the average
linear regression. This sets the summand of the linear regres-
sion in Equation 3 to −54dBm. Afterwards we perform an
experiment with a person walking through the link at least
50 times. Each time we vary the parameter of the global
threshold Tg in steps of 1dBm. This way we perform five
measurements covering the range between 3dBm and 7dBm.
The results of the experiment can be seen in Figure 8.

As it is shown in the graph, there is a trade-off between a
too low and a too high global threshold, when comparing the
current RSSI and the weighted mean. If the threshold is set
too low, small divinations in the RSSI will already be regis-
tered as events and cause a high false positive rate. Because
of this a threshold of 3dBm, for example, has a high recall
but only a precision of 73.5%. A too high threshold however
will cause some events not to be detected, resulting in an in-
creased rate of false negatives. Because of this, a threshold
of 7dBm above the mean has a high precision but only a re-
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Figure 10. Detection performance for different persons.

Table 2. Performance parameters for different persons.
User Precision (%) Recall (%) F1-Score (%)

A 100 92 95.8
B 97.9 88.5 92.9
C 100 98.1 99
D 100 96 98
E 97.9 92 94.8

Average 99.2 93.3 96.1

call of 65.5%. A threshold of 5dBm is in between those two
and has the highest overall F1-score with 95.8%. The recall
is at 92%. The precision is at 100%, since no false positives
were detected in this run of the experiment. Because of this,
we set Tg = 5dBm for all further experiments.

In order to evaluate the influence of β, we perform an ex-
periment with ten measurements, during which in each run
the radio link is crossed at least 50 times walking at a con-
stant speed. We assign the values between +7 and −11 to
β. This sets the additive part of Equation 3 in the range be-
tween −52dBm and −70dBm. We expect that by increasing
the value of β and thus lowering the dynamic threshold, more
events will be detected. The results of the experiment can be
seen in Figure 9.

As seen in the figure, changing the value of β in the range
between +7 and −1 has no clear influence on the detec-
tion results of the mean based algorithm. When checking
the RSSI levels of the measurements, we see that about two
thirds of all received RSSI values are at a level, at which Tm
equals Tg, following Equation 4. β is not directly influencing
the global threshold, but only adjusts the RSSI level, at which
the detection algorithm switches to use Tg instead of comput-
ing Td (as seen in Figure 3). These circumstances explain the
indifferent behaviour. However, we can demonstrate the in-
fluence of β when further decreasing its value. When β is set
to −11, setting the additive part of Equation 3 to −70dBm,
the threshold Tm is exclusively using Td . This causes 47% of
the events to be false negatives, since the threshold is set too
high. Alternatively, increasing β would lower the threshold
Tm in the range of links with high RSSI values around e.g.
−30dBm, and would thus increase the occurrence of false
positives. However, since a value for β of β =+5 is suitable
for the RSSI spectrum experienced on our BLE radio links
and corresponding to the standard deviation of the computa-
tion for the average linear regression, β is set to +5 for all
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Figure 11. 3D representation of the detection events in the queueing system.
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Figure 12. 2D representation of the detection events in
the queueing system.

Table 3. Performance parameters for the radio links in
the queueing system.

Link Precision (%) Recall (%) F1-Score (%)
1 98.1 94.4 96.2
2 96.1 90.1 93.0
3 100 87.0 93.1
4 100 98.2 99.1

further experiments. This lowers the dynamic threshold Td
by 5dBm. Since β has been determined, we can now com-
pute the crossing point of Equation 3 with the x-axis and set
the value for the WLT to -62dBm in all experiments. Setting
β = 5 and Tg = 5 results in an F1-score of 95.8%, a recall of
92%, and a precision of 100% in our test experiments.

5.4 Queueing System Evaluation
Our experiments have shown that both RSSI variance

based and mean RSSI based presence detection algorithms
can be extended to work with BLE. However, while the vari-
ance based approach excels at detecting movement in the
monitored area, it shows a deficit at detecting motionlessly
standing persons. Because of this issue, we focus our atten-
tion on the RSSI mean based algorithm for the design of our
prototype queueing system.

