
Adding Security to Implantable Medical Devices:
Can We Afford It?

Muhammad Ali Siddiqi
Erasmus Medical Center,

Rotterdam, The Netherlands

m.siddiqi@erasmusmc.nl

Angeliki-Agathi Tsintzira
University of Macedonia,

Thessaloniki, Greece

angeliki.agathi.tsintzira
@gmail.com

Georgios Digkas
University of Macedonia,

Thessaloniki, Greece

g.digkas@uom.edu.gr

Miltiadis Siavvas
Information Technologies Institute,

Thessaloniki, Greece

siavvasm@iti.gr

Christos Strydis
Erasmus Medical Center,

Rotterdam, The Netherlands

c.strydis@erasmusmc.nl

Abstract
Implantable Medical Devices (IMDs) belong to a class of

highly life-critical, resource-constrained, deeply embedded
systems out there. Their gradual conversion to wirelessly ac-
cessible devices in recent years has made them amenable to
numerous successful ethical-hacking attempts. These attacks
were made possible due to the absence of proper security
provisions in IMDs. IMD manufacturers have only very re-
cently started taking cybersecurity threats seriously, a move
that will force development teams to overhaul IMD designs
and grow sharper reflexes in an industry that has historically
opted for small, careful steps. Thus, valid concerns arise re-
garding the technical feasibility but, chiefly, the economic
viability of adding security to IMDs. In this work, we assess
the economic repercussions of securing IMDs by employing
the concept of technical debt (TD) on the evolving IMD soft-
ware. Our quantitative analysis reveals that security-related
costs are currently well in hand, however, security-code TD
amasses faster and will eventually overtake medical-code
TD. The economic viability of IMDs will, thus, be ensured
only if security-development efforts are allocated significant
resources within the next decade.

Keywords
Technical debt, implantable medical device, IMD, secu-

rity, embedded software

1 Introduction
In 2016, MedSec Holdings and Muddy Waters Research

disclosed their findings concerning cybersecurity vulnerabil-
ities discovered in St. Jude Medical implantable cardiac de-

vices [7]. A bitter litigation war soon ensued between the
two sides, and in the aftermath, the stock price of the man-
ufacturer plummeted by 10 percent [7]. Although security
flaws of undisclosed Implantable Medical Devices (IMDs)
have been reported in the past, this was the first time a secu-
rity firm went public without disclosing the issues first to the
IMD manufacturer giving them due notice. Their rationale
for doing so was – they claimed – to wake up the manufac-
turer and force them into action [7]. In the following years,
cybersecurity issues in medical devices were reported by the
US government to have risen significantly [11, 12, 13]. How-
ever, modern IMDs still lack essential security provisions, a
situation that – if left unchecked – threatens to make IMDs
very hazardous devices in the years to come.

In a world becoming rapidly conscious of cybersecurity
attacks and the need for data privacy, which has led to se-
rious steps like the EU General Data Protection Regulation
2016/679 (GDPR), the slow reflexes of the IMD industry can
be attributed to a number of reasons.

Firstly, this has been a niche industry historically having
no concerns for or expertise on cybersecurity aspects. The
earliest guidance from the FDA on securing wireless medical
devices was issued as late as 2013 [20]. Thus, this is still a
transition period for IMD manufacturers and is, to a point,
reasonable.

Secondly, the highly resource-constrained nature of
IMDs could be perceived as prohibitive for incorporating
mainstream security provisions, as necessitated by the mod-
ern cybersecurity landscape, while maintaining a high de-
vice autonomy and a small form factor [3, 24]. Fortunately,
modern advances in embedded computing permit the ample
use of such provisions without significantly impacting device
autonomy (e.g., see [3] and [42] for IoT and IMDs, respec-
tively).

Thirdly, the steep (re)certification cost of mission-critical
and deeply embedded devices, such as IMDs are, is a ma-
jor impediment to rehashing IMD design to include security
provisions [18]. Though this is a valid concern, delaying in-
corporating IMD security provisions is a very short-sighted
strategy in view of the prospective loss of life and of ensu-

International Conference on Embedded Wireless Systems and Networks (EWSN) 2021
17–19 February, Delft, The Netherlands © 2021 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-5-2

1

Article 7

ing market sales due to successfully mounted cybersecurity
attacks in the future. The St. Jude Medical case serves as a
cautionary tale of this fact.

The fourth reason for being reluctant in adding security
provisions to IMDs is, perhaps, the most serious and insidi-
ous one: Historically, the medical-functionality codebase of
IMDs has been slow to change, driven by a need for high re-
liability and by the sheer fact that little functional change is
necessary in such deeply embedded devices. However, im-
buing IMDs with adept security involves the introduction of
a secondary, security codebase from scratch. We anticipate
that this new codebase – besides the aforementioned feasibil-
ity challenges – more crucially will impose a change of pace
in IMD code updates but also in code maintainability. We
foresee more frequent updates to cope (a) with the virtually
unsecured IMD designs, and (b) with the rapidly expanding
attack surface of IMDs since they are now wirelessly acces-
sible via end-user smartphones, tablets and – indirectly – the
Internet [47]. IMD security, thus, requires a design-paradigm
shift and also is suspect to introducing new, perpetual costs
for IMD-code maintenance, which should be covered by the
IMD industry.

This final, hypothesized reason is the main drive behind
the current paper, which looks at IMD security from a fresh
angle: Is it economically sustainable to add security to
IMDs? Convincing the manufacturers (and other stakehold-
ers) that IMD security is economically viable and sustain-
able, will liberate a lot of security solutions that are consid-
ered at the moment “out of scope”. Along the lines, it will
also allow to invert the psychological bias of denial (“we do
not need security”) and complexity (“we can only add very
trivial security due to costs”). We should stress that this work
is an academic study and is in no way commissioned by or
endorsing any third party whatsoever.

In order to address the IMD-economics question in a tan-
gible way, we adopt in this work the systematic concept
of technical debt (TD) for capturing the software costs of
modern IMDs. We prefer TD over other methods (e.g.,
QMOOD [5] or CK [10]) because it covers a large variety of
issues, ranging from code-convention violations to architec-
tural problems. On top of that, the monetized nature of TD
is proven to be a more helpful way to communicate main-
tainability benefits to non-software-engineering stakehold-
ers, compared to the traditional software metrics.

