90

The IPv6 Routing Protocol for Low-power and Lossy Networks
(RPL) under Network Partitions

Agnieszka Paszkowska
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw, Poland

ap321142@students.mimuw.edu.pl

Abstract

We study the behavior of the IPv6 Routing Protocol for
Low-power and Lossy Networks (RPL) under network par-
titions, failures that are notoriously difficult to handle. Our
work combines experiments in simulators and on a ~100-
node testbed with formal reasoning methods. First, we
show empirically that RPL’s two popular implementations,
TinyRPL and ContikiRPL, do not behave as expected under
partitions. To establish whether this behavior is due to the
implementations’ defects or features of RPL’s design itself,
we model the protocol’s dynamic operation, based directly
on its specification, and use the model to formally prove how
a compliant implementation must behave under a network
partition. We then apply these theoretical results in prac-
tice by patching the two implementations, so that they satisfy
all formal properties we defined for our model. Finally, we
demonstrate experimentally that the behavior of the patched
implementations is correct under partitions and in general.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Net-
work Protocols—routing protocols, protocol verification

General Terms
Experimentation, Reliability, Standardization, Theory

Keywords
RPL, routing protocol, network partition, partition toler-
ance, dependability, low-power wireless network

1 Introduction

The IPv6 Routing Protocol for Low-power and Lossy
Networks (RPL) [33] is the current de jure standard for rout-
ing IPv6 packets in low-power wireless networks. Its popu-
lar implementations, notably ContikiRPL and TinyRPL [24],
have been employed in numerous real-world embedded sys-
tems, both research-oriented and commercial ones.

International Conference on Embedded Wireless

Systems and Networks (EWSN) 2018

14—16 February, Madrid, Spain

© 2018 Copyright is held by the authors.

Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1

Konrad Iwanicki
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw, Poland

iwanicki@mimuw.edu.pl

This success is largely due to the way RPL’s design ful-
fills the specific requirements of low-power wireless net-
works. In particular, one of the principal problems it ad-
dresses is how to efficiently handle continuous changes in
link qualities and node population, which are inherent in
these networks. In fact, the solutions for dealing with such
network topology dynamics are RPL’s major contribution.

However, as we elaborate in the next section, while there
is sufficient evidence that these solutions handle well basic
link and node dynamics, to the best of our knowledge, vir-
tually no past work analyzes their behavior under topology
changes that are notoriously difficult to deal with: network
partitions. A network partition occurs when a group of nodes
(or just one node) becomes isolated from the rest, such that
no communication is possible between this group and other
live nodes. It usually results from a correlated failure of mul-
tiple nodes and/or links but sometimes a deterioration of just
one link or a crash of just a single node splits a network.

Proper partition handling by RPL is important for real-
world embedded systems because partitions are not some-
thing uncommon in low-power wireless networks and their
effects may be grave. For instance, in the widely cited, pre-
RPL Sonoma deployment, a network split prevented roughly
half of the nodes from reporting their data to a sink [31].
Likewise, in the deployments in which we participated, par-
titions were nothing extraordinary. Their predominant cause
was power outages of so-called border router nodes, con-
necting low-power wireless networks to the Internet, as it
was not economic to provision redundant power supply for
such routers. Nevertheless, we experienced more involved
partitions as well, notably in deployments for precision agri-
culture, where plants growing radically during vegetation
tended to shadow wireless communication, a phenomenon
confirmed by other researchers [16]. In general, since many
factors affect wireless connectivity and the lifetime of low-
power devices, various forms of splits and disconnections
were observed also by other groups in past wireless sensing
deployments [3]. Yet, we are not aware of any reports on
RPL’s behavior in such situations, notably whether it detects
partitions or exhibits routing meltdowns. The lack of knowl-
edge of this behavior can thus be a major risk when employ-
ing RPL in real-world systems requiring high reliability.

Consequently, in this paper, we conduct an in-depth study
of RPL’s partition handling behavior. After an overview of
RPL and related work (Sect. 2), we experimentally evalu-

ate RPL’s two popular implementations, ContikiRPL and
TinyRPL, under network splits (Sect. 3). The experiments
show that the implementations fail to correctly handle parti-
tions. Our goal then is to formally establish whether this re-
sult is due to the implementations’ flaws or inherent features
of RPL’s design. To this end, we build a model of RPL’s
dynamic behavior, based solely on the protocol’s specifica-
tion, and utilize it not only to formally prove that RPL itself
should properly handle network partitions, but also to iden-
tify conditions that an implementation must satisfy for this
to be true (Sect. 4). This allows us to identify violations of
these conditions in the two implementations, fix these vio-
lations, and demonstrate experimentally, both in simulations
and on a ~100-node testbed, that the fixes correct the imple-
mentations’ partition handling behavior (Sect. 5). Finally,
we conclude by highlighting major lessons learned (Sect. 6).

2 Background
Let us start by formulating the network partition problem
in RPL’s terminology [33] and surveying related work.

2.1 Overview of RPL

RPL incorporates two routing techniques: distance-vector
routing and link-state routing. Distance-vector routing is re-
sponsible for forwarding packets in a so-called upward di-
rection: from low-power wireless nodes via a border router
to the Internet. Link-state routing is utilized for forwarding
packets in the opposite, so-called downward direction. A
combination of these two techniques allows for packet for-
warding between any two network nodes.

For upward routing to a given destination, usually a bor-
der router, RPL utilizes a DODAG (i.e., destination-oriented
directed acyclic graph), which represents the available routes
from the nodes to the destination. To this end, each node is
assigned a rank reflecting its distance (e.g., hop count) from
the destination. The node’s neighbors (i.e., other nodes in
the node’s radio range) that have their ranks lower than the
node’s own rank are the node’s parents: forwarding a packet
to an arbitrary parent shortens its distance to the destination.
Normally, however, a node forwards all packets to a single
preferred parent. The destination, the DODAG root, has in
turn no parent and a minimal rank. Globally, the nodes’ links
to preferred parents thus form a directed tree that is a sub-
graph of the DODAG and has the DODAG root as the sink.

The maintenance of the DODAG under network topol-
ogy dynamics is RPL’s important contribution. In essence,
each node exchanges its rank with its neighbors by regularly
broadcasting so-called DIO messages. The broadcasting is
driven by a so-called Trickle timer [26]: normally it is rare
but, when the DODAG changes, it may be reset to be more
frequent and gradually return to its stable mode, unless re-
set again. It can also take place on demand, in response to
so-called DIS messages from the node’s neighbors. Beyond
this, the management of the node’s neighbor set, notably de-
tecting which of the neighbors are still reachable, is outside
RPL’s specification and is referred to as routing adjacency
maintenance. Nevertheless, given a neighbor set with the
neighbors’ ranks, reachability status, and other information,
the node selects its preferred parent and rank. RPL delegates
these tasks to a so-called objective function, like OF0 [30] or

MRHOF [13], which, in particular, need not select the parent
offering the node the lowest rank. All in all, RPL’s DODAG
maintenance in not trivial; yet it can be highly efficient.

In contrast, downward routing is far simpler. Each node
periodically routes a so-called DAO message upward to the
DODAG root. The message contains information on the
node’s parents. Being normally a border router with enough
memory, the root collects such information from all nodes,
so that it has a global view of the DODAG. Consequently, to
route a packet downwards, it computes an entire route, em-
beds this route in the packet, and forwards the augmented
packet to the first node on the route, which continues to the
next node, and so on. In particular, in this way, with so-called
DAO-ACK messages, the root acknowledges to the nodes the
reception of their DAO messages. Finally, as an optimiza-
tion, the nodes on the upward route of a DAO message from
a node (i.e., the node’s ancestors in the DODAG) may store
information on the downward routes to the node, so that the
routes need not be embedded into downward-routed packets.
This, however, requires extra memory at these nodes.

2.2 Problem Statement

Traditionally, a network is considered partitioned if and
only if (abbr. iff) it contains two live nodes between which
no routing path exists. In RPL, however, routing is done over
a DODAG and the DODAG root plays a key role: typically,
every upward route ends and every downward route starts
at the root but even with the aforementioned optimization,
the root coordinates DODAG construction and maintenance.
Therefore, here we use a stronger definition of partitioning: a
network/DODAG is partitioned/split/disconnected iff it con-
tains two live nodes between which no path exists via the
DODAG root or, put differently, iff there is no path between
the DODAG root and some live node. We will also refer to
such a node as partitioned/split/disconnected.

