
Dynamic Computation and Adjustment of Channel Hopping
Sequences for Cognitive Radio Networks Based on Quality

Metrics

Markus Engel
Technische Universität Kaiserslautern

engel@cs.uni-kl.de

Prof. Dr. Reinhard Gothzein
Technische Universität Kaiserslautern

gotzhein@cs.uni-kl.de

Abstract
In cognitive radio networks (CRNs), secondary users em-

ploy spectrum sharing with license holders (primary users)
of a frequency band. Whenever a primary user uses his fre-
quency band, all secondary users must vacate the channel
and meet on a new one. Many network access schemes for
CRNs employ proactive channel hopping, where all or a sub-
set of secondary users switch channels from time to time in
order to reduce interference with primary users. This calls
for dynamic channel hopping sequences (schedules) shared
among and applied by secondary users.

In this paper, we present a new approach for the dynamic
computation and adjustment of channel hopping sequences
for CRNs. Based on channel quality, we introduce quality
metrics for the number of channel utilizations, and for the
channel hopping sequence. Based on these metrics, we dy-
namically compute and adjust optimal schedules, i.e. assign-
ments of channels to time slots. Our approach gives prefer-
ence to channels of higher quality, by using them more fre-
quently, and yields schedules that are less prone to channel
failure, e.g. due to usage by a primary user. Furthermore, dy-
namic schedule adjustments typically lead to small changes,
keeping the operation of secondary users more stable.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless

communication

General Terms
Reliability, Algorithms

Keywords
Channel Hopping, Hopping Sequences, Cognitive Radio

1 Introduction
To enable the usage of licensed spectrum by secondary

users, i.e. users without license, a new communication para-

digm called cognitive radio (CR) has been put forward. Fol-
lowing [1], CR technology will enable nodes to detect and
assess spectrum unused by the license owner (spectrum sens-
ing), to select the best available channels (spectrum man-
agement), to coordinate access to these channels with other
users (spectrum sharing), and to leave a used channel when
a primary user, i.e. a license holder, is detected (spectrum
mobility).

CR requires that all network nodes permanently sense the
spectrum, to determine the qualities of a set of channels dy-
namically. While the original idea is that the CR always op-
erates in the best available channel, this idea can be gener-
alized by stipulating that nodes may use a set of channels
with good quality by performing channel hopping. Thus,
if the quality of a used channel drops, the channel can be
left without jeopardizing network operation, as the remain-
ing channels are still usable. Therefore, they can replace the
left channel, which results in a modified hopping sequence.
Furthermore, if the quality of an unused channel rises, it can
be upgraded to a used channel and be integrated into the
hopping sequence. In summary, this channel usage scheme
provides redundancy, reducing the impact of channel failure,
which, e.g., may occur when a primary user is detected.

For channel hopping, several problems are to be solved.
First, there is the need for network-wide time synchroniza-
tion. This enables the structuring of time into consecutive
intervals, consisting of a sequence of (time) slots, to which
available channels can be assigned. Thus, nodes can switch
between channels in a synchronized way. Second, a channel
hopping sequence has to be determined and updated dynam-
ically, and to be exchanged among all nodes.

In this paper, we will present our approach for the dy-
namic computation and adjustment of channel hopping se-
quences (schedules) for CR networks (CRNs). We assume
that spectrum management permanently assesses channel
qualities, and provides a list of usable channels and their cur-
rent qualities. Using this list, we introduce quality metrics Σ

and Ω for the number of channel utilizations, and for chan-
nel hopping sequences, respectively. We then show that w.r.t.
these metrics, optimal solutions exist, and how they can be
computed. Further, we show how dynamic changes of chan-
nel qualities can be handled by adjusting these solutions dy-
namically, typically leading to small schedule changes, to
keep the operation of secondary users more stable. Sched-
ules are computed from scratch only if an adjustment would

79

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1

result in solution that is too far from the optimum.
The paper is structured as follows: In Section 2, we in-

troduce our system model. Section 3 and Section 4 present
quality metrics for the number of channel utilizations and for
channel hopping sequences, respectively, elaborate on opti-
mal solutions, and introduce algorithms for their computa-
tion and dynamic adjustment. Section 5 is on related work,
Section 6 presents conclusions and future work.
2 System model

In this section, we briefly describe our system model. We
assume a non-empty set of channels C that can be used for
communication depending on their current quality. A chan-
nel is defined by physical parameters and signal processing
techniques, such as center frequency, bandwidth, modulation
and coding. In this work, we assume C to be finite and fixed,
but we can also extend our model such that, e.g. the set of
channels can change dynamically.

Each channel c ∈ C is assigned a quality qc ∈ [0,1] where
higher values denote better quality. The definition of channel
quality is not addressed in this paper – we assume it depends
on primary user activity on the channel. In addition, this may
be combined with static channel properties (e.g. throughput
as derived from the channel’s physical parameters). We also
assure that channels with special value qc = 0 won’t be used.
The qualities of all channels are listed in a vector~q∈ [0,1]|C |.

Time is structured into consecutive time intervals, each
consisting of a fixed number of nslot slots of equal duration
dslot . The idea is that each slot of a time interval will be as-
signed one channel, and that this pattern is repeated until the
schedule changes. Slot duration dslot depends on various as-
pects: it should be chosen long enough such there is enough
usable time for communication, and short enough such that
channel failure does not lead to a long period of inactivity.

Our objective is to dynamically compute and ad-
just schedules ~s ∈ C nslot , assigning each time slot n ∈
{1, . . . ,nslot} a channel sn ∈ C . The schedule is supposed to
adhere to an underlying utilization~u ∈N|C | such that a chan-
nel c∈ C is used uc times in~s. The utilization corresponds to
channel qualities~q, such that channels with higher qualities
are used more often. As qualities are subject to change over
time, we have to adjust the utilization and thus the schedule.
3 Channel Utilization

Our first objective is to use channels according to their
quality. This way, we assure that better channels are used
more frequently but also take care of the fact that a channel’s
quality may degrade any time. In this section, we first give
some preliminaries to formalize our objectives and introduce
a quality metric that qualifies a given utilization by means
of the best and worst utilization possible. We then give al-
gorithms to compute an optimal utilization and to converge
from any utilization to an optimal one in small steps. Finally,
we refine this algorithm for better convergence.
3.1 Preliminaries

Absolute quality values as given by~q are not expressive
when considered on their own: a value of qc = 0.4 might be
considered bad if the qualities of all other channels are much
higher – on the other hand, it might be considered good if
all other channels yield worse values. Therefore, we relate

a channel’s quality to the overall quality of all channels by
defining a relative quality:

~r :=
~q

∑c∈C qc

From this, we calculate the fair share (a hypothetical opti-
mum) of slots:

~u? :=~r ·nslot

Ideally, in an infinite run, channel c should be used rc of
the total time. This problem is perfectly solvable, if nslot is
not fixed and all qualities are rational (i.e. ~q ∈ Q|C |): in this
case,~r is rational, too, and we can find a cycle length nslot ,
such that~u? consists of natural numbers only and is therefore
a valid utilization.
Example 1. Let C = {c1,c2,c3} denote the set of channels
and let ~q =

(
1 3

8
1
8

)
denote their qualities. From this,

we obtain the relative qualities ~r =
(2

3
1
4

1
12

)
. If we

were allowed to choose nslot freely, we would find nslot =
lcm(3,4,12) = 12 to be a good value, as it is divided by all
denominators of~r. The fair share~u? = (8 3 1) is of natu-
ral numbers only and thus a perfect solution in this example.