TD is a software-engineering concept that expresses the
implied development cost that is incurred due to taking short-
cuts during software development in order to reduce the
time-to-market of a product. The implied cost manifests it-
self as the additional effort that is required to maintain the
resulting low-quality code [14]. As with regular (financial)
debt, TD must also be paid back by improving embedded-
code quality, e.g., by means of refactoring code, fixing code
smells etc. The longer such improvements are delayed (or,
equivalently, TD is not paid), the harder the development and
maintenance of subsequent software releases that implement
new functionality or features. It is exactly the new secu-
rity features and their interplay with the existing medical-
functionality ones that we wish to address in this work.

Hardware costs, even if feasible to capture via TD, would

be mostly irrelevant for IMDs. Due to the IMDs’ deeply-
embedded nature, hardware changes never occur within a
given device’s lifetime (since it is implanted) and occur
rarely within a given product line. Modern IMDs are, thus,
software-driven devices (see Strydis [49, Chapter 2]), mean-
ing that hardware changes incur virtually no TD. Besides,
such changes can be captured via their repercussions in the
respective software codebase, which changes far more fre-
quently by comparison.

In order to perform TD analysis of IMD application code,
we design a detailed experiment: Since getting access to suf-
ficient large codebases from various IMD manufacturers is
out of the question for legal and practical reasons, we care-
fully construct our own synthetic historical record of IMD-
codebase changes, captured as software releases over time,
targeting both medical and security aspects of those IMDs.
The record has been made open-access and is freely avail-
able1 to download and put under public scrutiny. It ranges
from 1997 until 2028, so as to capture future IMD changes
and, thus, make future predictions to help IMD stakeholders.
This record will permit us to analyze the impact successive
software releases have on IMDs in terms of TD amassed.
With this work, we make the following novel contributions:

• A systematic analysis of security-related software costs
in IMDs, based on software-TD analysis.

• Predictions of the TD impact of IMD medical and secu-
rity codebases on future IMD costs.

• Along the lines, a short technical-feasibility study of in-
serting mainstream security mechanisms in commercial
IMDs.

The rest of the paper is organized as follows. Background
on the technical-debt concept is provided in Section 2, fol-
lowed by an overview of related works in Section 3. In Sec-
tion 4, we present our experiment design and, in Section 5,
we provide the details of the various IMD-software versions
developed for this study. TD is calculated based on these ver-
sions and evaluated in detail in Section 6; future predictions
on cost are made. We conclude the discussion in Section 7.
2 TD Background & Employed toolflow

Technical Debt (TD) is composed of two parts: principal
and interest. The principal is the amount of money a com-
pany has to pay in order to develop a software system to its
optimal quality. If optimal quality has not been reached, this
effectively means saving effort, or in other words, money.
This amount (i.e., the principal) increases the company’s
capital, and can be invested in other activities. However, this
internal loaning comes at a cost: any future maintenance
activity on the codebase, e.g., for accommodating a new fea-
ture, will require increased effort due to the less-than-optimal
code quality and maintainability. These additional efforts,
are equivalent to paying an interest on a loan. In contrast to
the financial interest, which is calculated at regular time in-
tervals based on a given interest rate, TD interest is amassed
only when the software artifact is being maintained.

Figure 1 illustrates the above concepts. Every design has
the potential to reach an optimal quality level compared to

1https://gitlab.com/neurocomputing-lab/sims

2

Maintenance effort

R
e
p
a
ym

e
n
t

ef
fo

rt

Rn+1
(optimum)

Rn
(optimum)

Rn

(actual)
Rn+1

(actual)

effortr
principal

interest

Figure 1. Relationship between TD principal and interest
where Rn is the nth design release [9]

Maintainability
-metrics

calculation

Breaking-point
calculation

Source
code

Rules
repositories

FITTED
framework

TD
Principal

SonarQube

TD Interest

Breaking
point

Figure 2. Tool flow employed for TD calculation

its actual level. In order to reach this level, the development
team needs to dedicate some effort, which is equal to the
TD principal. This activity, which involves code refactor-
ings, is important for the repayment of TD, and hence, it is
also called repayment effort (effortr). On the other hand, the
effort performed in order to add a new feature, enhance func-
tionality or fix bugs is called maintenance effort (effortm). In
the case of maintaining an optimal design version, adding a
feature requires effort′m, whereas in the actual case, the same
activity requires effortm, which is always greater. The dif-
ference between these two efforts is the TD interest. It is
important to note that effortr and effortm represent only cod-
ing and verification efforts.
2.1 Employed tools

In this work, the different code releases (i.e., intervals)
of the IMD application are committed using the Git version-
control system. TD principal is quantified via SonarQube,
which uses the SQALE method [27] to measure the system
TD (see Figure 2 and Algorithm 1). This tool first gets its
input, i.e., file-level changes between these releases, through
JGit, which is a Java library implementing Git. It then (1) re-
flects the application source code against a set of predefined
rules, to identify violating code snippets, and (2) calculates
the time required to resolve each violation. The total time
required to fix all the violations represents the TD principal.
This value, which is in hours, is converted into currency us-
ing a standard hourly rate (rH) of USD 45.81, which is in
line with the rate of an average developer in the US [54].

The TD interest can be calculated in various ways. In this
work, it is calculated using FITTED, a framework for man-

Algorithm 1: TD Principal (Pn) calculation for a de-
sign release (codebase) Rn

Inputs : n,Rn,rules,rH
Output: Pn
NR← size(Rn);
Nrules← size(rules);
hours← 0;
for i← 1 to NR do

for j← 1 to Nrules do
Vi, j← total jth-rule violations in the ith file;
Ti, j← time required to fix Vi, j;

end
hours← hours+Ti, j;

end
return Pn← hours× rH ;

aging interest in technical debt [1, 9] (see Figure 2), which
assesses TD interest by calculating the difference between
the efforts required to maintain optimal and non-optimal
software artifacts, respectively (see Figure 1). The metrics
(m∈R4) used for quantifying maintainability in order to cal-
culate the above efforts are coupling, cohesion, cyclomatic
complexity and size (in lines of code). They are calculated us-
ing the approach in [2] and are defined in Section 2.2. In FIT-
TED, a fitness function f : R4 → R, is employed that takes
the above metrics as input and returns the fitness values of the
actual and optimal software artifacts, which are f (mn) and
f (m′n), respectively, where mn and m′n are the non-optimal
and optimal metrics belonging to the nth code release. effortm
and effort′m are directly proportional to the respective fitness
values. TD interest (I) accumulated between releases n− 1
and n can then be calculated using (1) [9]:

In = effortm− effort′m

= kn

(
1− f (m′n)

f (mn)

)
, ∀ n ∈ Z+ (1)

Here, kn represents the lines of code that are added be-
tween the current (n) and the previous release (n−1).