There are many ways in which a connected DODAG, as
in Fig. 1(a), can get partitioned. For example, in Fig. 1(b),
nodes T and C become isolated from the root node, A, as
a result of a correlated link deterioration. Note also that
since node C is a DODAG ancestor of nodes D, E, and K,
no routing is possible between these nodes and the root.
However, this is temporary because a path exists between
D, E, K, and the root (i.e., the nodes are not partitioned), and
hence in principle they can be reconnected to the DODAG. In
Fig. 1(c), in turn, a failure of a single link partitions nodes P,
Q, U, and V from the root and, similarly, a crash of one node
disconnects nodes C, D, E, I, J, and K. Finally, Fig. 1(d)
presents a case that is a partition according to our definition
but not the traditional one: a failure of the DODAG root.

2.3 Related Work

Proper partition handling is critical in Internet-scale sys-
tems [5]. As we argued previously, it is also important in
low-power wireless networks. However, in prior studies con-
cerning RPL’s reliability, the protocol’s behavior under net-
work partitions has received little research attention.

Early work on RPL aimed to qualitatively identify flaws
in the protocol’s initial specification [7, 35] as well as to
quantitatively assess the general performance of its simu-
lated models [7, 32] and prototype implementations [11].

91

92

@ root node Oregularnode < dead node -<«——Ilink to pref. parent

Co~D, kOE ap—" :"a'.C',,QV;i_%kOE
T A \ av D e 2
o — H
FO\CTD'\LO/O | \OJ/ F(i\gl\f\o/o | \OJ/
Lo<\\o/ \Oii\ Q Lo<\\ {\l h 'i\OQ
[T N N e /Y
Og § —or 00 Og s.oT —O

(a) everything connected (b) isolated nodes

link to neighbor -~ dead link .. partition border
@A/O C:O‘\%A’OE .A \ O‘\D A/OE
e LN FAVAVIN
x0T (TG K :/ K
@) NV FO / DN
\\CT)'\‘/I\ O OJ """" \\gl\ﬂ\ O OJ
ya \ O p v \ ~ P
Lo\o{\l ;j O Q- LO\O/N —Q
f\ AN \ \V f\ X \ RV
QT N a Q—2 — O
R S OT - UO O/S oT uo
(c) multi-node partitions (d) dead root

Figure 1. Examples of DODAG partitions.

Consequently, partition handling was not a major concern
then. Even though routing loops observed by Clausen et al.
were attributed to DODAG partitions, the problem was not
further investigated [7]. In other cases, scenarios with net-
work partitions were avoided, sometimes explicitly [35].
Subsequent reliability-oriented studies of RPL—in simu-
lations, on testbeds, and in the real world—focused in turn
on various performance aspects under failures [12, 17, 19,
21, 22, 25], novel extensions and solutions for the protocol’s
open issues [4, 21], the impact of heavy radio interference
[10, 15], interoperability of popular implementations [24],
and certain application scenarios [20, 28]. To the best of our
knowledge, however, apart from recent work on RNFD [21],
network partitions were only mentioned briefly (e.g., isolated
nodes [17])—if at all—without further studies. RNFD, in
turn, is an extension to RPL that improves the handling of
DODAG root node crashes, which is just one type of net-
work partition. Moreover, it is a heuristic in that it just helps
but does not guarantee correctly handling such failures, in-
stead relying on RPL itself to this end. In this view, this paper
complements the work on RNFD: it establishes formal guar-
antees on RPL’s behavior under all types of network parti-
tions. The utility of our results thus stretches beyond RNFD.
Finally, handling network partitions was also studied from
other perspectives. Kleinberg et al. [23] and Shrivastava et al.
[29] developed theoretical bounds and approximation algo-
rithms for selecting “sentinel” nodes that guarantee detecting
disconnected network regions. For the same problem, Ba-
rooah et al. [1] introduced an algorithm whose operation re-
sembles iteratively computing electrical potentials. Won and
Stoleru [34] devised a solution for a more general problem,
involving multiple destination nodes. Devi and Manickam
[8] showed how to reconnect partitions with mobile nodes.
Gregorczyk et al. [14], in turn, presented probabilistic algo-
rithms for estimating partition sizes under mobility. Some of
those solutions could potentially extend RPL [8, 14]; others
themselves require reliable routing [23, 29]. All in all, RPL
does not use those solutions and we are not aware of any pre-
vious studies of network partitions from RPL’s perspective.

3 RPL’s Implementations under Partitions
Since network partition handling in RPL has received lit-
tle research attention, we start our study with experimental

results illustrating the behavior of RPL’s two popular im-
plementations, TinyRPL for TinyOS and ContikiRPL for

ContikiOS, under partitions. To this end, we employ the
most recent version of TinyRPL from the main repository of
TinyOSl (i.e., from June 7, 2017) and the latest stable ver-
sion of ContikiRPL available from the ContikiOS website?
(i.e., Contiki 3.0). We evaluate the implementations in pub-
licly available simulators: TOSSIM and Cooja, respectively.

3.1 Experimental Setup

For the experimental scenarios, let us observe that han-
dling a network partition is trivial for downward routes. This
is because, when a node becomes disconnected from the
DODAG root, no DAO message from the node reaches the
root. In effect, the parent information for the node at the
root eventually expires, and hence the root starts considering
the node as absent: no more downward routes involving the
node are generated. Because of this mechanism’s simplic-
ity, downward routing in the two implementations behaves
correctly under network partitions. Consequently, in the rest
of this paper, we focus on upward routing, the behavior of
which is more intricate under partitions, and thus may have
led to defects both in RPL’s design and its implementations.

Accordingly, we evaluate the implementations with a data
collection application utilizing all-to-one upward routing.
More specifically, each node generates UDP data packets to
be forwarded to the root. The inter-packet delays at the node
are chosen at random between 7 and 27 time units. This
results in relatively uniform traffic, which helps the reac-
tive routing adjacency maintenance solutions, as employed
in the implementations, to detect dead links [21]. The pre-
sented experimental runs of the application do not involve
radio duty cycling. Nevertheless, we did verify that results
for duty cycling do not diverge from the demonstrated ones.

We have tested the implementations in various network
topologies. However, for brevity, here we present results
only for 11x 11 grids with unit-disk communication: the ra-
dio range of each node is a circle with its radius equal to 1; a
node thus has perfect links to up to 4 neighbors and no links
to the other nodes. While unit-disk communication is an ide-
alized model, we have selected it for three reasons. It allows
for precisely controlling the network topology, which is de-
sired for illustrative purposes. It is supported by both sim-
ulators, TOSSIM and Cooja, which facilitates directly com-
paring results for TinyRPL and ContikiRPL. It is also favor-

Uhttps://github.com/tinyos/tinyos-main
Zhttp://www.contiki-os.org/download.html

able for the implementations because—with perfect links—
they can reliably detect whether a given link is dead or live,
whereas in the real world, such detection entails one- or two-
sided errors. Nevertheless, we did verify that our results hold
also for non-unit-disk communication models. In particular,
in Sect. 5.3, we discuss experiments on a real-world testbed.

The selected experiment is 2 simulated hours long with
a network partition occurring after 1 simulated hour, values
chosen with a large safety margin based on preliminary ex-
periments. We have evaluated many partition scenarios, ob-
taining consistent results. The one presented involves corre-
lated link failures along the diagonal of the grid that cause
roughly a half (i.e., 66) of the 121 nodes to permanently lose
their paths to the DODAG root; the root is in one corner of
the grid and these nodes are connected to the node in the
opposite corner. Each node continuously generates packets
to be forwarded to the root with 7 = 10 s. The maximum
number of retransmissions is 5 per hop. As the objective
function, both implementations utilize MRHOF [13], which
is more advanced than OFQ [30]. The remaining configura-
tion parameters for the implementations have default values.

3.2 Experimental Results

Before discussing the results of the experiment for each
of the implementations, let us explain the expected behavior
after a network partition. Since partitioned nodes have no
paths to the DODAG root, RPL instances running on them
should eventually detect this and stop forwarding any pack-
ets upward. Instead, the higher layers, in particular the appli-
cation, should learn about the lack of the default route. This
is to allow them, for instance, to buffer any important data
that, if sent during the partition, would be lost. In general,
doing any upward forwarding to the root by disconnected
nodes is bound to fail and thus should be prevented to avoid
wasting global network resources. To address all these is-
sues, upon detecting that it is partitioned, each node running
RPL should adopt an infinite rank and a null preferred par-
ent, which reflect its disconnection from the DODAG root.
Figure 2 shows an idealized run of RPL with this behavior.