However, using the approach given in the example, nslot
could grow big (especially if the denominators in~r are co-
prime), and nslot is considered fixed in our system model
in Section 2. For this reason, we have to expect that ~u? is
real valued in general. Our goal therefore is to synthesize a
utilization ~u ∈ N|C | that sums up to nslot and approximates
the fair share~u?. This problem is related to the Apportion-
ment Problem [3], where nslot seats1 in the House of Parlia-
ment are apportioned among a set of states C , according to
the relative population rc of each state. As restriction, seats
can only be apportioned as a whole (i.e. a natural number)
whereas the relative population of a state is considered ra-
tional. There have been many solutions for this problem,
all with different properties or goals on how to approximate
proportionality in a fair way.

According to our objective, we use the apportionment
method by Hamilton [3], which minimizes the error sum:

Φ(~u) := ∑
c∈C
|uc−u?c | (1)

Instead of Hamilton’s Method, other apportionment meth-
ods can be used, such as the ρ-rounding method [7, 11],
which can unproportionally prefer channels with higher
quality.
3.2 Quality Metric

To assess the quality of the numbers of channel utiliza-
tions~u, we introduce a quality metric Σ(~u) based on the error
sum Φ(~u). Given this metric, the objective then is to deter-
mine optimal vectors ~u+, i.e. vectors minimizing the error
sum. This metric then can also be used to determine how far
the currently used vector~u is away from any optimal vector
~u+ and to define a threshold when the currently used vector
is to be adjusted.

The problem with the error sum as given in (1) is that
it depends on the fair share ~u? and thus on the qualities ~q.

1We use our notions when referring to the Apportionment Problem.

80

Using only that notion, we cannot decide whether some uti-
lization ~u is the best one possible for the given qualities or
more particular how far ~u is away from an optimal utiliza-
tion. We therefore define the following metric Σ(~u), which
classifies a given utilization between the best and worst uti-
lization possible for the given channel qualities and normal-
izes these extremes to the interval [0,1].

Σ(~u) =

{
1 if Φmin = Φmax

1− Φ(~u)−Φmin

Φmax−Φmin otherwise
(2)

To determine Σ(~u), we need the error sum of the best and
worst possible utilization, denoted by Φmin and Φmax, respec-
tively. Instead of obtaining them by enumeration, we use
efficient algorithms.

The worst possible utilization is obtained by assigning the
worst channel to all slots and calculating the error sum over
that utilization. From this idea, we can deduce uc− = nslot
for a channel c− ∈ C which has the lowest quality and con-
sequently uc = 0 for all other channels. Note that this is not
only valid for Hamilton’s Method, but can be applied to any
apportionment method described in [11] to obtain the worst
possible utilization. For our chosen objective function Φ(~u),
the error sum of such a utilization is

Φ
max = 2 ·

(
nslot −min

c∈C
u?c

)
(3)

For Φmin, we calculate an optimal solution~u+ as given in
the next section and have Φmin = Φ(~u+).

3.3 Computation of Optimal Solutions
The authors of [11] focus upon objective functions of ap-

portionment methods and developed an algorithm for their
optimization. In their work, they require an error function
ϕc : N→ R for each channel c ∈ C , such that the sequence
Hc(u) := ϕc(u)−ϕc(u− 1) for each positive u ∈ N is non-
decreasing. Then the objective function consisting of the
sum over all channels is minimized by their algorithm MIN-
IMALSOLUTIONS.

We therefore choose ϕc(u) := |u−u?c | and, by summing,
obtain the error function Φ(~u) as in (1) and thus can apply
Hamilton’s Method using their algorithm. Note that ϕc(u)
denotes the error of using channel c u times and Hc(u) de-
notes the change in the error when using channel c u times
instead of u−1 times.

The algorithm MINIMALSOLUTIONS works as follows:

1. setup the matrix H = (hu,c) with hu,c = Hc(u).

2. select the nslot smallest entries of H .

3. for each channel c, let uc be the number of selected en-
tries in the column vector for c in H .

Example 2. Let C = {c1,c2,c3} be the set of channels. The
qualities of these channels shall be~q =

(19
50

13
100

69
20

)
. If

we apportion nslot = 6 slots using MINIMALSOLUTIONS, we

obtain matrix H :

H =

−1 −0.3 −1
−0.8 1 −1

1 1 −1
1 1 0.1
1 1 1
1 1 1

The 6 smallest numbers of H are above the line, and we
obtain~u+ = (2 1 3) as an optimal utilization.

Note that Hamilton’s Method assures uc = 0 for qc = 0,
i.e. unusable channels won’t be used. This is, however, not
necessarily true for other Apportionment Methods, or their
error function ϕc(u) might be undefined upon qc = 0. This
can be fixed by extending MINIMALSOLUTIONS by a pre-
filtering step in which uc = 0 is set for all channels having
qc and then run MINIMALSOLUTIONS afterwards on the re-
maining channels. By doing so, we can also define a mini-
mum absolute threshold qT (or a relative threshold2 rT) such
that only channels having qc ≥ qT (respectively rc ≥ rT) are
considered.

Note also that any Apportionment Method fails, if there is
no usable channel. In this case, however, no communication
is possible, so we don’t need to calculate any utilization.
3.4 Dynamic Adjustments

In the original context of the Apportionment Problem, the
optimal solution is always calculated after a census and stays
valid until the next one. The old apportionment is discarded
then and the new results of the census are used to calculate
a new optimum. Likewise, the quality of channels is con-
stantly in flux, and we seek to always have an optimal utiliza-
tion. Therefore, we could recalculate the optimal utilization
every time the quality of channels changes and use this new
solution until quality changes again. However, we face the
problem that the optimal utilization (and consequently the
schedule) may change frequently. The new schedule must be
disseminated in the network and if a node misses one update,
its schedule might be completely different if we discarded
the old and recalculated a new optimal one. We therefore al-
low the utilization to be suboptimal temporarily and improve
it towards the new optimum stepwise. In this section, we de-
fine an algorithm to produce a sequence of utilizations that
steadily converges to the new optimum.