2.2 Metrics definitions
We now briefly describe the metrics referred to in this pa-

per that are related to both TD principal and interest:
Accumulated TD: It is the sum of TD principal and in-

terest, and thus, represents the total technical debt.
Coupling and Cohesion: Coupling indicates the num-

ber of dependencies between the files of a software project.
The more the dependencies, the more difficult it becomes to
maintain and extend a software system. The maintainability-
metrics calculator determines coupling using (2), where FOi
(fan out) is the number of files referenced by the ith file, and
NR is the total number of files in a code release.

coupling =
1

NR

NR

∑
i=1

FOi (2)

3

Cohesion represents the degree to which the lines inside
a file interact with each other. It is calculated using the lack
of cohesion in methods (LCOM) metric. If Xi is a set of line
pairs in the ith file that do not share any variable, and Yi is a
set of line pairs that have at least one common variable, then
LCOMi can be calculated using (3) [10], where the maximum
cohesion corresponds to the LCOM value of 0:

LCOMi =

{
|Xi|− |Yi|, |Xi|> |Yi|
0, otherwise

, ∀ i ∈ {1,2, · · · ,NR}

(3)
The overall cohesion of a code release is calculated using

(4).

cohesion =
1

NR

NR

∑
i=1

LCOMi (4)

Low coupling and high cohesion are desirable qualities,
indicating that the software is easy to understand, maintain
and extend.

Cyclomatic complexity (CC): It refers to the number of
independent paths throughout the code. Whenever the pro-
gram control flow branches, e.g., due to an if statement, the
cyclomatic complexity increases by one. The higher the CC,
the harder the software becomes to understand, maintain and
test: The larger the number of paths, the more the tests re-
quired to achieve a sufficient code test coverage.

Lines of code (LOC): This metric indicates the number
of lines of software code that are not part of a comment. LOC
can be used to estimate the programmers’ productivity, dur-
ing the development phase, or the software’s maintainability
during the production phase.

Breaking point: It is the point in the future (in terms of
code releases) at which the cumulative TD interest2 reaches
and surpasses the TD-principal amount. At that point, all
savings accumulated by not repaying TD will have been ex-
hausted as a result of the additional maintenance effort dur-
ing the software evolution [9]. The breaking point bn for the
nth code release (Rn) is calculated using (5), where Pn is the
TD principal at Rn:

bn =
Pn

∑
n
i=1 Ii

(5)

3 Related work
Technical debt is a widely used concept in software en-

gineering. However, its use in improving software security
has not been explored in detail [37]. Siavvas et al. [39] in-
vestigated the potential relationship between TD and soft-
ware security, based on a relatively large repository of pop-
ular open-source software applications. Their preliminary
findings suggest that TD, apart from quality issues, may po-
tentially indicate the existence of security-vulnerability is-
sues in a software. Similarly, TD has only recently been
considered in energy-efficient software design for embedded

2The cumulative TD interest is the sum of the current and all previous
TD interests. It should not be confused with the accumulated TD.

systems. In this context, most of the emphasis has been on
studying the impact of code refactoring on the energy con-
sumption [33, 36]. Example domains include mobile appli-
cations [33] and vehicular technology [16]. However, the ap-
plicability of TD in IMD systems and other related domains,
such as wireless body area networks (WBANs), has not been
explored.

Fu [22] was the first to bring up TD in the context of med-
ical devices. He pointed out that hackers can be regarded as
the messengers of cybersecurity TD because they uncover
the implications of the flaws that exist due to poor design
choices. However, the discussion does not go in depth re-
garding the repercussions of amassed TD in view of securing
future IMDs.

All in all, our work departs from the previous works by
performing a comprehensive TD analysis to study the impact
of adding security to modern IMD systems.

4 Experiment Design
We now explain our experiment design: In order to per-

form TD analysis of the IMD application code, we start
by constructing a synthetic historical record of IMD design
changes, captured as code releases over time, targeting both
medical and security aspects of those IMDs. TD is not af-
fected by exact years but, in order to also give readers a
precise as possible timeline, this historical record dates back
in the past as far as 1997 and extends to speculated future
releases until 2028, so as to capture future IMD changes;
see Table 1. This record will permit us to analyze the im-
pact these software releases have on IMDs in terms of TD
amassed.

An ideal TD analysis would require all the application-
code releases to be coming from the IMD manufacturers.
However, there are various obstacles to that approach:

1. There is no known repository that hosts application
code from IMD manufacturers.

2. The sensitive nature of these products, coupled with the
traditionally cryptic culture of the IMD industry, has
made acquiring code sources directly from the manu-
facturers virtually impossible.

3. The other potential option is to reverse-engineer ex-
planted IMDs. However – setting aside the ethical, le-
gal and practical hurdles – this method will only give us
access to the firmware binaries at best.

The above obstacles necessitate employing a synthetic
codebase in the sense that the included IMD code has been
synthetically created based on publicly available clinician’s
manuals (from multiple manufacturers), news articles, data
sheets, and so on (see source(s) column in Table 1). This
is a painstaking process and, yet, the only viable means of
analyzing the IMD field currently undergoing a critical tran-
sition and drawing important conclusions for both the scien-
tific and the industrial communities. Our confidence in the
codebase representability is further safe-guarded by (a) em-
ploying auxiliary metrics (see Sections 6.1 and 6.2), and (b)
making it publicly available in this work so as to encourage
a critical review and improvement by the various IMD stake-
holders.

4

Table 1. Overview of the constructed IMD timeline. The year, type of release, design-information sources and hard-
ware modifications (if any) are shown.