700000

and measured with three metrics: the number of packets gen-
erated by the nodes that are passed for radio transmission, the
total number of hops these packets are forwarded over, and
the total number of transmissions necessary to cover these
hops. The number of generated packets should level off after
the partition by approximately 66/ ((10 +20)/2) = 4.4 per
second. This is because the packets generated by each of the
66 partitioned nodes every 10-20 s should not be passed for
transmission, as the nodes lack preferred parents to which
they could be transmitted. The drop in the number of hops
and transmissions should be even greater. The reason for
this is that the disconnected nodes are further away from the
DODAG root than the other nodes, and hence their packets
need more hops (and transmissions) to reach the root.

In practice, a slight increase in all three traffic metrics im-
mediately after the partition could be observed, which would
be a result of resetting the aforementioned Trickle timers for
DIO messages to quickly react to the network turbulence.
However, we have decided not to account for this increase:
in our idealized run, Trickle timers are always in their stable
modes, generating minimal control traffic. Likewise, we as-
sume that in the run, the number of transmissions equals the
number of hops. Yet, in practice, this need not be the case
because of collisions and retransmissions (over dead links).

Figure 3 shows the results of the experiment for TinyRPL.
They do not match the reference ones from Fig. 2. As can be
observed in Fig. 3(a), the number of nodes with non-null pre-
ferred parents starts to fluctuate after the partition. This sug-
gests that the disconnected nodes do not permanently discard
their preferred parents but, instead, repeatedly select new
ones. What is more, as visible in Fig. 3(b), rather than drop-
ping, the network traffic actually permanently increases after
the partition. There are two possible reasons for this. First, as
the disconnected nodes do not discard their preferred parents,
they also continue forwarding packets. Second, frequent pre-
ferred parent changes lead to Trickle timer resets, and hence
an explosion of DIO messages. All in all, not only is this
behavior incorrect but, what is arguably more problematic, it
also results in an increased use of network resources.

700000

S ©
S S

»
S

ISR
S S

nodes with a preferred parent
o =

20m 40m

1h 1h20m 1h40m 2
time

I

600000
500000
400000
300000
200000
100000
0

— packets
hops

transmissions

20m 40m 1h 1h20m 1h40m 2!

time

(a) nodes with preferred parents (b) accumulated network traffic

Figure 2. RPL’s expected behavior under a partition.

Figure 2(a) depicts the number of nodes with a non-null
preferred parent. Ideally, immediately after the first hour of
the experiment, that is, after the partition occurs, this number
should drop from 120 by 66, reaching the value of 54. In
contrast to the idealized run, in practice, the drop need not
be immediate because of the time to detect the link deaths.

Figure 2(b) shows in turn the total (i.e., control and data)
traffic accumulated since the beginning of the experiment

> ®» 2 @
S S S

SIS
S S

=

nodes with a preferred parent
=
8

20m 40m

1h 1h20m 1h40m 2h
time

B3

6000001 | —— Packets

hops
500000 P

transmissions

400000
300000
200000
100000)

ok -

20m 40m

1h 1h20m 1h40m 2h
time

(a) nodes with preferred parents (b) accumulated network traffic

Figure 3. TinyRPL’s behavior under a partition.

Figure 4 presents the corresponding results for Con-
tikiRPL. Although they seem better than for TinyRPL, they
are not correct either. It can be observed in Fig. 4(a) that
only 10 nodes permanently discard their preferred parents
after the partition. Consequently, the other 56 nodes with-
out a path to the DODAG root continue to generate pack-
ets to the root, and hence there is no drop in the number

93

94

of packets in Fig. 4(b). However, what can be observed in
Fig. 4(b) is some drop in the number of hops and transmis-
sions. The possible reason for this is that a packet generated
by a partitioned node is not forwarded all the way up to the
DODAG root but only within the partition. Nevertheless,
the network traffic is still not optimal because the partitioned
nodes should not forward any packets at all, as in Fig. 2(b).

700000

I}
S

— packets

—

600000

hops

1=
S

500000

transmissions

3
=)

400000

* 300000

I
S
(

=3
\ ‘
\, :
<
\
%

200000

o)
S
\

100000

0

nodes with a preferred parent
=
3

20m 40m 1h 1h20m 1h40m 2h 20m 40m 1h 1h20m 1h40m 2h

time time

(a) nodes with preferred parents (b) accumulated network traffic

Figure 4. ContikiRPL’s behavior under a partition.

To sum up, none of the two implementations correctly
handles the network partition. Neither in TinyRPL nor in
ContikiRPL is the application guaranteed to get feedback
when the route to the DODAG root is lost. Moreover, while
in terms of network traffic, ContikiRPL’s behavior seems
slightly better than TinyRPL’s behavior, it is not as expected
either, which may be a symptom of further hidden problems.
We have obtained similar results for experiments with differ-
ent partition scenarios and in different system configurations.

4 Formal Analysis of Partition Handling

Since TinyRPL’s and ContikiRPL’s partition handling be-
havior diverges from the expected one, we analyze whether
this is due to RPL’s design or flaws in these two implemen-
tations. To this end, we model RPL—based directly on its
specification—to formally prove its dynamic behavior under
partitions. For the process, we adopt a methodology founded
on linear temporal logic (LTL), a popular formalism for ver-
ifying concurrent algorithms [2]. Although deriving proofs
in LTL can often be automated with generic [18] or domain-
specific [27] model checkers, apart from proving RPL’s be-
havior, an arguably more important goal of this paper is ex-
plaining this behavior and the underlying assumptions. For
this reason, we derive the proofs manually and, rather than
LTL’s symbolic notation, we employ a textual one, much like
Cachin et al. [6] for classic distributed algorithms.

In the process, we strive to ensure that we neither over-
simplify nor overspecify RPL. In particular, we deliberately
try to avoid any simplifying assumptions that would make
our analysis easier but are false in the real world. This is
because making such assumptions, we could fail to capture
important phenomena that affect RPL’s partition handling.
Likewise, for RPL’s open issues, we avoid assuming any-
thing beyond the specification, even though the implementa-
tions rely on particular solutions. This is to model the pro-
tocol not its particular realizations, which may be incorrect.
All in all, we are confident that the model and analysis pre-
sented in this section precisely capture RPL’s behavior under
real-world network partitions—a claim that is further rein-
forced by the practical application of our results in Sect. 5.

4.1 System Model

We model a RPL-based system intuitively: as a directed
graph of nodes and links. A live node runs RPL; a dead
node does nothing. A live link allows a packet sent by one
live node to be received by the other live node; a dead link
lets no packets through. However, even packets transmit-
ted over a live link may be lost or duplicated, as explained
shortly. The subset of nodes to which a node has links—live
or dead—corresponds to the node’s neighbors. A neighbor
is adjacent to a live node iff the neighbor and the link from
the node to the neighbor and in the opposite direction are all
live; otherwise, the neighbor is non-adjacent.

To focus our reasoning on partition handling, we abstract
out RPL’s local state at each node to four variables: rank,
prefpar,neighborset,and minrank. Rank is anon-
negative integer denoting the node’s rank in the DODAG; it
can be infinite. Pre fpar is the identifier of the node’s pre-
ferred parent in the DODAG or null. Neighborset isa
set of records describing the node’s local view of its neigh-
bors: each record, n, represents a neighbor and holds the
neighbor’s identifier (n. 1d), rank (n. rank), as known by
the node (which may be different from the neighbor’s present
rank), and the node’s view of whether the neighbor is reach-
able over the corresponding link or not (n.reachable),
that is, whether the node believes that the the neighbor is
adjacent (again, this belief may be different than the actual
situation). Finally, minrank is the minimal value of rank
that the node has ever had.?> Overall, this abstraction of a
node’s local state is sufficient for the considered problem.

Likewise, we model packets in transit (i.e., on air or in
communication queues anywhere in the network stack) as
delivery multi-sets: one multi-set per node, denoting the
packets to be received by the node. Packet loss and duplica-
tion are intuitive: a packet, respectively, does not appear or
appears more than once in the target multi-set(s). Moreover,
for our purposes, we need to consider only packets carrying
DIO messages. Each such DIO message, d, is a record con-
sisting of the transmitting neighbor’s identifier (d. id) and
rank (d. rank). Again, this granularity of modeling RPL’s
communication is adequate for the analyzed problem.