When improving the utilization, we aim for small updates
that increase the utilization’s quality. The smallest modifi-
cation of a utilization is when one channel is used one time
more often and another channel is used one time less. This
is formalized in the next definition:
Definition 1. Given a utilization~u, an atomic repair of~u is
given by a pair of channels (c−,c+) ∈ C 2. The application
of an atomic repair (c−,c+) to~u is denoted as~u[c−,c+] and
defined as follows:

~u[c−,c+] :=~u+~bc+ −~bc−

where ~bc denotes the vector (0 . . . 0 1 0 . . . 0)
that is 1 at the position corresponding to channel c and 0
otherwise.

2In the Apportionment Problem, this is known as the n-percent hurdle.

81

We show now that we obtain an optimal~u+ from an arbitrary
~u by repeatedly using atomic repairs:

1: choose c− such that Hc−(uc−) = max
c∈C

Hc(uc)

2: choose c+ such that Hc+(uc+ +1) = min
c∈C

Hc(uc +1)

3: if Hc−(uc−)≤ Hc+(uc+ +1) then
4: stop .~u is optimal
5: else
6: ~u←~u[c−,c+] . update utilization
7: end if

THEOREM 1. Let (~u0, . . . ,~uk) be a sequence of utilizations,
obtained by repeatedly applying the above algorithm. Let
also~uk be the first utilization which hits line 4. When needed,
let (c−i ,c

+
i) denote the atomic repair (c−,c+) chosen in step

0≤ i < k. Then
1. ~uk is optimal.
2. ∀0≤ i, j < k. c−i 6= c+

j , i.e. no channels’ utilization will
be increased and decreased while converging.

3. ∀0 ≤ i < j ≤ k. Σ(~u j) > Σ(~ui), i.e. the quality of the
obtained utilizations is strictly increasing.

4. ∀0≤ i < k. ∀(c−,c+) ∈ C 2.Σ(~ui+1)≥ Σ(~ui[c−,c+]), i.e.
of all possible atomic updates, the chosen update maxi-
mizes the quality change in each step.

PROOF. 1. First, have Hc(uc +1)≥ Hc′(uc′) for all c,c′ ∈
C if and only if~u is optimal from [11]. This is equiva-
lent to minc Hc(uc+1)≥maxc Hc(uc), which is exactly
the condition in line 3, thus~uk is optimal.

2. For all previous steps i < k, we thus also have that~ui is
not optimal. We examine 3 cases:

a) For any step 0 ≤ i < k, we have c−i 6= c+
i because

otherwise~ui was optimal.
b) Assume that for 0≤ i< j < k we would have c−i =

c+
j . For better readability we denote that channel

by c? := c−i .
We w.l.o.g. assume that j− i is minimal, i.e. step i
was the last decrease before the increase in step j
for channel c?. From that, we have ui

c? = u
j
c? +1.

Furthermore, by induction we have maxHc(u
i
c)≥

maxHc(u
j
c). Then minHc(u

j
c + 1) = Hc?(u

j
c? +

1) = Hc?(u
i
c?) = maxHc(u

i
c)≥maxHc(u

j
c). Then

~u j is optimal, contradicting j < k, thus c−i 6= c+
j .

c) By analogous reasoning we also have c+
i 6= c−j .

Together, we conclude c−i 6= c+
j for all 0≤ i, j < k.

3. Note again, that ~ui is not optimal for i < k and thus
Hc−(u

i
c−)> Hc+(u

i
c+ +1). Then have

Φ(~ui)−Φ(~ui+1)

= Hc−(u
i
c−)−Hc+(u

i
c+ +1)> 0

While this holds for any 0 ≤ i < k, we generalize
Φ(~ui)>Φ(~u j) for 0≤ i< j≤ k by induction. From that
and by substituting into (2) we conclude Σ(~u j)> Σ(~ui).

4. From the previous proof and the choice of c− and c+ we
have

Φ(~ui)−Φ(~ui+1) = Hc−(u
i
c−)−Hc+(u

i
c+ +1)

= maxHc(u
i
c)−minHc(u

i
c +1)

From that and by substituting into (2) we conclude that
Σ(~ui+1)−Σ(~ui) is maximized by the choice of c− and
c+.

Example 3. Let nslot = 6 and C = {c1,c2,c3} be the set of
channels and let their quality be as in Example 2. Now
consider that channels c1 and c2 gain in quality while c3’s
quality decreases, such that their new quality vector is~q′ =(29

50
33

100
29
100

)
. We obtain the new matrix H ′ as follows:

H ′ =

−1 −1 −1
−1 −0.3 0.1
−0.8 1 1

1 1 1
1 1 1
1 1 1

The solid line in the matrix depicts the optimal solution
~u+ = (3 2 1) for~q′. The dashed line gives us the old (i.e.
our current) utilization as in Example 2. If we run the algo-
rithm, it will select c− = c3 since it has the highest number
(marked blue) just above the dashed line and it will select
c+ = c1 since it has the lowest number (marked red) just be-
low the dashed line. After running the algorithm again (this
time having c− = c3 and c+ = c2) we will actually obtain the
minimum solution.
LEMMA 1. Let ~u be any utilization and ~u+ be the optimal
utilization for a given channel quality vector ~q and nslot .
Then we converge from~u towards~u+ in exactly

nruns(~u) :=
∑c∈C |u+

c −uc|
2

(4)

runs. Furthermore, nruns(~u) is bound by nslot for any~u.
PROOF. From the second proposition in Theorem 1 we
know that each channel’s utilization is only increased or de-
creased in all runs. Thus, for a channel c ∈ C to converge
from uc to u+

c , c must be chosen exactly |u+
c − uc| as c− (or

c+, respectively) times. Since in every run, a pair (c−,c+) of
channels is chosen, the overall sum is divided by 2 and we
obtain (4).

In the worst case, there is a channel c which is used in all
slots (i.e. uc = nslot) but should never be used (i.e. u+

c = 0) in
the optimal utilization. Since we only transfer one utilization
in each run, we’d have to run the algorithm uc− u+

c = nslot
times to finally reach the optimum.