Release Year Release type Description of added design feature Source(s) Peripherals added*

Medical MCU Security MCU

1 1997 Medical Processor-based basic medical functionality [55] ADC, Cryotimer** –
2 1999 Medical TRX connection for configuration updates [31, 35] USART/SPI –
3 1999 Medical Read-out of sensor values [29] – –
4 2001 Medical Battery-level monitoring and read-out [28] – –
5 2002 Medical Safety modules, e.g., watchdog timer [52] Watchdog –
6 2003 Medical OTA-firmware-update support [19, 46] – –
7 2008 Medical Read-out of data logs with time-stamps [53] RTC –
8 2017 Security Fundamental security services [30] – –
9 2020 Security DoS-attack protection [11, 13, 24, 50, 56, 17] – 2 × USART/SPI
10 2023 Security Replace SW cipher with a HW implementation [43] – Crypto module
11 2026 Security New security services [34, 21, 41] – –
12 2027 Medical Multi-sensory operation [25] – –
13 2028 Security Secure emergency mode [38, 21, 17, 41] – Cryotimer
‘–’ : Not applicable or no change compared to previous.
* Core peripherals (e.g., clock- and energy-management units) not included.
** Ultra-low-energy timer of [43].

Next, we will go over the IMD classes considered, the
selected hardware, and crucial assumptions made in setting
up our experiment. A detailed presentation of the IMD code
releases will be provided in Section 5, which is essential for
motivating our results.

4.1 IMD applications
Two prominent IMD application classes are considered:

neurostimulators and cardiac pacemakers. Cardiac implants
hold the largest market share, whereas the neurostimulators
are projected to witness the fastest growth. Roughly more
than 50% of all IMDs in use belong to these two classes [23].
The hardware and software features included in this work
largely capture the characteristics of actual IMDs. These fea-
tures are inferred from publicly available information, from
multiple IMD manufacturers, and are a good approximation
for answering the research questions raised in this study.

In this work, the general closed-loop structure is kept the
same in both the classes. One of the main differences is the
sampling frequency (fs) employed to capture the physiolog-
ical signal. It has been shown that, for cardiac implants, fs
can be as low as 62.5 Hz [45] whereas, for neurostimula-
tors, a fs of 100 Hz is sufficient since most brain activity
can be found within the 0–50 Hz range [51, 55]. The gen-
eral structure of the application is based on the lightweight,
wavelet-based filter design presented in [55]. Overall, we
have encoded IMD software in C, which is consistent with
the state of the art available throughout the assumed time pe-
riod of study.

Although the doctor’s reader device or the bedside base-
station [48], are crucial components of the broader IMD
system as well, in this study we strictly included IMD-
application code, for two reasons: (i) IMDs are the bottle-
neck in terms of resources, e.g., their battery cannot be re-
placed during the operational lifetime. (ii) Most of the crit-
ical attacks, such as battery depletion, have a lasting effect
on the IMD operation, and they are not targeted towards the
reader.

4.2 IMD hardware platform
IMD manufacturers use commercial off-the-shelf (COTS)

microcontrollers (MCUs) as their processing and/or control-
ling cores in modern IMDs [8]. To the best of our knowl-
edge, these manufacturers do not design their own proces-
sors. In this work, the IMD-application source codes were
tested on an EFM32 Tiny Gecko MCU, which is based on
a 32-bit ARM Cortex-M0+ CPU [43] from Silicon Labs. In
addition to being ultra-low power, the development kit and
the integrated development environment (IDE) of this MCU
come with Advanced Energy Monitoring, which enables live
and accurate measurement of current draw. MCUs based on
Cortex-M have been employed in latest commercial IMDs
available, according to the official Bluetooth SIG listing of
declared products and qualified designs [8]. Hence, this
MCU is a suitable choice for our analysis. Moreover, for the
costs associated with the wireless communication, a com-
mercial implantable-grade transceiver, Microsemi ZL70103,
has been used [31].

As will be shown in Section 6.1, the compiled code fits in
the MCUs that were commercially available throughout the
assumed time period of study. Moreover, the different ap-
plication versions conform to the processing capabilities of
such MCUs. The starting date for our analysis corresponds
to the year when the 16-bit TI MSP430 – known to be used
in IMDs – was first released [6, 38]. Although MCUs and
microprocessors started appearing in commercial IMDs long
before the MSP430 (e.g., RCA 1802 used in [26]), they did
not come with C compilers. Since our TD analysis is only
possible on applications written in C, MSP430 is an early
enough and realistic starting point of our assumed timeline.

The above make it obvious that our hardware setup re-
mains fixed throughout our experiments. This does not
pollute our evaluation process since, as discussed in Sec-
tion 1, hardware-caused TD is negligible. Conversely, pin-
ning down the hardware platform used, allows for an even
comparison of the different code releases. Finally, it should

5

Maintainability
-metrics

calculation

Source
code

QATCH framework

Cppcheck
Security
Model

Security Index

ISO/IEC 25010
 & 27001

Coupling & Cohesion

Code-quality
indicators

Figure 3. Tool flow employed for code-quality measure-
ment

be noted that the low-level, peripheral-support library pro-
vided by the MCU vendor and the cipher library (taken from
a stable repository) are not included in the TD analysis since
this code is not touched by the IMD developers under normal
conditions.
4.3 Software-quality measurement

By fixing the hardware platform, we guarantee fairness
at the hardware level. In order to keep the comparison of
the different software releases also fair and minimally depen-
dent on our coding skills, we employ static code analysis in
order to determine whether the code-quality (and vulnerabil-
ity) levels were maintained throughout the various releases.

We, thus, employ the QATCH framework [40], which is
based on a static-code analyzer called Cppcheck (see Fig-
ure 3). The analyzer is configured to detect security issues
that reside in the source code. A security model aggregates
the results produced by Cppcheck based on a set of inter-
national quality and security standards (i.e., ISO/IEC 25010
and ISO/IEC 27001) and produces a single score, the secu-
rity index, which reflects the internal security level of the an-
alyzed software. Moreover, the coupling and cohesion met-
rics generated by the maintainability-metrics calculator (see
Section 2.1) are also used for measuring maintainability, ex-
tendability and understandability of the different releases.
4.4 Threat model

To understand all hardware and software design choices
made and captured in the codebase record, it is imperative
to establish a threat model for the documented IMDs. Our
threat model is very pessimistic and assumes an attacker with
full control of the wireless channel between the reader and
IMD, i.e., he/she can eavesdrop, modify, insert, block or re-
play messages between these two entities (see Figure 4). The
attacker’s aim could be to (i) modify or prevent patient treat-
ment, (ii) steal patient data, or (iii) manipulate patient related
data. As a result, the IMD-security system is required to pro-
vide certain security services, i.e., confidentiality, integrity,
authentication and availability. In order to ensure user ac-
countability, non-repudiation is also required. These will be
further discussed in Section 5.
5 Timeline of IMD design releases