To sum up, globally, the system’s state comprises all
nodes’ and links’ live/dead statuses, as well as the values
of all nodes’ local variables and delivery multi-sets. We can
thus formulate properties of such a state, for example, “node
B’s rank is infinite and node A’s prefparis null.”

Given this, RPL’s operation at the nodes, which changes
the state, is modeled as a LTL computation: an infinite se-
quence of global system states representing the flow of time.
To express properties that hold only at specific moments
in time, we utilize LTL’s temporal operators always, never,
and eventually. Their semantics is intuitive. Property “al-
ways/never P~ holds in state i of a computation iff property
“P” holds in all/no states j > i of the computation. Prop-
erty “eventually P” holds in state i iff property “P” holds in

3 Actually, RPL’s specification states that this is the minimal rank value
in a so-called DODAG version. However, a version change is initiated at
the root and corresponds to a complete DODAG reconstruction. Therefore,
partitioned nodes are unable to learn about the change. Since our analyses
focus on such nodes, we need not consider DODAG version changes here.

some state j > i. By convention, if the state is omitted for a
property, then the first state is implied. For example, prop-
erty “node A is eventually always adjacent to node B” means
that, from some moment in time forever, A is adjacent to B.
In contrast, “node A is always eventually adjacent to node
B” means that, for each moment, A is adjacent to B at this
or some future moment, that is, A is repeatedly adjacent to B
but not necessarily permanently. Note that properties formu-
lated in LTL involve no timing guarantees. However, this is
deliberate as RPL is not a real-time protocol, and hence the
actual timings must not influence its correctness.

Iteratively, we have devised a number of properties—
based directly on RPL’s specification—that describe the var-
ious facets of RPL’s behavior in terms of the model. Here
we present the final minimal subset of those properties that
is sufficient for analyzing the considered problem. These
properties are divided into three groups related to routing ad-
jacency maintenance, objective functions, and control traffic.

4.1.1 Routing Adjacency Maintenance Properties
The properties for routing adjacency maintenance formal-
ize the management of a node’s neighborset. Property
RAL states that any change to the neighborset triggers
prefpar and rank reselection. Yet, it does not specify
when exactly the reselection occurs, thereby not constraining
implementations beyond RPL’s specification, which permits
both on-demand and periodic approaches. Property RA2,
in turn, states that the node’s local view of its neighbors’
ranks is copied from the DIO messages received by the
node, which again conforms to the specification. Finally,
property RA3 formalizes neighbor non-adjacency detection.
Since in RPL’s specification this issue is largely open, our re-
quirements for the detector are extremely weak: they imply
no particular approach (e.g., reactive vs. proactive) and allow
for mistakes before finally marking a non-adjacent neighbor
as such. They are thus satisfied by practical failure detectors.

RA1. Always, ifanode’s neighborset changes (i.e., en-
tries are added or removed, or their fields are modified), then
the node will eventually reselect its prefpar and rank.

RA2. Always, for each entry, n, in a node’s
neighborset, n.rank is infinite, if the node has
received no DIO message, d, with d.id equal to n.id
since the entry was added to the neighborset, or
n.rank is equal to d.rank, where d is the last DIO
message with d.id equal to n.1id received by the node
since the entry was added to the neighborset.

RA3. If a node’s neighbor is eventually always non-
adjacent, then an entry, n, with this neighbor’s identifier as
n. 1dwill eventually always either be absent from the node’s
neighborset or have its n. reachable setto false.

Apart from these properties, we do not further formalize
routing adjacency maintenance not to overspecify the proto-
col. In particular, we do not specify when an entry is added
to a node’s neighborset or how the node decides which
subset of its neighbors is represented by the neighborset
entries, issues that are both outside RPL’s specification.

4.1.2 Objective Function Properties

The same is true for Properties OF1-OFS5, which describe
the requirements for an objective function: they are formu-
lated based precisely on RPL’s specification. The positive
constant MinHopRankIncrease is the minimal differ-
ence RPL aims to enforce between a node’s rank and its
preferred parent’s rank; it is also the DODAG root’s rank.
The constant MaxRankIncrease denotes in turn the max-
imal acceptable increase of a node’s rank in the DODAG.*

OF1. Anode’s prefparand rank change only as a result
of reselection or the node’s death and (re)start; otherwise,
they remain unmodified.

OF2. A node’s minrank is always equal to the minimal
value of the node’s rank so far.

OF3. Always, when reselecting its prefpar and rank,
the root node adopts null and MinHopRankIncrease,
respectively. These are also the initial values of the two vari-
ables at the root node when the node (re)starts.

OF4. Always, when reselecting its prefpar and rank, a
non-root node adopts null as prefpar iff it also adopts
infinite rank. These are also the initial values of the two
variables at the non-root node when the node (re)starts.

OFS5. Always, when reselecting its prefpar and rank, a
non-root node adopts null and infinity, respectively, iff its
neighborset does not contain an entry, n, for which a
rank, r, can be computed (in an objective-function-specific
way), such that n and r satisfy all the following constraints:
(a) n.rank < infinity,

(b) n.reachable = true,

(c) r < infinity,

(d) r> n.rank 4+ MinHopRankIncrease,

(e) r < minrank + MaxRankIncrease.

Otherwise, the node adopts n.id and r as its prefpar
and rank, respectively, for some neighbor n and rank r,
such that n and r satisfy all conditions (a)—(e).

4.1.3 Control Traffic Properties

Finally, RPL’s specification contains no requirements on
the delivery of DIO messages between neighboring nodes.
In contrast, since our analysis necessitates such require-
ments, we formalize them as properties DIO1-DIO3. Prop-
erty DIO1 states that DIO messages are not spoofed: any
DIO message received by a node comes from the node’s ac-
tual neighbor. Property DIO2, in turn, describes message
loss. It permits a loss of any number of DIO messages at
arbitrary moments in time, as long as for adjacent neigh-
bors DIO message delivery never stops permanently. Finally,
property DIO3 formalizes message duplication. It allows a
DIO message to be duplicated an arbitrary, albeit finite num-
ber of times, so that its reception eventually finishes. All in
all, the properties for DIO message loss and duplication, are
rather pessimistic. This is to avoid oversimplifying the real-
world intricacies of low-power wireless communication.

4Actually, in a DODAG version, with the same remarks as in footnote 3.

95

96

DIO1. If a node receives a DIO message, d, then the mes-
sage must have been sent earlier by the node’s neighbor:
d. id equals the neighbor’s identifier and d. rank equals
the neighbor’s rank from the moment of sending d.

DIO2. If a node’s neighbor is always eventually adjacent,
then the node will always eventually receive a DIO message
from this neighbor.

DIO03. If a node’s neighbor sends a DIO message, then the
node will eventually never receive the message.

4.2 Main Hypothesis and Its Analysis
Given the model, we can formalize this paper’s main hy-
pothesis on RPL’s behavior under network partitions:

HYPOTHESIS 1. If an always-eventually-live node is even-
tually always partitioned from the DODAG root, then even-
tually always, whenever the node is live, its prefpar and
rank will be equal to null and infinity, respectively.

The formulation of the hypothesis is general in that it does
not preclude failures (and recoveries) of the considered node:
the node is not required to be always live but only always
eventually. This is again to avoid any simplifying assump-
tions, so that we can check if RPL handles partitions even
under additional failures. However, the possibility of nodes
(and links) failing and recovering also requires clarifying
what it means that “a node is eventually always partitioned.”

To this end, consider an arbitrary RPL computation. Let
us take an arbitrary node, P, and the set of its neighbors, Np.
Each neighbor, Q € Np, is either eventually never adjacent
to P (i.e., from some moment in time tﬁ 0 Q is forever non-
adjacent to P) or always eventually adjacent to P (i.e., for
every moment in time, Q is adjacent to P at this or some fu-
ture moment, which we represent as tg 0= null). We can
thus divide the set of P’s neighbors, Np, into two fixed sub-
sets: Ng, the neighbors that are always eventually adjacent
to P, and Np, the remaining neighbors, which are eventually
always non-adjacent to P. As the definition of being adjacent
is symmetric, for any node Q, we have: Q € Np iff P € Ng.