It is worth noticing that the algorithm converges to the
new optimal utilization from any utilization. This way, if the
optimal utilization changes while converging, the algorithm
adapts to the new situation and converges to the new opti-
mum.
3.5 Refinements

In the previous section, we introduced the concept of
atomic repairs. Whenever we run one loop of the algorithm
to improve the utilization, we get a pair of channels (c−,c+)
whose utilization will be decreased (respectively increased)
by one. Consider that channel quality may suddenly drop,
e.g. by detecting a primary user. We will now address two
problems arising in this situation by giving an example:

82

Example 4. Let C = {c1, . . . ,c4} be the set of channels and
let nslot = 12 be the number of slots to be assigned. Let the
current utilization be~u= (2 2 4 4). Now consider that
suddenly the quality of channel c4 drops, and we get a new
optimal utilization~u′ = (4 5 3 0) from matrix H ′:

H ′ =

−1 −1 −1 1
−1 −1 −1 1
−1 −1 −0.7 1
−1 −1 1 1
0.3 −0.6 1 1
1 1 1 1
...

...
...

...

We can see that channel c1 and c2 should be used more often,
while c3 and c4 should be used less often in the new opti-
mum. When we calculate an atomic repair (c−,c+), we see
Hc3(uc3) =Hc4(uc4) = 1, and thus, both c3 and c4 are equally
suited when we choose c−. Intuitively we want c4 to be the
only candidate in this case since that channel’s utilization is
further away from its new optimum.
The source of this problem is the choice of the objective
function Φ as in (1): no matter which channel we choose
for c−, the error will decrease by Hc−(uc−) = 1. A way to
fix this issue is choosing another objective function which
gives us an Hc(uc) which strictly increases in uc. From [11],
we know that Hamilton’s Method does not only minimize
the sum of the absolute value of uc− u?c , but it is also the
unique method which minimizes any `p-norm (for p≥ 1) of
the error vector (~u−~u?). Thus, we can also choose

Φ
p(~u) := ∑

c∈C
|uc−u?c |p (5)

for any p > 1 as objective function and still have Hamilton’s
Method, i.e. we still follow our objective: that each chan-
nel c should be used rc of the total time. However, when
it comes to improving the utilization, we see that distances
of a channel’s current and optimal utilization have a linear3

influence on Hc(uc) and thus, channels which have a higher
loss in utilization are preferred when it comes to choosing c−
(and analogously c+).
Example 5. Consider the same problem as above, but now
use Φ2(~u) = ∑c∈C (uc−u?c)

2 to calculate matrix H ′:

H ′ =

−7.7 −8.6 −4.7 1
−5.7 −6.6 −2.7 3
−1.7 −2.6 1.3 7
0.3 −0.6 3.3 9
2.3 1.4 5.3 11
4.3 3.4 5.3 11

...
...

...
...

We can see that our algorithm now chooses c− = c4 and c+ =
c2 and thus complies with our intuition.

A second problem is that the use of atomic repairs – al-
though motivated by us for having smaller changes in utiliza-
tions – may be obstructive in a scenario as described above:

3for p=2

Even in Example 5 where we used Φ2(~u) as objective func-
tion, we’d still need 5 updates until the utilization of channel
c4 finally reaches 0. This means that in between, this channel
would still be scheduled. So far, when doing an improve-
ment, we only applied one atomic repair to obtain a new
intermediate utilization, which now results in slow conver-
gence. To get around this, we advice to apply several atomic
repairs per improvement and let the number of repairs be de-
termined by means of metric Σ or the by nruns, i.e. number
of atomic repairs needed to converge as given in (4).

4 Channel Hopping Sequence
Our second objective is to compute channel hopping se-

quences (schedules) that distribute channel usage uniformly,
based on the optimal number of channel utilizations obtained
for the metric Σ. This way, channel hopping sequences are
less prone to channel quality changes, e.g. channel fail-
ures due to detection of a primary user. In this section, we
start with preliminaries, motivate the objective function, in-
troduce a quality metric Ω, elaborate on optimal solutions,
conceive two heuristics for their computation, and experi-
mentally assess them.

4.1 Preliminaries
In this section, we introduce some formal foundations to

finally give an objective function to assess the quality of a
schedule.

4.1.1 Optimal Channel Reuse Distances
A simple approach is to use channels in blocks as in the

following example:
Example 6. Let nslot = 6 and C = {c1,c2,c3} be the set of
channels, and~u= (2 1 3) their utilization (cf. Section 3).
Then one possible schedule is

slot i 1 2 3 4 5 6
si c1 c1 c2 c3 c3 c3

Although such schedules obviously adhere to the underlying
utilization ~u, we discourage them: Consider, that in the 4th

slot a primary user (PU) appears. Then the nodes, detecting
the PU must wait to inform the other nodes for three con-
secutive slots. Moreover, all nodes, that do not detect the
presence of the PU might interfere with him as the schedule
is not updated. If, on the other hand, slot 5 was assigned a
channel other than c3, we could use that slot to announce the
new situation (i.e. disseminate a new schedule), thus having
shorter reaction times and less interference with the PU.

Our objective here is to distribute reuses of one channel
equally over all slots. For any used channel c, the optimal
distance (a hypothetical optimum) between two uses would
be

δ
?
c :=

nslot

uc
(6)

We face two problems from that: first, δ?c might not be a
natural number for each channel. Second, even if all δ?c are
natural numbers, we might not be able to synthesize a sched-
ule that assigns each channel with distance δ?c , as shown in
the following example:
Example 7. Let nslot = 6, C = {c1,c2,c3} be the set of
channels, and ~u = (2 1 3) their utilization, then ~δ? =

83

(3 6 2) is their optimal distance. We could start our
schedule~s like this:

slot i 1 2 3 4 5 6
si c1 c3 c2 x

We face a problem in slot 4: according to ~δ?, we would
have to schedule c1 as well as c3 simultaneously. Even if
we started our schedule in another way, we would face the
same problem in another slot. From the Chinese Remainder
Theorem, we can conclude that in this example, there is al-
ways a conflict: since δ?1 = 2 and δ?3 = 3 are coprime, there
is a conflicting slot, no matter in which slots we schedule c1
and c3 first.
In conclusion, there are utilizations for which no schedule
exists that meets equal distances of reuses.

4.1.2 Formalization of Reuse Distances
We now formally define the notion of reuse distance.

Given a set of channels C , a utilization ~u, and a schedule
~s, we consider, for each channel c, the slots where c is as-
signed. Then, for c ∈ C and 1 ≤ i ≤ uc, the function δ(c, i)
denotes the distance of the ith and (i+1)th assignment, given
in number of slots. Note that for any c ∈ C , δ(c,uc) is the
distance of the last assignment of the current interval and the
first assignment of the next interval.

We explain this with an example:
Example 8. Let nslot = 6, C = {1,2,3} be a set of chan-
nels, ~u = (2 3 1) a utilization of C , and let ~s =
(1 2 2 3 1 2) denote a schedule, complying with~u.