The time period of the IMD-codebase record extends
from 1997 to 2028 (see Table 1). Without loss of generality,
the timeline up to 2020 is mostly based on historical data,
which is cited in detail. The timeline beyond 2020 is ficti-
tious, yet is generated by the conservative inclusion of secu-

Wireless

Passive attack
(Eavesdropping)

Figure 4. Threat model

rity features commonly proposed in current literature. Most
post-2020 changes are security-related except for the use of
multi-sensor recordings in next-generation neurostimulators
to enable seizure prediction. This is used as an instance of
a widely accepted medical design point in the future [25].
All in all, these design points are not the only choices avail-
able, but are taken as representatives of a general trend. It
should be stressed that whether they will find their way in
commercial IMDs or not does not affect the message of the
paper, which is a cautionary tale: By blindly incorporating
ever-expanding medical/security provisions in future IMDs,
the economic repercussions for manufacturers will be dire.

In order to construct the historical timeline, we opted for
yearly code commits as we found this to be a realistic time
resolution. The timeline (of past code releases) is based on
the earliest reported date in literature regardless of the im-
plant class. This is also important for quantifying the TD
impact of each individual feature (at each code commit),
which would have been lost with coarser time resolution. We
should stress, however, that the timeline resolution does not
impact in any way the TD analysis; only the right sequence
of code commits is relevant. Still, we chose to include par-
ticular timestamps so as to correlate with the historical IMD
development (see Table 1).

In what follows, we detail the IMD code releases. This
timeline is very comprehensive, yet is necessary for clearly
documenting our steps and for providing a strong experiment
basis. The interested reader can skip the remainder of this
section, proceed to the results discussed in Section 6, and
return here for more details on the code releases. We denote
the releases by R<release #>, summarized in Table 1.

R1: This code release implements the basic closed-loop
medical functionality, as discussed in Section 4.1. A low-
energy timer interrupt is used to wake up the MCU every
1/ fs seconds. The internal ADC is then used to sample the
physiological signal. Upon processing the data to determine
if the stimulus is needed or not, the MCU goes back to sleep.

R2: In this release, an RF-communication interface is
added to the IMD for configuration updates. For the exam-
ple applications, the filter-coefficient values and the thresh-
old values of the detection algorithm can be read and/or con-
figured via the wireless interface. Moreover, the treatment
can also be turned on or off. We took an implantable-grade
transceiver (TRX) [31] as an example. This transceiver com-

6

municates with the MCU via an SPI interface, in which the
MCU acts as the master. Upon receiving the data, the TRX
sends a GPIO interrupt to the MCU so that it can retrieve it
from the TRX buffer. Hence, additional code is added to R1
in order to enable this wireless interface. It also includes the
decoding of user commands, based upon which the IMD per-
forms the required actions. Moreover, the IMD application
also formats the data to be sent in bytes in order to use one of
the MCU USARTs as the SPI master and does the opposite
for the received data.

The release date corresponds to the year when the Medi-
cal Implant Communication Service (MICS) was created by
the FCC and a separate band was allotted for IMD com-
munication [35]. Although RF-communication capability in
IMDs existed long before MICS, this year marks the first
year of standardized implant communication.

R3: The IMD is now able to emit basic data logs, such as
the recorded ECG/ECoG values. In addition to determining
the treatment status, these logs can also be used for device
diagnostics and troubleshooting purposes. Among the ear-
liest IMDs to do this were the Medtronic Kappa 400 series
pacemakers [29].

R4: The application can now get the voltage level of the
battery via its ADC and send it to the reader when asked by
the user. Moreover, it also includes an audio-tone-based no-
tification system, to mimic the ones that exist in the vintage
Medtronic GEM III series pacemakers [28], which alerts the
patient when the battery level is too low. In this system, the
application periodically measures the voltage level (daily in
our examples) and determines if it is below a certain thresh-
old. In case of a low battery level, a small speaker is enabled
for 10 seconds via one of the MCU GPIO pins.

R5: This release introduces a watchdog timer as a safety
mechanism. The timer resets the system to recover from a
faulty condition, which could be due to a design bug or an ex-
ternal event that puts the MCU in an unknown state, making
it unresponsive. As an example, an MCU that is stuck during
electrical stimulation can cause serious complications on the
patient’s health. Such timers can be found in many MCUs
including the MSP430 series [52].

R6: In case of a software bug or a major functional-
ity change, the IMD firmware has to be updated. Man-
ual firmware updates imply surgically explanting the IMD,
which is a risky and costly endeavor. Therefore, ideally the
implant should be able to update its firmware wirelessly;
i.e., over the air (OTA). Based on our review of the past
FDA advisories, we found that the earliest prescribed IMD-
firmware update was reported in 2003 for a St. Jude Medi-
cal pacemaker (ADx pulse generator) launched in the same
year [19, 46].

In release R6, the firmware update is made possible using
an application bootloader. In contrast to a standalone boot-
loader, which directly overwrites the existing application im-
age in the instruction memory through a serial interface such
as UART or SPI, the application-bootloader update is a two-
stage process. The existing application first downloads the
new image (via the transceiver) into an external flash or a

vacant portion in the main (internal) flash3. It then calls the
application bootloader to validate the new firmware image
and copy it from the download space to the code space in the
internal flash. The advantage of using an application boot-
loader, especially in a life-critical medical device, is that any
errors introduced during the downloading stage do not neg-
atively impact the running application. This is because the
entire image is downloaded and its integrity verified before
starting the actual update [44].

R7: This release implements more detailed data logs,
which can be retrieved by the physician. These logs in-
clude the exact time stamps of certain events, e.g., epileptic
seizures. This is made possible by using a real-time clock
(RTC) module, which started appearing in some MSP430
parts (MSP430FG47x) around this time frame [53]. In this
release, the user is also able to set the date and time of the
device via the wireless interface.

R8: As discussed in Section 1, due to the multiple re-
ported vulnerabilities in IMD systems over the last decade or
so and the strict measures taken by the FDA, we have finally
started seeing standardized data-encryption implementations
in these systems. For instance, the Azure pacemaker from
Medtronic [30] implements NIST-standard encryption.