Intuitively, P’s partition, denoted m%", is a subset of the
nodes that contains: node P itself, P’s always-eventually-
adjacent neighbors (i.e., the nodes in Np), their always-
eventually-adjacent neighbors, and so on. To formalize this,
consider the following function: Reach(X) = X UUgex N,
where X is an arbitrary subset of the nodes. P’s partition is
equal to that fixed point of function Reach that contains P.
Since the number of the nodes is finite, say k, we have:

%" = Reach*({P}) = Reach(Reach(...Reach({P})...)).

k times

Similarly to Np, 5" is the subset of the remaining nodes, that
is, the ones that do not belong to ©&*. Again, for any node S,
we have S € ng* iff P € ng*. However, while Np C %", we
need not have N§ = ©t§" N Np because P’s eventually-always-
non-adjacent neighbor can still be in P’s partition, Reachable
from P via other nodes. Figure 5 visualizes these sets.
Accordingly, node P is eventually always partitioned
from the DODAG root iff the root is not in ©3". Like pre-

O always eventually live node/link
eventually always dead node/link

Figure 5. A classification of nodes after a partition.

viously, this definition is extremely permissive to maximize
the generality of our conclusions. In particular, two nodes
that are never live at the same time need not be partitioned.
In our analysis, we consider an arbitrary RPL compu-
tation in which some node(s) are eventually always parti-
tioned from the DODAG root. Therefore, for any node P,
let 18 = maxgpen, (t,‘i o) denote the moment in time, possibly
null, at which some of P’s neighbors becomes permanently
non-adjacent to P for the last time, that is, starting from tg, no
other P’s neighbors ever get non-adjacent to P forever—only
temporarily—if at all. Moreover, let ¢ = maxpen,)des(tf)) be
the last moment at which any two neighboring nodes in the
entire network become permanently non-adjacent (¢ # null
because some node is eventually always partitioned). This
implies that after 7 no new permanent network splits occur.
As the first step of our analysis, we will show that nodes’
permanently non-adjacent neighbors will eventually cease to
be the nodes’ preferred parents, as formalized in Lemma 1.

LEMMA 1. Eventually always (i.e., starting from some mo-
ment t* forever), each node will not have as its pre fpar any
neighbor that is eventually always non-adjacent. In other
words, if R is ever P’s prefpar after t*, then R ¢ Nj.

Proof of Lemma 1. To show that such a moment #° exists,
consider an arbitrary node, P, and P’s arbitrary neighbor that
is eventually always non-adjacent, R € Np (see Fig. 5). From
the definition of N%, at some moment t}% < 14, R becomes
forever non-adjacent to P. Therefore, from property RA3,
at some moment fp's, the entry ng corresponding to R in
P’s neighborset (ng.id = R), will forever be removed
from the neighborset or have its ng . reachable flag
false, if ng exists at all. In effect, from property OF5,
starting from #5, forever, node R cannot be selected as
P’s prefpar: an entry for R either is absent from P’s
neighborset or violates condition (b) of OF5.

What is more, from property RA1, the change to P’s
neighborset att}, will cause P at a later moment, t%e >
tp'r, toreselect its prefpar to null or aneighbor different
from R forever, if R has ever been P’s prefpar. In other
words, starting from 7'z, R will never be P’s prefpar.

Therefore, t7 = MAXReN, (t;’;) is the moment starting
from which node P will never have as its prefpar any
neighbor that is permanently non-adjacent. Moreover, "7 =
mang,,(,des(tgp) represents the moment starting from which
no network node does ever have as its prefpar any
eventually-always-non-adjacent neighbor. Finally, let t* =

max(td ,1"P), that is, starting from #°, no new partitions occur
globally and no nodes have eventually-always-non-adjacent
neighbors as their pre fpars, which ends the proof. 0

In the remainder of our analysis, let us denote as @ an
arbitrary partition without the DODAG root and as T’ the re-
maining nodes. From Lemma 1, starting from #*, any node in
T always has as its prefpar some of its always-eventually-
adjacent neighbors or null. Since for any P € &, N§ C T,
we can conclude that, starting from #°, the nodes in © always
have their prefparsequal to null or selected only among
themselves. If a node selects a null prefpar, then, from
property OF4, it also sets its rank to infinity. Therefore, to
prove Hypothesis 1, we have to show that the situation where
nodes from T have other nodes from & as their prefpars
is temporary, that is, that all nodes from 7 will eventually al-
ways have their prefpars and ranks equal to null and
infinity, respectively. To this end, since OF4 is symmetric for
prefpar and rank, we focus on the nodes’ ranks.

Intuitively, if we proved that, starting from #°, rank for
each node in ® only grew, we would have Hypothesis 1
largely proved. This is because a node’s prefpar’s rank
must not exceed the limit described by properties OF2 and
OF5(e). In contrast, continuously growing integer ranks
for each of the node’s adjacent neighbors would eventually
forever exceed the node’s limit, thereby forcing the node to
adopt an infinite rank, and hence a null prefpar. Un-
fortunately, this intuition is false as a node’s rank can de-
crease after #*. For example, the node can receive a DIO
message, which reduces n. rank for one of its neighbor en-
tries, n. In effect, » computed for n, as in property OFS5,
may decrease, which may in turn lead to a drop in the node’s
rank. Consequently, a more elaborate approach is required.

To this end, we define the following multi-sets for any
moment in time ¢ > ¢5:

e RY(t) = Uyen{ranky}, encompassing the values at ¢
of the rank variables for all nodes in T;

e RV(1) = UxerUreng{n.rank|n.id =Y and n €
X’s neighborset}, containing the values at ¢ of the
n.rank fields for all neighborset entries, n, in T
that can potentially be pre fpars of the nodes in T;

o RY(1) = UxenUyeng {d- rank|d.id =Y and d €
X’s delivery multi-set}, comprising the values at ¢ of
the d. rank fields for all DIO messages, d, in transit
to the nodes in 7 from their their potential prefpars.

Note that RY(¢) and RN(¢) cover only ranks and
neighborsets of those nodes in 7 that are live at ¢; for
nodes dead at #, we assume the variable values to be nulls.
In the case of R2(¢), in turn, the situation is more complex.
Although properties DIO1-DIO3 formalize how DIO recep-
tion behaves over time, they do not exhaustively specify what
happens to each individual message. This is deliberate as it
allows for modeling DIO message loss and duplication in a
more general way: at scale not per message. In particular,
in our model, it is perfectly valid that a DIO message from
a neighbor is present in a node’s delivery multi-set whereas
the link from the neighbor and/or the node itself are dead.

This is also justified as it models the case when, for instance,
the message is still in the neighbor’s transmission queue. As
a consequence, however, when analyzing the impact of node
and link deaths on R2 (¢) from the perspective of a particular
DIO message, we have to consider the cases in which both
the message disappears and remains in the target multi-set as
a result of the death. In any case, however, from the global
perspective, we assume that properties DIO1-DIO3 hold.
Given these multi-sets, we introduce a concept of globally
minimal rank (GMR) in T, which we define as follows:

GMRx(t) = mint, gy (1) RY (1) URZ (1)U} (7)

Intuitively, GMRx(¢) is the minimal value of some node’s
rank (possibly from the past), which at the moment ¢ re-
sides anywhere in the 7 partition and may affect (at or some
later moment) the ranks of the nodes in the partition.

Since for any node in 7, the node’s rank at any moment
t is always greater than to equal to GMRy(¢), our goal will
be to show that, GMR; will always eventually permanently
increase. We formalize this as Lemmas 2 and 3.

LEMMA 2. Fort > t5, GMRy(t) never decreases.

LEMMA 3. For t > t5, GMRx(t) always eventually in-
creases, unless it is already infinite.

Proof of Lemma 2. To prove that after *, GMRy will never
decrease, we need to analyze all events in the system that
affect GMRy(t), that is, events that affect the three multi-
sets: RY (¢), RN(¢), and RE (). RY(t) is affected by a death
and recovery of a node in 7 (properties OF3 and OF4), and
by prefpar and rank reselection at a node in ®© (OF3,
OF4, and OF5). No other events affect RY, (¢) (property OF1).
RN (1) is affected by a reception by a node in 7t of a DIO mes-
sage from an always-eventually-adjacent neighbor, a death
and recovery of a node in T, and an addition and removal of
entries for always-eventually-adjacent neighbors to/from the
neighborset of a node in . The effects of these events
on RY (¢) are all captured by a single property (RA2). Finally,
RP (1) is affected by a transmission, reception, and loss of a
DIO message from an always-eventually-adjacent neighbor
to a node in T, as well as a death and recovery of a node in
T or an in-T link. As mentioned previously, these effects are
formalized by a suite of properties (DIO1-DIO3). Table 1
lists precisely how each of the aforementioned events affects
each of the multi-sets RY (¢), RY (¢), and RE (1).