We extend the schedule by the next cycle, up to until each
channel has been first scheduled in that cycle:

slot i 1 2 3 4 5 6 1 2 3 4
si 1 2 2 3 1 2 1 2 2 3

4 2
Channel 1

1 3 2
Channel 2

6
Channel 3

We can read distance δ(c, i) for each channel c ∈ C and
each reuse 1≤ i≤ uc from the diagram:

i 1 2 3
δ(1, i) 4 2
δ(2, i) 1 3 2
δ(3, i) 6

δ(c, i) could be formalized as follows:

S(c, i) := {n | i≤ n≤ nslot ∧ sn = c} (7)

s(c, i) :=

minS(c,1) if i = 1
minS(c,s(c, i−1)+1) if 2 < i≤ uc

s(c,1)+nslot if i = uc +1
(8)

δ(c, i) := s(c, i+1)− s(c, i) for 1≤ i≤ uc (9)

S(c, i) yields the set of slots to which channel c is assigned,
starting with usage i. Then s(c, i) defines an order on this set,
i.e. s(c, i) yields the slot, in which c is scheduled the ith time.
Finally, δ(c, i) is the distance between usage i and usage i+1
of channel c, for 1≤ i≤ uc.

4.1.3 Objective Function
We now formally define an objective function, which will

then be used to obtain the quality metric for schedules. Our
first attempt was to use an error function Ψ1(~s) that sums up
the absolute differences between each δ(c, i) and the hypo-
thetical optimum δ?c over all channels and their assignments:

Ψ
1(~s) = ∑

c∈C

uc

∑
i=1
|δ(c, i)−δ

?
c | (10)

However, this error function yields undesirable results, as
shown by the following example:
Example 9. Let nslot = 14, C = {1,2,3,4} and ~u =

(7 3 2 2), yielding ~δ? =
(
2 4.6 7 7

)
as optimal

distances.
Then, under the objective function (10), the following

schedules~s+A and~s+B are both optimal:

~s+A = (3 1 1 1 4 2 1 3 1 2 1 4 1 2)
~s+B = (3 1 2 1 4 1 2 1 3 1 2 1 4 1)

Looking at the distances, we have
i 1 2 3 4 5 6 7

δA(1, i) 1 1 3 2 2 2 3
δA(2, i) 4 4 6
δA(3, i) 7 7
δA(4, i) 7 7

and
i 1 2 3 4 5 6 7

δB(1, i) 2 2 2 2 2 2 2
δB(2, i) 4 4 6
δB(3, i) 8 6
δB(4, i) 8 6

We notice that in~s+A, channels 3 and 4 keep the optimal dis-
tance for each assignment, while distances of channel 1 de-
viate from the optimum in several positions. In ~s+B this is
reversed: now the distances of channel 1 are always optimal,
while the distances of channels 3 and 4 deviate. Intuitively,
~s+B is the better schedule, because there is no channel used in
consecutive slots.

To remedy this problem, we modify our objective func-
tion, by adding more weight to bigger errors (by squaring
the difference) as well as to channels with higher utilization
(by dividing by the optimal distance):

Ψ
2(~s) := ∑

c∈C

uc

∑
i=1

(δ(c, i)−δ?c))
2

δ?c
(11)

Using Ψ2(~s), schedule~s+B of Example 9 is still optimal,
whereas schedule~s+A is not.

4.2 Quality Metric
To assess the quality of a schedule~s, we introduce a qual-

ity metric Ω(~s) based on the error sum Ψ2(~s). Given this
metric, the objective then is to determine optimal schedules
~s+, i.e. vectors minimizing the error sum. Similar to Σ(~s),
this metric can then be used to determine how far the cur-
rently used vector~s is away from any optimal vector~s+, and
to define a threshold when the currently used schedule is to
be adjusted. The structure of Ω(~s) is analogous to Σ(~u): for

84

the given utilization ~u, it classifies a given schedule ~s be-
tween the best and the worst schedule and normalizes these
extremes to the interval [0,1].

Ω(~s) :=

{
1 if Ψ2,min = Ψ2,max

1− Ψ2(~s)−Ψ2,min

Ψ2,max−Ψ2,min otherwise
(12)

To compute Ω(~s), we need the error sum of the best and
worst possible schedule, denoted by Ψ2,min and Ψ2,max, re-
spectively.

The worst possible schedule is obtained by following the
principles of Example 6: we place all reuses of a channel
in consecutive slots. Then, for each channel c and for each
reuse 1≤ i < uc, we have distance δ(c, i) = 1, and δ(c,uc) =
nslot − (uc−1). From that, we conclude the error sum

Ψ
2,max =

1
nslot

∑
c∈C

(
(uc−1) · (nslot −uc)

2) (13)

For a true Ψ2,min we can enumerate all possible schedules
and determine the minimum of their error sums. Given a
utilization~u, the number of possible schedules can be deter-
mined by using the multinomial coefficient:(

nslot

u1;u2; . . . ;u|C |

)
=

nslot !
∏c∈C uc!

(14)

The number of schedules increases fast with the number of
slots and channels because of the growth of the factorial
function.

Alternatively, we can give a lower bound on the minimum
error or use different heuristics to derive good upper bounds
as shown in the next sections.
4.3 Lower Bound for Minimal Error Sum

Following our objective, we try to distribute reuses of
channels over all slots, such that δ(c, i)≈ δ?c for each channel
c and all reuses 1 ≤ i ≤ uc. From the previous section, we
know that there is a problem if δ?c is not a natural number.

We isolate now our view to only one fixed channel c and
solve that problem. In the optimal case, all δ(c, i) would
be equal to δ?c , thus we would have uc times the distance
δ?c . In the actual case, we have distances δ(c,1), . . . ,δ(c,uc),
summing up to uc ·~δ?c = nslot and all being most proportional
to δ?c where proportionality is formalized by means of the
inner sum of (11), i.e.