Release R8 implements an ISO/IEC 9798-2-based, three-
pass, mutual-authentication protocol, which is based on a
pre-shared symmetric key between the reader and the im-
plant. For data confidentiality, i.e., encrypting the reader
commands and the IMD responses, the lightweight block-
cipher SPECK is employed with block and key sizes of 64
and 128 bits, respectively. SPECK has been standardized
in ISO/IEC 29167-22 as part of the RFID air interface stan-
dard (ISO/IEC 18000). For authentication and data integrity,
a Cipher-based, Message-Authentication Code (CMAC) is
employed, which generates a 32-bit MAC. Similarly, SPECK
is used in counter mode to generate a fresh, 32-bit pseudo-
random number (nonce) for replay protection. The interested
reader can refer to [50] for a detailed description of the pro-
tocol and algorithms used.

It is important to note that we did not include the C-code
implementation of SPECK in the TD analysis. This is be-
cause usually such code is taken from a stable repository and
left untouched by the IMD developers.

R9: Based on past ethical-hacking efforts on IMD sys-
tems, denial-of-service (DoS) attacks have entered the fray
as one of the easiest attacks to mount [24, 11, 13]. In
these attacks, which target the IMD availability, an attacker
tries to send continuous connection requests in order to keep
the IMD from performing its main functionality (Function-
DoS), or to deplete the IMD battery in order to shut it down
(Battery-DoS) [50].

One of the effective ways of protecting against Function-
DoS is – next to the main, medical MCU – to introduce a
second MCU in the IMD for handling communication pack-
ets and security. Battery-DoS can be prevented by initially
operating this security MCU and the radio transceiver on the
energy harvested from the incoming RF signal and allowing

3The choice of flash for downloading the image does not have an impact
on TD since the corresponding change in the source code is negligible.

7

Shut down
(due to no

incoming RF)

PoR using
harvested
energy

Authenticate
reader

Finish data
transfer

Trusted
reader?

Switch to
battery supply

Yes

Switch to
harvested
energy

Figure 5. State machine of secondary, security MCU
(PoR: Power-on reset)

Security MCU

SPI

Medical MCU

SPI

Sensor

Interrupts Interrupt

supplysupply

OOB

EH system

Interrupt/
PWM

Audio
tone

Actuator

IMD
battery

Radio Transceiver

Figure 6. System overview of final IMD design, including
DoS resistance (R9) and emergency access (R13)

ReaderHospital Smart card

Reader-card authentication

User authentication

IMD

Session-key establishment between the IMD
and the reader

User enters command,
which is then signed by

the card

Secure reader-IMD communication

Out-of-band session-key transfer

OR

Figure 7. Overview of the security protocol employed in
R11-R13

them to use the battery supply only after the external entity
is authenticated. The rationale behind this approach is sim-
ple and can be conveyed from the finite state machine (FSM)
of the security MCU, as shown in Figure 5. The updated
IMD design is, then, shown in Figure 6. The signal to switch
the security MCU and TRX power supply comes from the
security-MCU GPIO pin, as shown in the figure. The two
MCUs are connected via the SPI interface in which the secu-
rity MCU acts as the master.

Various research works have advocated this dual-MCU
approach in latest literature, [24, 50, 56, 17], which pro-

vides strong motivation for the industry to adopt in the future.
Hence, in release R9, a separate MCU is added to the IMD
to act as the aforementioned security MCU (see Figure 6).
As a result, this release onwards, we consider two separate
C applications for TD analysis. It should be noted that the
use of the watchdog timer from R5 in the medical MCU also
ensures that the medical treatment will be resumed in case
communication is disrupted due to a disturbance in the wire-
less power transfer, which is a potential risk that R9 intro-
duces.

R10: It is very much possible that a security primitive em-
ployed in an IMD becomes outdated after a certain time due
to newly reported attacks on the primitive or due to the avail-
ability of better alternatives in terms of security, energy con-
sumption and/or performance. To reflect this in our analysis,
in release R10, SPECK is replaced by the more secure AES-
128. Many modern MCUs have a dedicated crypto periph-
eral that implements AES-128, among other primitives [43].
In this release as well, the security MCU uses its internal
AES-128. It is important to note that even though a hardware
implementation of the cipher is used, the required change
will still be in software since the crypto peripheral sits within
the MCU.

R11: In the past, IMDs could only be accessed by the pa-
tient’s physician. Modern IMDs, on the other hand, allow
access to multiple users [30]. As a result, there is an in-
creased possibility of medical mistakes, malpractice or even
insider attacks. Therefore, non-repudiation is required to en-
force user accountability. It ensures that a person is not able
to deny their involvement in an IMD access if it negatively
impacts the patient’s health. Moreover, the current landscape
also requires access control so that a user is only able to send
commands to the IMD according to her allowed privileges.
Finally, the possibility of using multiple readers implies that
the security based on pre-shared keys is not practical. Hence,
secure-key management is also needed.

Similarly to the DoS discussion for R9, we observe an
increased focus in recent literature on providing the above
services due to the nature of the emerging threats. Many
of these works, such as [34, 21, 41], propose the use of addi-
tional entities, i.e., a user smart card and a trusted third party.
In R11, one of these protocols [41] is implemented in order to
provide the above security services. A brief overview of the
protocol is shown in Figure 7. Non-repudiation is enabled by
employing the signature of the command, which is signed by
a personal smart card, and is sent to the IMD along with the
command itself. Moreover, a hospital server is added to the
overall system as a trusted third party in order to enable key
management, access control and user authentication. Hence,
this version requires the reader to be connected to Internet.

The IMD stores the signature so that it can be retrieved
for dispute resolution in case the corresponding command
results in the deterioration of patient’s health. The signature
must, therefore, be stored in a non-volatile memory, e.g., in
the security-MCU flash memory, to protect against MCU re-
sets.

R12: Accurate prediction of epileptic seizures is an open
topic in the neuroscience research. Neurostimulators are
ideal candidates to enable such a treatment since they are

8

Table 2. Summary of IMD resource usage (R13 (2028))

Lifetime∗ (years) Delay∗∗ (ms) Prog.-memory

Neuro Cardiac footprint (kB)

Without Security 8.7 14.6 20.3 27.5
With Security 7.1 11.7 85.9 53.1§

* For a typical IMD battery size of 9.5 Ah.
** It includes security-processing and TRX (SPI data handling and RF

transmission) delays pertaining to a communication session in which
256 bytes of filter coefficients are read from the IMD.