The events that only remove values from the sets, that is,
node death, link death, neighbor entry removal, and DIO
message loss, cannot lead to a decrease of GMRy: at best
GMR; remains as it was before the event; at worst it in-
creases. Likewise, the events that add infinite values to the
sets, that is, node (re)start and neighbor entry addition cannot
reduce GMRy. The same is true for the event that copies val-
ues between the sets, that is, DIO message transmission, and
the event that moves values between the sets, that is, DIO
message reception: the copied/moved values already exist,
and hence contribute to GMR;. Since link recovery does
not affect GMRy; at all, the only event that could potentially
reduce GMRy; is rank reselection to a new value according

97

98

Table 1. The Effects of the Possible Events in T on GMR(¢)

Event

Effect

node death

removal from RY, () of the node’s rank value; removal from RY (¢) of n. rank values for the node’s all neighbor entries n;
possible removal from R2 (¢) of d. rank values for none/some/all DIO messages d both in the node’s delivery multi-set and,
for d sent by the node, in the node’s neighbors’ delivery multi-sets;

node (re)start

addition to Ry, (¢) of the node’s rank, which is infinite per property OF4;

link death

possible removal from R2(¢) of d. rank values for none/some/all DIO messages d in the target node’s delivery multi-set;

link recovery

none

neighbor entry addition

addition to RY (¢) of the new entry’s n. rank value, which is infinite per property RA2;

neighbor entry removal

removal from RY (1) of the evicted entry’s n. rank value;

DIO message transmission

addition to R2(¢) (possibly multiple times if the message is multicast) of the transmitted message’s d. rank value, which,
per property DIO1, is equal to the transmitting node’s rank, and hence already exists in R, (¢); in other words, copying the
value from RY, (¢) to R2(¢), possibly multiple times;

DIO message reception

removal from R2(7) of the received message’s d. rank value; possible replacement in RY (r) of n.rank value for the
d. rank value, per property RA2, if a neighbor entry n with n. 1d = d. id exists in the receiving node’s neighborset;

DIO message loss

removal from RE (1) of the lost message’s d. rank value;

parent & rank reselection

replacement in RY, (¢) of the reselecting node’s old rank with the new value r, computed according to property OF5;

to property OF5. However, from OF5(d), the new value is
greater at least by MinHopRankIncrease than some ex-
isting value that contributes to GMRy. The reselection thus
cannot reduce GMR;. Since no other events affect GMRy,
its value never decreases after °, which ends the proof. [

Proof of Lemma 3. Having proved that any increase of
GMR;, after t° is permanent, we just have to show that such
increases will repeatedly occur until GM Ry becomes infinite.
Therefore, let t; > t* be an arbitrary moment. To prove that,
unless infinite, GM R must increase after t*, we have to show
that from some later moment ¢; > t;, there will forever be no
occurrences of GMRy(1;), unless GMRy(#;) is infinite, in any
of the three multi-sets: RY, (¢), RY (¢), and RE ().

For RY, (¢), consider an arbitrary node P € T, such that P’s
rank att; equals GMRy(t;). Suppose that t; > t; is the ear-
liest moment at which any event affecting P’s rank occurs.

If P is dead at 1;, then it does not contribute its rank to
RY (;), and the event at 7, must be P’s recovery. In this case,
anew value will appear in RY, (1)) as P’s rank, but this value
is infinity per OF4, and hence will not affect GMRy(1},).

Therefore, assume that P is live at ¢; and its rank =
GMRy(t;) = ri. The event at) is thus either P’s death or
prefpar and rank reselection. If the event is P’s death,
then P’s rank will be absent from RY, (¢}), that is, an occur-
rence of r; will disappear from RY, (¢}). If, in turn, the event
is prefpar and rank reselection, then it abides by prop-
erty OF5. Consequently, if P selects infinite rank, then an
occurrence of r; will be replaced in RY, () by infinity. If, in
turn, P selects a finite rank, equal to some 7/, then ' >
ri+MinHopRankIncrease> ri. This is because, from
property OF5(d), ¥’ >n. rank+MinHopRankIncrease
for some entry, n, in P’s neighborset. However, from
the definition of ¢*, the neighbor corresponding to n must be
always eventually adjacent to P. Therefore, n. rank must
belong to RY(t}), which, from Lemma 2, implies that at 7).,
n.rank> r;. In short, also in this case, the occurrence of r;
for P in RY, (t}) will be replaced by a larger value, 7.

What is more, no occurrence of r; corresponding to P’s
rank will ever reappear in RY, (¢) after ¢}, unless r; is in-
finite. Suppose, by contradiction, that r; is finite and P’s
rank becomes r; at some moment ¢ > t},f. This can only be

due to some of the events affecting P’s rank. Neither P’s
death nor P’s recovery can bring P’s rank to a finite value,
though. Therefore, this must be due prefpar and rank
reselection. The selection of r; as P’s rank at tp, implies in
turn the existence at 75, of a entry n in P’s neighborset,
such that n. rank < r;—MinHopRankIncrease (prop-
erty OF5(d)). Since #p > #*, then the neighbor correspond-
ing to n must be always eventually adjacent to P, which
entails n.rank € RN(t;). This, however, means that
GMRy(tp) <n.rank< r; = GMR(t;), that is, GMR; must
have decreased from ¢; to t,’;, which contradicts Lemma 2.

To sum up, indeed GMRy(#;) equal to some finite r; and
corresponding to P’s rank forever disappears from RY (¢),
but only if there exists the moment tl‘,/ > ¢; at which some of
the events affecting P’s rank occurs. What thus remains to
be shown is that such a moment does exist. Since P’s liveness
is beyond RPL’s control, we cannot guarantee an occurrence
of P’s death and recovery after 7;. Let us thus focus on P’s
prefpar and rank reselection events. By contradiction,
assume that no such event takes place after ;. As GMRz(;)
= r;, for every entry n in P’s neighborset correspond-
ing to an always-eventually-adjacent neighbor, we must have
n.rank>r; att;. Since t; > t°, only an always-eventually-
adjacent neighbor can be P’s prefpar at and after ¢;. This
means that at #; there is no entry nin P’s neighborset, for
which r computed according to property OFS5, notably con-
dition (d), would be equal to P’s rank = r;. Therefore, P’s
neighborset must have changed at or before ¢; and no P’s
prefpar and rank reselection event has taken place since
then. However, from property RA1, such an event is guaran-
teed to take place, which contradicts our assumption that no
such event occurs after #;. In other words, the moment t}.f at
which GMR;(1;) corresponding to P’s rank, unless infinite,
forever disappears from RY, (¢) indeed exists for P.

All in all, we have shown that for any finite GMR(t;) and
any node P € T, there exists a moment t}f > t; at which the
occurrence of GMRy(t;) corresponding to P’s rank disap-
pears forever from RY, (¢), if it has ever existed. We can thus
take t}/ = maxpex(tp) as the moment from which any occur-
rence of GMRy(1;), if finite, is forever absent from RY, (¢).

Given this, proving the same for the set of DIOs in tran-
sit, RE(¢), is straightforward. The only event producing new

Table 2. Violations of RPL’s Properties Relevant to Partition Handling in the Implementations’ Sources

Properties Are properties satisfied?
TinyRPL ContikiRPL
RAT | NO: reselection is not triggered when a node receives a | YES
DIO message advertising an infinite rank and removes the
message’s sender from its neighborset
RA2 | YES YES
RA3 | YES NO: non-adjacent neighbors are not marked as unreachable at all
OF1, OF3, OF4, OF5 | YES YES

its prefpar for the last time

OF2 | NO: minrank is equal to a node’s rank when it selected | NO: minrank is equal to a node’s rank when it changed a

null prefpartoanon-null prefpar for the last time

DIO1,DIO3 | YES

YES

lects a null prefpar and adopts an infinite rank

DIO2 | NO: a node stops transmitting DIO messages when it se- | YES

values in R2(¢) is DIO message transmission, and the val-
ues produced, the d. rank fields of the DIO messages d,
are copied from the nodes’ ranks (property DIO1). From
t}/ forever, no node in 7 has its rank equal to GMRy(t;),
unless GMRy(1;) is infinite. Therefore, from this moment no
new occurrences of GMRy(t;) will ever appear in RE (¢), un-
less GMRy(t;) is infinite. Moreover, each DIO in transit is
eventually received or lost for the last time (property DIO3),
and thus the corresponding d. rank value disappears from
RE2(t). Consequently, there exists a moment in time, tjD , from
which GMRy(t;), if finite, will never appear in R (¢).