E(c) =
uc

∑
i=1

(δ(c, i)−δ?c)
2

δ?c
(15)

We can, in fact, interpret this as another Apportionment
Problem: the House size is now the sum of all optimal dis-
tances (i.e. nslot) and the population of each state is denoted
by δ?c . We see that this is a special case of the Apportionment
Problem in which each state has the same population. The
Apportionment Method which actually minimizes the inner
error sum E(c) is the Method of Webster [12], which can be
calculated by means of the algorithm MINIMALSOLUTIONS
again – but in this special case, it turns out that all Appor-
tionment Methods described in [11] (including Webster and
Hamilton) calculate the same solutions, i.e. (up to order) the

same distances δ(c, i). Even more, each distance of channel
c will either be bδ?cc or dδ?ce, i.e. the optimal distance is only
round down for downc times and round up for upc times for
all δ(c, i). The numbers downc and upc can be easily calcu-
lated without actually running any Apportionment Method at
all:

upc := mod (nslot ,uc) (16)
downc := uc−upc (17)

The meaning of these numbers can now be explained: In
order to minimize the inner sum E(c) for a channel c, downc
distances of all δ(c, i) must be equal to bδ?cc and upc dis-
tances must be equal to dδ?ce. From that rule, we can now
calculate the minimal inner error sum for c:

Emin(c) =
upc · (1−δ?c + bδ?cc)

δ?c
(18)

Now we assume that this minimization is possible for all
channels simultaneously. For such schedules, the outer sum
would also be minimal and from that we infer a minimum:

Ψ
2,min,lower = ∑

c∈C
Emin(c) (19)

However, in Example 7 we have already seen that there
are utilizations for which no schedule exists in which the
previous assumption applies. Thus, for these utilizations,
Ψ2,min,lower does not serve as a true minimum: it is only a
lower bound, which cannot be reached in these cases. When
we use Ψ2,min,lower for normalization in Ω(~s), we might
therefore get values below 1, even if~s is the best schedule
according to our objective.
4.4 Heuristic Computation of Optimal Solu-

tions
In this section, we introduce two heuristics which synthe-

size a high quality schedule for a given utilization.
4.4.1 Heuristic H1

The idea of heuristic H1 is founded in the most inner term
of error sum (11): If we decide to use some channel c at some
slot n, we calculate a local error

L(c,n) :=
((n− lastc)−δ?c)

2

δ?c

where lastc denotes the slot in which c was last used.
In this heuristic, at each slot n we essentially choose the

channel c which minimizes the local error L(c,n). There are,
however, three things to consider:

First, we must be aware that the local error has a parabolic
shape, especially the error will decrease up to some slot and
increase from that point. If we always choose the channel
minimizing L(c,n), the local error for a channel whose error
is increasing will further increase in the upcoming slots and
will perhaps no more be scheduled. We solve that issue by
first determining which channels local error is increasing and
of those, we choose the one with the maximum local error.
We have also found out that it is advisable to take the local
error L(c,n+ 1) of the next slot here, because all local er-
rors of channels which already have an increasing local error
(except for the one chosen), increase further in the next slot.

85

Finally, and only if there are no channels with an increasing
local error, we take all remaining channels into account and
choose the one with the minimum local error.

Second, this procedure does not guarantee that the result-
ing schedule~s actually adheres to the given utilization~u. We
resolve this by counting the number of reuses of each chan-
nel at each slot and denote these numbers by the vector~ucur.
This way, when it comes to decide for a channel, we skip all
the channels which already reached their given utilization,
i.e. channels for which ucur

c = uc holds. By doing so, we can
guarantee that each channel c appears exactly uc times in~s.

Third, the local error is undefined as long as a channel
has not been scheduled once. Since schedules are cyclic,
it actually doesn’t matter when a channel is scheduled first,
thus our idea is to set the local error to zero as long as it is not
yet scheduled. This will make sure that is has a good chance
to be scheduled in an early slot. We will revisit this decision
in a refinement in Section 4.6.

The heuristic H1 is formalized in the following algorithm:
1: ~ucur← (0 · · · 0) . initialize usage count
2: for n = 1 . . .nslot do
3: for c ∈ C with ucur

c = 0 do
4: lastc← n−δ?c . reset unused channels
5: end for
6: Cincreasing←{c ∈ C | (n− lastc)≥ δ?c ∧ucur

c < uc}
7: Cdecreasing←{c ∈ C | (n− lastc)< δ?c ∧ucur

c < uc}
8: if Cincreasing 6= {} then
9: choose c ∈ argmaxc∈Cincreasing

L(c,n+1)
10: else
11: choose c ∈ argminc∈Cdecreasing

L(c,n)
12: end if
13: sn← c
14: lastc← n
15: ucur

c ← ucur
c +1

16: end for
In the loop beginning in line 3, we reset the last usage lastc
of each channel that has not been scheduled yet, such that
L(c,n) = 0 holds for them. In lines 6 and 7, we determine
the channels with an increasing (respectively decreasing) lo-
cal error. We also filter those channels which reached their
targeted utilization. Then, we choose a suitable channel as
described above. Finally, from line 13 until the end of the
loop, we schedule the channel and update the state.
4.4.2 Heuristic 2

The second heuristic H2 is motivated by an example
where the heuristic H1 gives a suboptimal schedule:
Example 10. In Figure 1 we see the local error L(c,n) for
two channels c1 and c2. At slot 1, the local errors of all chan-
nels are decreasing. According to Heuristic H1, we choose
c1 since it has the least local error L(c1,1) = 0.5. In the next
slot, we will choose c2 having a local error of L(c2,2)≈ 0.07,
thus, together we have an error of about 0.57 for these two
slots.

If we choose c2 for slot 1 and c1 for slot 2, we would have
local errors L(c2,1)≈ 0.53 and L(c1,2) = 0, thus an error of
about 0.53 for these two slots, which would be less.

From that example, we came up with a criterion for a pair
of channels, which decides which of the two channels to take

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

n

L(
c,

n)

c1
c2

Figure 1. Local error L(c,n) of two channels c1 and c2.

first, such that the local error sum of both channels (sched-
uled in consecutive slots) is guaranteed to be minimal. Es-
sentially, in slot n, we shall decide for channel ci over chan-
nel c j whenever

L(ci,n)+L(c j,n+1)≤ L(c j,n)+L(ci,n+1) (20)

holds. This can be rewritten and we get

L(ci,n)−L(ci,n+1)≤ L(c j,n)−L(c j,n+1) (21)

Note that the numbers left and right of the inequation depend
on n and ci (c j respectively) only. Therefore, we can calcu-
late L(c,n)−L(c,n+ 1) for each channel c and choose the
channel that minimizes this expression.

In this heuristic, we also do not distinguish channels with
an increasing (respectively decreasing) local error sum, since
channels with an increasing local error implicitly have prior-
ity over channels with a decreasing local error.