§ It includes the program-memory footprint of both MCUs.

already used for seizure suppression. One of the prominent
research directions is to add multiple sensors to the implant
in order to improve the prediction accuracy [25]. In order
to capture any demanding future medical enhancement, R12
mimics the above scenario in which the closed-loop IMD
system is based on multi-sensor inputs.

In this version, the MCU ADC is used in scan mode to
sample multiple sources. In order to process these samples,
a separate filtering operation per each added input source is
required. Since only one MCU is employed for the medical
application, these executions have to be performed sequen-
tially, which increases the active-vs-sleep duty cycle of the
MCU.

R13: Another important security feature that is touted in
modern literature is emergency access [38, 21, 17], which
does not exist in IMDs at present. This feature allows
paramedics, which are unknown to the patient, secure access
to the IMD in an emergency scenario. Since the paramedic
reader and IMD do not share a secret, the protocol from R11
can still be used. However, it cannot work in the absence
of an Internet connection, which can help establish trust re-
motely.

Release R13 solves this problem by using an out-of-band
(OOB) channel, such as galvanic coupling, ultrasound com-
munication etc. This channel is used to pair the reader and
the IMD by transferring a fresh symmetric key to enable se-
cure communication (see Figure 7). One approach is to em-
ploy ASK modulation along with PWM encoding of bits in
the reader-IMD OOB channel. Bits 0 and 1 can be differ-
entiated by choosing different PWM duty cycles for each.
The security MCU wakes up (via an interrupt) on the rising
edge of every received bit. It then records the value on the
same GPIO pin after a certain time period (with the help of a
timer) in order to determine the bit level (1 or 0). The OOB
data rate does not have to be high since the volume of data to
be transferred, i.e., the session key, identifiers and nonces, is
very low. The system architecture of the final IMD design is
shown in Figure 6.
6 Experimental Results

In this section, we present the results of the TD analysis,
which tries to capture the repercussions of introducing secu-
rity at a certain point in the IMD-development timeline, and
its interplay with the medical application.
6.1 Checking technical feasibility

We first briefly perform an IMD-autonomy and -
performance analysis of the final design (R13 (2028)) in or-

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

200

400

600

0

0.2

0.4

0.6

0.8

1
Security introduced

Coupling (Medical)

Cohesion (Medical)

Coupling (Security)

Cohesion (Security)

Security index

Figure 8. Overview of the code quality across all the IMD
releases for both the medical and the security codebases.

der to ensure that our experimental code does not introduce
prohibitive energy, processing and area overheads. For this
analysis, the MCU-processor clock frequency is set to the
default value of 19 MHz, whereas the effective data rate of
the transceiver is set to the maximum of 265 kbps. The sup-
ply voltage of the setup is set to 3.3 V. It is assumed that the
transceiver is involved in 3 minutes of active data communi-
cation per day, which corresponds to the worst-case behav-
ior compared to a commercial bedside reader [48]. More-
over, the pacemaker energy consumption during stimulation
is assumed to be 20 µJ per heartbeat, based on worst-case
figures from commercial devices [15]. The neurostimula-
tor energy consumption during stimulation is borrowed from
an actual seizure-suppression system [32]: under worst-case
conditions, the stimulation current, pulse width, pulse fre-
quency and burst duration are assumed to be 12 mA, 1 ms,
333 Hz and 10 seconds, respectively, with an average of 4.3
seizures per day [4].

The results are summarized in Table 2, which shows that
the IMD resource usage is within acceptable limits: the
calculated battery lifetime is sufficiently long, the security-
processing and communication delays are negligible, and the
program-memory footprints are small. These results also
agree with previous findings [42, 41] that security does not
significantly impact IMD autonomy.
6.2 Checking code quality

Figure 8 provides the results of the static code analysis in-
troduced in Section 4.3. The security index is high across
all the releases, which means that the changes that were made
throughout these versions do not introduce new code vul-
nerabilities. Moreover, coupling and cohesion values stay
fairly constant across all the releases, indicating that a con-
sistent code quality was kept throughout the analyzed time-
line.
6.3 Technical-debt analysis

The TD principal, interest and accumulated TD of the
IMD application-code releases are summarized in Figure 9.
As mentioned in Section 2.1, an hourly rate of USD 45.81
is used for the TD calculations. It should be clarified that
the TD costs correspond to additional repayment and main-
tenance activities and they do not represent the total devel-
opment costs, as previously illustrated in Figure 1; these ac-
tivities correspond to coding and verification efforts only.

We notice a steep increase in the TD principal at
R2 (1999), since therein is implemented the serial interface

9

with the transceiver and the command decoding. This, in-
terestingly, indicates that the wireless-interface-related code
forms the major component of the application instead of
the medical functionality. Moreover, because of this large
increase, the next release (R3 (1999)) causes a relatively
steeper rise in the TD interest due to the increased mainte-
nance effort. The decline in the TD principal of the med-
ical application at R8 (2017) and R9 (2020) is because the
communication-related processing in the medical code was
moved to the security code. However, this reduction does
not match the corresponding rise in the security-code princi-
pal during the same period due to the security-protocol im-
plementation. What is more, two serial interfaces – one to
the transceiver and one to the medical-application MCU –
are added in R9 (2020). It is important to note that the ob-
served rise in the security-code TD principal does not include
the cipher library in the analysis, as mentioned in the R8 de-
scription. As a result, we do not see any noticeable change
in the principal costs when replacing the cipher (i.e., SPECK
with AES-128) since only the associated wrapper functions
required change (R10 (2023)).

Having explained the reasons behind the morphology of
the TD curves, let us now take a step back and assess the
information they offer us. We can see that the total TD
principal (grey line) reaches a maximum cost of just un-
der USD 1,900, whereas the total TD interest for individ-
ual releases stays below USD 190. From either of the two
curves, it can be deduced that the security code is indeed
more costly to extend and maintain than the medical code.
The interest, especially, is at least double for the security
component. As a result, the accumulated TD (Figure 9c)
is mostly driven by that component. By inspecting the total
trend line, it is also interesting to notice that security-driven
code changes will eventually overtake medical-driven ones
in the future. Yet, we should pay attention to the actual cost
these changes incur, as predicted by the analysis tools: Accu-
mulated TD reveals that additional IMD-code repayment and
maintenance costs are limited to only a few thousand dollars
in the near future but those can drastically deteriorate for
IMD manufacturers in the longer term, if left unchecked.