A similar reasoning can be used for RY(t). From prop-
erty RA2, the value of the n. rank field of an entry n for a
neighbor in a node’s neighborset either is copied from
the d. rank field of the last DIO message d received by
the node from the neighbor or is infinite if the node has re-
ceived no message from the neighbor since the entry was
added to the neighborset. From t}j, no DIO messages
received by the nodes in 7 have their d. rank fields equal to
GMRy(t;), if GMRy(t;) is finite. Therefore, no new neighbor
entries of the nodes will have their n. rank fields changed
to GMRy(t;), unless GMRy(1;) is infinite. What is more,
as RY(t) covers only entries to always-eventually-adjacent
neighbors and, from property DIO2, a node always eventu-
ally receives a DIO message from such a neighbor, any ex-
isting neighbor entries n with their n. rank fields equal to
GMRy(1;) will eventually have these fields forever changed
to different values, unless GMRy(#;) is infinite. In other
words, there exists a moment, tﬁy , at which the last occur-
rence of GMRy(t;), if finite, disappears from RY (¢) forever.

All in all, there exists a moment, #; = max(t} 1Y ,17),
starting from which GMRy(#;), unless infinite, is absent from
all three multi-sets: RY, (¢), RN (¢), and RE(¢). This changes
GMRy (1) forever, unless it is infinite. Since from Lemma 2,
GMRx(t) never decreases after #°, the change must be an in-
crease, which ends the proof of Lemma 3. O

The last guarantee we need for our reasoning is that a
node’s rank is bounded, as formalized in Lemma 4.

LEMMA 4. Always, if a node is live, then its rank is infinite
or does not exceed minrank + MaxRankIncrease.

Proof. Recall that the only events affecting a node’s rank
are the node’s death, restart, and prefpar and rank res-

election (property OF1). The node’s death is irrelevant be-
cause the lemma assumes the node is live. Upon the node’s
recovery, in turn, the node’s rank is set to infinity (OF4).
Finally, upon reselection, the node’s rank is set to infinity
or a value that, among others, is not greater than the node’s
minrank plus MaxRankIncrease (OFS). O]

Given the four lemmas, we are able to prove Theorem 1.

THEOREM 1. Hypothesis 1 is true.

Proof. Consider an arbitrary, always-eventually-live node
P that is eventually always partitioned from the DODAG
root. From Lemmas 1-3, unless infinite, GMR; will re-
peatedly permanently increase. Since P’s rank is always
at least GMRy, it will repeatedly permanently increase as
well. From Lemma 4, in turn, the number of such increases
is limited. This is because, first, P’s rank is an integer
value, and thus any increase is at least by one, and sec-
ond, P’s rank, if finite, is upper-bounded by P’s minrank
plus MaxRankIncrease, where minrank is the minimal
value so far of P’s rank (property OF2). The number of P’s
rank increases will thus be at most MaxRankIncrease
before P will be forced to make its rank infinite forever.
Finally, from properties OF4 and OF1, P’s rank is infinite
iff P’s prefparis null. Therefore, indeed, eventually al-
ways, when live, P will have its prefpar and rank equal
to null and infinity, respectively, which ends the proof. [

5 Fixing RPL’s Implementations

Let us summarize our findings hitherto. On the one hand,
Sect. 3 demonstrates that the two popular RPL’s implementa-
tions fail to correctly handle network partitions. On the other
hand, Sect. 4 formally proves that RPL itself is designed to
behave correctly in these situations. It can thus be concluded
that the implementations do not satisfy some of the formal
properties from Sect. 4.1 that describe RPL’s operation.

Therefore, here we analyze the implementations’ sources,
to identify the properties that they violate, and propose fixes
for these defects. We then check, both in simulations and on
a ~100-node testbed, that the corrected implementations be-
have as expected under network partitions—and in general.
5.1 Implementation Defects and Fixes

Because of space constrains and the intricacy of the iden-
tified implementation defects, instead of explaining each of
the defects, we just give a summary in Table 2. As can

99

100

be observed in the table, both implementations do not sat-
isfy property OF2. Yet, the property is crucial for limiting a
node’s rank growth, which is RPL’s major failure detection
mechanism. Nevertheless, this is not the only reason for the
implementations’ misbehavior, as Table 2 shows that both
implementations also fail to satisfy other properties.

There are several possible reasons for the property viola-
tions. Property OF2 is covered in RPL’s specification but is
not stated as explicitly as in our model. In addition, in the im-
plementations’ sources, it is affected in multiple places. Our
work, in turn, entails global verification of its precise formu-
lation, which facilitates identifying violations. In contrast, it
is symptomatic that the other violated properties concern the
issues that RPL’s specification leaves open. The developers
of the solutions to those issues must have invented custom
suites of properties. Apparently, doing this correctly is not
straightforward. Therefore, again, with provable guarantees
on their utility, the properties introduced here can be of value.

In particular, we have developed source code patches en-
suring that all properties from Sect. 4.1 are satisfied in both
TinyRPL and ContikiRPL. We have verified empirically, in
simulations and on a testbed, that the patches actually correct
the implementations’ behavior and that they do not impair
the implementations’ performance in other scenarios. Here,
we present just an illustrative subset of these experiments.

5.2 Simulation-Based Evaluation

Figure 6 shows, for instance, the results of the same ex-
periment as in Sect. 3 but for TinyRPL with our patches.
They match the expected results from Fig. 2. Within seconds
after the partition, the 66 nodes without paths to the DODAG
root discard their preferred parents, as visible in Fig. 6(a),
and adopt infinite ranks. Moreover, a significant drop in the
network traffic can be observed in Fig. 6(b), which is due to
the 66 nodes ceasing to forward packets to the root.

700000

600000 — packets

hops

=
=)
S

500000 -
transmissions

%
3

400000

* 300000 e

I
S

200000 e

)
S

100000
n."ld—’—’/—’__
1h 1h20m 1h40m 2h 20m 40m 1h 1h20m 1h40m 2h
time time

(a) nodes with preferred parents (b) accumulated network traffic

=3

nodes with a preferred parent
=
8

20m 40m

Figure 6. Patched TinyRPL under a partition.

Figure 7 shows the same results but for ContikiRPL. Like
TinyRPL, ContikiRPL after fixes behaves in accordance with
RPL’s specification. All 66 nodes discard their preferred par-
ents, as visible in Fig. 7(a), and stop forwarding packets to
the root, as can be observed in Fig. 7(b). The difference in the
reaction time compared to TinyRPL is due to differences in
the solutions for routing adjacency maintenance and Trickle
timer configurations in the two implementations.

5.3 Testbed-Based Evaluation

In addition to the simulations, we demonstrate representa-
tive results from a real-world indoor testbed, Indriya [9]. The

700000

600000 — packets

<)
S

=]
S

hops
500000

transmissions

©
S

400000

* 300000

=
S

200000 -~

S
S
(8

=3
K
\,
|
\
e

100000

nodes with a preferred parent
=
8

0

20m 40m 1h 1h20m 1h40m 2h 20m 40m 1h 1h20m 1h40m 2h

time time

(a) nodes with preferred parents (b) accumulated network traffic

Figure 7. Patched ContikiRPL under a partition.

experiment involved 98 TelosB nodes, dispersed across three
floors and connected with low-power radio links of varying
quality. The nodes ran TinyRPL, reporting relevant statistics
through their wired serial interfaces, so as not to interfere
with the radio traffic. The DODAG root was the node with
identifier 1, located in the corridor of the first floor.

Like the simulations, the experiment lasted 2 hours, with
a partition after 1 hour and 5 minutes. Those 5 minutes were
to account for node programming, which was not immedi-
ate. Moreover, because of the different network topology,
we would not be able to mimic on the testbed the partition
scenarios adopted hitherto. Therefore, the scenario of the
experiment was different: it emulated the extreme case of
network partition—a crash of the DODAG root—causing all
live nodes to become disconnected, as in Fig. 1(d). The re-
maining configuration parameters were as in the simulations.

Figure 8 shows the results. They match well those
obtained for TinyRPL and ContikiRPL in simulations (cf.
Fig. 6 and 7). As can be observed in Fig. 8(a), all nodes
quickly discarded their preferred parents after the failure.
Likewise, a significant drop in network traffic is visible in
Fig. 8(b) when the nodes ceased to forward packets to the
root, exchanging only DIO messages at a low frequency.

h=1

£ 100

z — packets

=1 150000

2 80 hops

= transmissions

S o N

I3 100000

A I A NCS P REPCTEERESECE

=

2 50000

E 20

%

3

)

g 0 0

* 0 20m 40m 1h 1h20m 1h40m 2! 0 20m 40m 1h 1h20m 1h40m 2!
time time

(a) nodes with preferred parents (b) accumulated network traffic

Figure 8. Patched TinyRPL under a partition on Indriya.