The algorithm itself is the same as H1, except that lines 6
through 12 are substituted by

6: CnotAtLimit←{c ∈ C | ucur
c < uc}

7: choose c ∈ argminc∈CnotAtLimit
L(c,n)−L(c,n+1)

4.5 Evaluation of Lower Bound and Heuris-
tics

In order to assess the quality of our heuristics, we first
created a test set T1, consisting of all utilizations with up to
50 slots and up to 10 channels. Since the set of possible
schedules for any utilization~u does not depend on the order
of the elements of~u, we further restricted T1 to a subset T o

1
in which we imposed an order on the utilizations. This is
formalized in the following equations:

T1 := {(u1 · · · un) ∈ Nn | n≤ 10∧
n

∑
i=1

ui ≤ 50}

T o
1 := {(u1 · · · un) ∈ T1 | ∀1≤i< j≤n ui ≤ u j}

There are about 500000 utilizations in T o
1 with a total of

1044 schedules, making it computational infeasible to find
a true minimum by enumeration. Because of this, we first

86

0.88 0.9 0.92 0.94 0.96 0.98 1
0

500

1,000

Figure 2. Histogram of true minimum normalized to the
Lower Bound.

created a subset of T o
1 , consisting of all utilizations with

1 ≤ nslot ≤ 14 slots and 1 ≤ |C | ≤ 10 channels. We added
another subset of T o

1 including all utilizations with up to
1000000 schedules. This resulted in a test set we name T2,
with about 1600 utilizations. With this set, we conducted
several different evaluations in order to assess the quality of
the lower bound and of our heuristics.
4.5.1 Quality of the Lower Bound

For our test set T2, for which we know the exact min-
imum by enumeration, we determined the lower bound of
the minimum Ψ2,min,lower by means of (19). In this evalua-
tion we examine what happens if we used the lower bound
Ψ2,min,lower instead of the true minimum in the normaliza-
tion, i.e. if we assumed Ψ2,min = Ψ2,min,lower in (12). This
way, we get a value of exactly 1 if and only if the lower
bound meets the true minimum, which means that there is a
schedule for which the assumptions made in Section 4.3 are
satisfied. Otherwise, we get a value lower than 1, meaning
that Ω(~s) indicates that there is a better schedule for the un-
derlying utilization ~u, although we know that ~s is the best
schedule.

The results are plotted in a histogram shown in Figure 2.
We can see that about 85% of the calculated lower bounds are
exact. We can also see that nearly 99% have a quality more
than or equal to 0.97. The biggest outlier (with quality 0.88)
was found for the utilization (2 3 6), which we already
discussed in Example 7.

From that, we conclude that it is quite likely that all chan-
nels can be scheduled under the assumptions in Section 4.3
and also that the lower bound is quite close to the true mini-
mum.
4.5.2 Quality of the Heuristics

In this evaluation, we examine the quality of both heuris-
tics H1 and H2. For each utilization of our test set T2, we
create 2 schedules by running both heuristics and calculate
the error sums of these schedules. We normalize them by
means of (12), so schedules of different utilizations become
comparable.

The results are plotted in a histogram shown in Figure 3.
We see that H1 generally performs better than H2: it found
an optimal schedule for 70% of the utilizations, 97% of all
schedules had a normalized error of 0.95 or better and the
error of the worst schedule is at 0.8 for one schedule.

In comparison, H2 found an optimal schedule for only
35% of the utilizations, and 55% had a normalized error of

0 0.2 0.4 0.6 0.8 1
0

500

1,000

H1
H2

Figure 3. Histogram of heuristics H1 and H2 normalized
to true minimum and maximum.

0.95 or better. In addition, the schedules calculated by H2
had a normalized error of 0.2 or worse for 37% of all tested
utilizations. However, heuristic H2 found a better schedule
for 5% of the utilizations. We conclude that the problem
which motivated H2 does not occur often.
4.6 Refinements

For both heuristics, we have seen that our choice of when
to schedule any channel first is not expedient in all cases:
The first use of a channel might be delayed too long, up to
the point when it is only scheduled because other channels
reached their limit. In the problematic cases, we reset the
local error of these channels to 0, which is not sufficient to
finally schedule the channel.

We therefore tried two other strategies (called NORE-
SET and ITERATIVE), which can also be combined. Since
all of the strategies can improve but also worsen the origi-
nal heuristics (i.e. there are utilizations for which the mod-
ified versions finds worse schedules), we advice to calcu-
late the original heuristics as well as the modified versions
and take the better schedule. Because of this, we will now
only characterize the improvements made when applying the
strategies. Note also that the heuristics have a linear run-
time in nslot · |C |, thus calculating several heuristics is still a
leightweight computation.

In the NORESET strategy, we do not reset the local error
but initially pretend that each channel was scheduled in slot
0, i.e. the slot before the first slot. Then in each slot, the error
of yet unscheduled channels rise and we increase chances
that they are finally chosen.

When applying NORESET on H1 (we denote the modified
algorithm by HNORESET

1), we could not really see an improve-
ment: Of all tested utilizations, it found a better schedule
only on 1.7%. In HNORESET

2 we have seen better results: In
36% of all test utilizations, a better schedule could be found.

In the ITERATIVE strategy, we first calculated a schedule
using H1 (respectively H2) and then recorded the latest reuses
of all channels in that schedule. We then run the heuristic
again and initialize lastd to the corresponding slot in the pre-
vious cycle. Note that this iteration can also be repeated, but
on our test set, the schedule was no more improved after the
first iteration.

When comparing H ITERATIVE
1 to H1, we found a bet-

ter schedule in 9.7%. Doing the same comparison for
H ITERATIVE

2 vs. H2, we found a better schedule in 42%.
Note that the two strategies can also be combined, i.e. we

87

0.8 0.85 0.9 0.95 1
0

500

1,000

H1

max(H1,H ITERATIVE
2)

Figure 4. Histogram of H1 and the better of H1 and
H ITERATIVE

2 .

first calculate a schedule by using the NORESET strategy and
calculate another iteration by using the ITERATIVE strategy.

This results in a total of 8 heuristics, but for practical-
ity, we advice to use a combination of H1 and H ITERATIVE

2
which achieves a total improvement of 11.5% compared to
H1 alone. This comparison is also depicted in the histogram
in Figure 4. With these two algorithms, we found the optimal
schedule in 79% of all test cases and 99.6% of the test cases
had a normalized error of 0.95 or better.
4.7 Dynamic Adjustments

In Section 3.4, we addressed the fact that channel quali-
ties are constantly changing over time. This also changes the
optimal utilization, and we gave an algorithm that calculates
an atomic update, i.e. a pair of channels (c−,c+) whose uti-
lization has to be decreased (respectively increased) in order
to converge to the new optimum.

Changing the current utilization has of course an impact
on the current schedule. When we apply an update to im-
prove the current utilization, we have two goals: First, the
schedule must adhere to the new utilization again. This can
easily be assured: In an atomic update (c−,c+) we know that
c− has been used at least once, i.e. there is at least one po-
sition n in~s such that sn = c− holds. If we exchange that
position by c+, we implicitly decrease the utilization of c−
and increase the utilization of c+ by 1, thus, the resulting
schedule will comply with the updated utilization.

Second, we also want the new schedule to be optimal by
means of metric Ω. The problem is that for channels c− and
c+, also the optimal distance δ?c− and δ?c+ changes. We use
the degree of freedom left by the previously described action:
Whenever there are several positions in which c− is used (i.e.
whenever uc− > 2), we may choose any of them. Our strat-
egy here is to choose the position, for which the new error
sum Ψ2(~s′) is least.