To further analyse the robustness of the mean RSSI based
detection algorithm, we repeat experiment EX2 with differ-
ent persons. Each person is asked to pass the monitored area
between the BLE nodes 50 times again with the same speed.
The results can be seen in Figure 10. As shown, there is a
slight variance in each measurement, however, the accuracy
in all runs is always above 92%. The F1-score averaged over
all persons is at 96.1% with a maximum 99% of and a min-
imum of 92.9%. The values for recall and precision can be
seen in Table 2. This demonstrates that the mean RSSI based
algorithm can cope with different persons.

Finally, we use the extended mean RSSI based algorithm
to monitor detection in a queueing system scenario using all
four links of our experiment set-up. Doing so, we simulta-
neously test the algorithm at different spatial positions. In
this experiment the receiver of a radio link only transmits
changes in the state of the detection algorithm to the common
sink, like the ground truth system did before. The analysis,
whether a link has been crossed, is distributively performed
on the nodes. The sink itself is connected to a PC, on which
the algorithm state of each link and the respective ground
truth are recorded. The transmission to the sink uses a con-
nectionless BLE protocol with acknowledgements. Like in
experiment EX2, a person is walking through all four links
at a constant speed for at least 50 times. The results of the
experiment can be seen in Figure 11. The figure shows the
output of the complete queueing system over time. For clar-
ity reasons, both state 0 and state 2 are plotted as ’0’ on the
z-axis, and state 1 and state 3 as ’1’. The light values of the
ground truth are set to the values of ’0’ for detection, and ’1’
for no detection. The y-axis depicts the distance of the links
to each other. As can be seen, the links consecutively record
a crossing of the monitored area, when a person enters the
system, which corresponds to the ground truth plotted above.
To better visualise the detection events matching the ground
truth, the events of all links have again been plotted beneath
each other two-dimensionally in Figure 12. Almost all events
are detected and transmitted to the PC for further possible
processing. The performance of the four links, measured by
the F1-score, is 96.2%, 93.0%, 93.1% and 99.1% respec-
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tively from link 1 to link 4 as seen in Table 3. This shows
that a mean RSSI based queueing system can accurately de-
tect different persons and works at different positions. The
events transmitted can be used to build a queueing system on
top of the detection algorithms, analysing the performance
parameters of a waiting line.
6 Conclusions

In this work we extend techniques for passive presence
detection to work with BLE radio links for the use in waiting
lines. A RSSI variance based and a mean RSSI based algo-
rithm are evaluated in experiments with a mobile prototype
queueing system. We demonstrate that both techniques can
be extended to account for the mandatory frequency hopping
implemented by BLE. For this purpose we include the infor-
mation about the current advertising channel into the payload
of each message.

While the algorithm based on the variance of the received
RSSI achieves a high detection performance of up to 98% de-
tecting walking persons, it strongly depends on the observed
motion. If the person in the radio link stands motionless,
the algorithm’s detection will be insufficient. In compari-
son, the mean RSSI based algorithm only achieves a perfor-
mance of 96.1% when detecting walking persons. However,
the algorithm also detects persons standing in the monitored
area. When used in the prototype queueing system, the mean
based algorithm is capable of detecting persons in four radio
links simultaneously.

Furthermore, we find that RSSI based algorithms in gen-
eral have an advantage compared to common beam-type de-
tection systems used in waiting lines. RSSI based systems
are omnidirectional and thus have a very short set-up time,
which makes them ideal to be deployed on top of e.g. bar-
rier poles of the queueing system. Beam type systems either
have to be wall mounted, which reduces the option of quickly
redeploying a system, or have a time-consuming adjustment
phase. In fact, during the set-up of out measurements, align-
ing the laser-beam based ground truth system onto the light
sensor took the longest time of up to 35 seconds per link. Ad-
ditionally, a laser will be immediately misaligned if a barrier
pole is moved.

Since our experiments have shown that an RSSI based ap-
proach is feasible to realise a queueing system, we now aim
to expand on this. We plan to introduce pattern detection al-
gorithms to analyse the events transmitted to the PC to make
estimations about the number of people and the waiting time
in a waiting line. We further want to enhance the portabil-
ity of the prototype by introducing a self-calibration to the
queueing system, that identifies the layout of the current de-
ployment. Doing so, we ultimately hope to use our system
in combination with free movable barrier poles which would
be required for a practical commercial application.
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