There are a few differences from the simulations, though.
As visible in Fig. 8(a), the nodes were occasionally discard-
ing their preferred parents for short periods of time. Never-
theless, this phenomenon was due to the instability of some
wireless links, which is expected in the real world. More-
over, the drop in traffic in Fig. 8(b) was more pronounced
but preceded by a larger temporary growth than in simula-
tions. This is again expected as all nodes got disconnected:
they all had to reset their Trickle timers in reaction to the
partition, hence the larger growth, and none of them was
forwarding any packets to the root when the partition was

handled, hence the more pronounced drop later. The same
can be observed when the DODAG root crash is simulated.
All in all, the testbed results confirm the ones from simu-
lations. Likewise, the results of further experiments, both
on testbeds and in simulations, confirm that the patches in-
deed correct the implementations’ behavior under partitions,
without negative effects in other scenarios.

6 Conclusions

In conclusion, we showed that TinyRPL and ContikiRPL
fail to handle network partitions. None of them detects
when the host node gets disconnected from the DODAG root,
which precludes correctly notifying higher layers about the
lack of a default route. In effect, these layers waste network
resources, generating packets that never reach their destina-
tions. Moreover, in TinyRPL, a partition leads to an increase
in control traffic, which further drains the resources.

To remedy this problem, we developed RPL’s formal
model, based directly on the protocol’s specification, and
used it to prove that—contrary to the implementations’ ob-
served behavior—RPL’s design does guarantee correct parti-
tion handling. An important contribution of the process was
not only the guarantees but also a set of formal properties that
an implementation must satisfy for the guarantees to hold.

As an application of these theoretical results in practice,
we analyzed the two implementations’ source code with the
focus on violations of the properties. In effect, we identified
a number of such code defects and patched them. Because
of the nature of these defects, identifying them would have
been difficult without our results. By reevaluating the imple-
mentations experimentally, we showed that, in effect of our
work, they became capable of handling network partitions.

From a broader perspective, in turn, our results confirm
that, despite the seeming maturity of RPL’s implementa-
tions, their reliability leaves room for improvement. We have
been addressing this issue in our recent research activities.

7 Acknowledgments

This work was supported by the National Center for Re-
search and Development (NCBR) in Poland under grant no.
LIDER/434/L-6/14/NCBR/2015. K. Iwanicki was also sup-
ported by the Polish Ministry of Science and Higher Educa-
tion with a scholarship for outstanding young scientists.

8 References

[1] P. Barooah, H. Chenji, R. Stoleru, and T. Kalmar-Nagy. Cut detec-
tion in wireless sensor networks. IEEE Transactions on Parallel and
Distributed Systems, 23(3):483-490, 2012.

[2] M. Ben-Ari. Mathematical Logic for Computer Science. Springer-
Verlag London, 3rd edition, 2012.

[3] J. Beutel, K. Romer, M. Ringwald, and M. Woehrle. Deployment
techniques for sensor networks. In G. Ferrari, editor, Sensor Networks:
Where Theory Meets Practice. Springer Berlin Heidelberg, 2009.

[4] A. Brachman. RPL objective function impact on LLNs topology and
performance. In NEW2AN’13, 2013.

[5] E. Brewer. CAP twelve years later: How the “rules” have changed.
IEEE Computer, 45(2):23-29, February 2012.

[6] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable
and Secure Distributed Programming. Springer-Verlag Berlin Heidel-
berg, 2nd edition, 2011.

[71 T. Clausen, U. Herberg, and M. Philipp. A critical evaluation of the
IPv6 routing protocol for low power and lossy networks (RPL). In
Proc. WiMob’11, 2011.

(8]
(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[34]

[35]

E. A. Devi and J. M. L. Manickam. Detecting and repairing network
partition in wireless sensor networks. In Proc. ICCPCT 14, 2014.
M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. Indriya: A low-
cost, 3D wireless sensor network testbed. In Proc. TridentCom 11,
2012.

S. Duquennoy, O. Landsiedel, and T. Voigt. Let the tree bloom: Scal-
able opportunistic routing with ORPL. In Proc. SenSys’13,2013.

O. Gaddour and A. Koubda. RPL in a nutshell: A survey. Computer
Networks, 56(14):3163-3178, 2012.

0. Gaddour, A. Koubaa, S. Chaudhry, M. Tezeghdanti, R. Chaari, and
M. Abid. Simulation and performance evaluation of DAG construction
with RPL. In ComNet’12, 2012.

O. Gnawali and P. Levis. The minimum rank with hysteresis objective
function. RFC 6719, 2012.

M. Gregorczyk, T. Pazurkiewicz, and K. Iwanicki. On decentralized
in-network aggregation in real-world scenarios with crowd mobility.
In Proc. DCOSS 14, 2014.

D. Han and O. Gnawali. Performance of RPL under wireless interfer-
ence. [EEE Communications Magazine, 51(12):137-143, 2013.

R. Hartung, U. Kulau, B. Gernert, S. Rottmann, and L. Wolf. On the
experiences with testbeds and applications in precision farming. In
Proc. FAILSAFE ’17,2017.

K. Heurtefeux, H. Menouar, and N. AbuAli. Experimental evalua-
tion of a routing protocol for WSNs: RPL robustness under study. In
WiMob’13, October 2013.

G. J. Holzmann. The model checker SPIN. /EEE Trans. Softw. Eng.,
23(5):279-295, 1997.

O. Iova, F. Theoleyre, and T. Noel. Stability and efficiency of RPL
under realistic conditions in wireless sensor networks. In PIMRC’13,
2013.

T. Istomin, C. Kiraly, and G. P. Picco. Is RPL ready for actuation? A
comparative evaluation in a smart city scenario. In Proc. EWSN’15,
2015.

K. Iwanicki. RNFD: Routing-layer detection of DODAG (root) node
failures in low-power wireless networks. In Proc. IPSN’16, 2016.

N. Khelifi, W. Kammoun, and H. Youssef. Efficiency of the RPL
repair mechanisms for low power and lossy networks. In IWCMC’ 14,
2014.

J. Kleinberg, M. Sandler, and A. Slivkins. Network failure detection
and graph connectivity. In Proc. SODA '04, 2004.

J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, A. Terzis,
A. Dunkels, and D. Culler. ContikiRPL and TinyRPL: Happy together.
In Proc. IP+SN ’11,2011.

K. D. Korte, A. Sehgal, and J. Schonwilder. A study of the RPL repair
process using ContikiRPL. In Proc. AIMS’12,2012.

P. Levis, T. Clausen, J. Hui, O. Gnawali, and K. Jo. The Trickle algo-
rithm. RFC 6206, 2011.

L. Mottola, T. Voigt, F. Osterlind, J. Eriksson, L. Baresi, and
C. Ghezzi. Anquiro: Enabling efficient static verification of sensor
network software. In Proc. SESENA ’10, 2010.

I. E. Radoi, A. Shenoy, and D. Arvind. Evaluation of routing protocols
for Internet-enabled wireless sensor networks. In Proc. ICWMC’12,
2012.

N. Shrivastava, S. Suri, and C. D. Téth. Detecting cuts in sensor net-
works. ACM Trans. Sen. Netw., 4(2):10:1-10:25, 2008.

P. Thubert. Objective function zero for the routing protocol for low-
power and lossy networks (RPL). RFC 6552, 2012.

G. Tolle and D. Culler. Design of an application-cooperative manage-
ment system for wireless sensor networks. In Proc. EWSN ’05, 2005.
J. Tripathi, J. C. de Oliveira, and J. P. Vasseur. A performance evalua-
tion study of RPL: Routing protocol for low power and lossy networks.
In Proc. CISS’10, 2010.

T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, and R. Alexander. RPL: IPv6 routing protocol
for low-power and lossy networks. RFC 6550, 2012.

M. Won and R. Stoleru. A destination-based approach for cut detec-
tion in wireless sensor networks. International Journal of Parallel,
Emergent and Distributed Systems, 28(3):266-288, 2013.

W. Xie, M. Goyal, H. Hosseini, J. Martocci, Y. Bashir, E. Baccelli,
and A. Durresi. Routing loops in DAG-based low power and lossy
networks. In Proc. AINA ’10, 2010.

101