This strategy can still decrease the quality of the sched-
ule. There are two ways to counteract on this: First, we can
swap two channels in the schedule and thereby increase the
quality of the schedule, but so far we have not come up with
a satisfying strategy to choose them. Second, we can define
a threshold on metric Ω and calculate a new schedule when
the threshold is reached.

5 Related Work
The authors of [9] give an overview of common control

channel (CCC) design in cognitive radio networks. As the

name suggests, a CCC is a channel primarily used for ex-
changing control messages between nodes of a CRN. This is,
however, not a limitation: some access schemes use the CCC
only for exchanging control messages, while some others
also use it for data communication – either way, there must
be some common channel for the communicating nodes. In
their survey, they group the access schemes by different de-
sign decisions.

First, they give some examples of a sequence based ap-
proach: Each node hops on its own schedule, and for com-
munication, nodes must first find each other. The sched-
ules are therefore optimized to reduce the expected time to
rendezvous (TTR), i.e. the time until two stations finally
meet on the same channel. Most designs [4, 6, 2] do not
take channel qualities into account when creating schedules,
and therefore there is also no need to change the schedule.
At least, the authors of [2] give an outlook on that issue in
their future work. Another sequence based approach is given
in [5], where a ranking of channels, based on primary user
activity, defines how often channels are used. However, there
are three major differences to our scheduling approach: First,
they do not use a channel’s quality but its ranking which can
unproportionally distort the utilizations of channels: for ex-
ample, when having 5 channels, the best one is used in 45%
of all 55 slots4, even if its quality is just slightly better than
that of the seconds best channel, which is used in 29% of all
slots. Second, although bad channels are used rarely in their
schedules, there is no chance that those are not scheduled at
all. Third, the order of channels in their schedules is drawn
randomly, so they do not care for consecutive reuse. How-
ever, they adapt the schedule whenever the ranking changes.
In this case, they replace the whole schedule instead of mak-
ing small changes – on the other hand, each station hops on
its own schedule, thus making only small changes is not an
advantage here.

Besides these sequence based approaches, the authors
of [9] also give some examples on neighborhood coordina-
tion and clustering approaches. In these approaches, a set of
nodes share the same CCC, and, provided that channel hop-
ping is employed, use the same schedule. In [8], a channel
hopping scheme is applied within a cluster of nodes. The
hopping sequence is a random order of all available chan-
nels which is then repeated – the quality of channels has thus
no influence on the utilization. If a primary user appears,
the schedule is adapted by removing the channel from the
schedule, which also causes the schedule length to shorten.
In [10], the authors use a hopping sequence while discover-
ing neighbors. Very much as in [5], they use a ranking of
channels based on their quality. They use the ranking not to
determine the utilization exactly, but use it as a probability
when choosing from the set of channels randomly in order to
create a schedule. The expected utilization of a schedule is
thus based on the channel ranking. When it comes to reuse,
the quality of the schedules very much depends on the qual-
ity of the random generator.

4In their work, the number of slots depends on the number of channels
only.

88

6 Conclusion and Future Work
We have presented a new approach for the dynamic com-

putation and adjustment of channel hopping sequences for
CRNs. The first metric Σ(~u) defines, for a given number of
time slots, the optimal number of channel utilizations, giv-
ing preference to channels of higher quality by using them
more frequently. The second metric Ω(~s) defines, for a given
number of channel utilizations, optimal channel hopping se-
quences, yielding schedules that are less prone to channel
quality changes, e.g. channel failures due to usage by a
primary user. We have conceived algorithms to compute
(nearly) optimal solutions with low complexity in terms of
computation and memory, and have introduced incremental
dynamic schedule adjustments to keep the operation of sec-
ondary users more stable.

In our future work, we will devise a protocol for the op-
eration of CRNs, covering all required functionalities: spec-
trum sensing, management, sharing, and mobility. An inte-
gral part of this protocol will be the computation of schedules
as presented in this paper. Further, time synchronization,
which is required for channel hopping, will be incorporated.
The protocol will support the computation and exchange of
channel quality reports, based on local channel sensing, and
the dissemination of schedules. In particular, it will cover
phases of stabilization to deal with situations where the CRN
is powered up, or where primary users are detected.
7 References

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next gener-
ation/dynamic spectrum access/cognitive radio wireless networks: A

survey. Computer Networks, 50(13):2127 – 2159, 2006.
[2] N. Baldo, A. Asterjadhi, and M. Zorzi. Dynamic spectrum access

using a network coded cognitive control channel. IEEE Transactions
on Wireless Communications, 9(8):2575–2587, August 2010.

[3] M. L. Balinski and H. P. Young. Fair Representation: Meeting the
Ideal of One Man, One Vote. Brookings Institution Press, 2nd edition,
Aug. 2001.

[4] K. Bian, J.-M. Park, and R. Chen. A quorum-based framework for es-
tablishing control channels in dynamic spectrum access networks. In
Proceedings of the 15th Annual International Conference on Mobile
Computing and Networking, MobiCom ’09, pages 25–36, New York,
NY, USA, 2009. ACM.

[5] C. Cormio and K. R. Chowdhury. Common control channel design
for cognitive radio wireless ad hoc networks using adaptive frequency
hopping. Ad Hoc Netw., 8(4):430–438, June 2010.

[6] L. A. DaSilva and I. Guerreiro. Sequence-based rendezvous for dy-
namic spectrum access. In 2008 3rd IEEE Symposium on New Fron-
tiers in Dynamic Spectrum Access Networks, pages 1–7, Oct 2008.

[7] K. Kopfermann. Mathematische Aspekte der Wahlverfahren: Man-
datsverteilung bei Abstimmungen. BI Wissenschaftsverlag, 1991.

[8] L. Lazos, S. Liu, and M. Krunz. Spectrum opportunity-based control
channel assignment in cognitive radio networks. In 2009 6th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, pages 1–9, June 2009.

[9] B. F. Lo. A survey of common control channel design in cognitive
radio networks. Phys. Commun., 4(1):26–39, Mar. 2011.

[10] B. F. Lo, I. F. Akyildiz, and A. M. Al-Dhelaan. Efficient recovery con-
trol channel design in cognitive radio ad hoc networks. IEEE Trans-
actions on Vehicular Technology, 59(9):4513–4526, Nov 2010.

[11] H. F. Niemeyer and A. C. Niemeyer. Apportionment methods. Math-
ematical Social Sciences, 2(56):240–253, Oct. 2008.

[12] F. W. Owens. On the apportionment of representatives. Quarterly
Publications of the American Statistical Association, 17(136):958, dec
1921.

89