In Figures 10a and 10b, two of the components for cal-
culating the TD interest have also been plotted: cyclomatic
complexity and lines of code, so as to offer more insights
on our application behavior. We see that the cyclomatic
complexity (CC) of the security code increases at a faster
rate than that of the medical code due to the type of com-
plexity involved in the respective applications: Even a mini-
mal change in the security protocol results in a significant in-
crease in the corresponding FSM complexity (see Figure 5).
For instance, numerous fallbacks are added so that the IMD
FSM returns to a stable state in case the communication
is disrupted midway. Besides, a significant portion of the
IMD code is composed of control-flow statements. As a
result, the Lines-of-Code (LOC) curve is very similar to
the cyclomatic-complexity curve. Note that the LOC val-
ues seem to be relatively low. This is because the low-level
peripheral-support library from the MCU vendor and the ci-
pher library are not included in the TD analysis since they
are not modified by the IMD developers.

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

500

1000

1500

2000
Security introduced

Medical

Security

Total

(a) TD Principal

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

50

100

150

200
Security introduced

Medical

Security

Total

(b) TD Interest

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

500

1000

1500

2000
Security introduced

Medical

Security

Total

(c) Accumulated TD
Figure 9. Overview of total and per-IMD codebase (med-
ical, security) TD metrics (see Section 2.2 for metrics def-
initions). Solid lines indicate existing, documented IMD-
code features, while dotted lines show future, projected
features. Costs are calculated based on default Sonar-
Qube hourly rate ($45.81).

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

50

100

150

200
Security introduced

Medical

Security

Total

(a) Cyclomatic complexity

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

500

1000
Security introduced

Medical

Security

Total

(b) Lines of code
Figure 10. Overview of CC and LOC for the security and
medical codebases.

10

1995 2000 2005 2010 2015 2020 2025 2030

Time

0

20

40

Security introduced
Medical

Security

Figure 11. Overview of the breaking point for the secu-
rity and medical codebases.

The higher CC of the security code is, finally, also re-
flected in the breaking-point curves plotted in Figure 11;
The potential breaking point of the security code, at a given
point in time, can be reached significantly earlier than that
of the medical code. This observation indicates that the se-
curity code should be developed after careful planning. It
also tells us that the medical code is easier to maintain since
its breaking-point curve is always higher than the security
curve.

6.4 Discussion
The work in this paper was carried out in order to an-

swer the critical question whether adding security to modern
IMDs is an economically viable and sustainable venture for
IMD manufacturers (and other stakeholders). In the face of
a rising number of cybersecurity attacks, this question be-
comes very relevant and time-sensitive.

The analysis has revealed that adding security code to an
IMD medical-only codebase is going to be more difficult (in
effort, and thus in cost) than adding new medical code, as
the TD-principal estimations reveal (Figure 9). It will also
be more difficult to maintain the security code compared to
the medical one. These difficulties translate to higher de-
velopment costs, which stem from the fact that the security
codebase is generally more complex, more volatile and can
deteriorate or break more easily. Fortunately, such software
costs are rather low and can be shouldered by manufacturers.

Our analysis has necessarily relied on a synthetically con-
structed codebase; however, should our TD projections be
accurate, the security-driven TD can become critical in the
future. This finding is worrisome given that the security pro-
visions of future IMD systems will grow to encompass also
IMD readers (see Figure 7) and even remote IMD-company
servers, each extra component introducing its own security
codebase. In this context, security-driven TD is expected to
rise even more steeply. Therefore, unlike the medical code-
base (which in many cases remains practically unchanged
across IMD generations), the security codebase has to be fre-
quently refactored for the overall TD to remain in check.

The above findings lead to the main conclusion that
present-day IMDs can be financially tractable with (per-
haps necessarily) “quick and dirty” security solutions but this
modus operandi has to transition soon to a more structured
security-development approach so as to keep development
costs under control and, thus, the viability of future IMD
systems high for IMD manufacturers, insurance companies,
healthcare systems and, eventually, patients themselves.

7 Conclusions
In the recent past, there has been a significant ramp-up in

IMD ethical-hacking activities. The regulatory bodies world-
wide are also increasing their pressure on the IMD manufac-
turers to improve the security of these devices. In this work,
we embarked on a methodology to quantitatively analyze the
cost of adding security in the existing devices from the per-
spective of embedded-software technical debt (TD). This is
the first time that TD, which is a relatively new concept, has
been used to analyze this class of embedded systems. By
necessarily relying on a synthetically constructed IMD code-
base, we found that security software, on one hand, is costlier
to develop and maintain than the preexistent, purely medical
software in IMDs but overall costs are insignificant in the
short term. On the other hand, the higher complexity and
volatility of the security codebase is projected not only to
dominate future costs but also to disrupt the economic viabil-
ity of IMD products in the next decade, if the IMD-software
TD growth is left unchecked.

8 Acknowledgments
This work has been supported by the EU-funded project

SDK4ED (Grant Agreement No. 780572) and would not
have been completed without the invaluable feedback of
Prof. Christian Doerr, Dr. Apostolos Ampatzoglou, Prof.
Alexandros Chatzigeorgiou and Prof.dr.ir. Paris Avgeriou.

9 References
[1] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeor-

giou. Establishing a framework for managing interest in technical
debt. In 5th International Symposium on Business Modeling and Soft-
ware Design, BMSD, 2015.

[2] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avge-
riou. Software metrics fluctuation: a property for assisting the metric
selection process. Information and Software Technology, 72:110–124,
2016.

[3] J.-P. Aumasson and A. Vennard. Cryptography in industrial embedded
systems: our experience of needs and constraints. In NIST Lightweight
Cryptography Workshop 2019. NIST, 2019.

[4] M. Balish, P. S. Albert, and W. H. Theodore. Seizure frequency in in-
tractable partial epilepsy: a statistical analysis. Epilepsia, 32(5):642–
649, 1991.

[5] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on software engineer-
ing, 28(1):4–17, 2002.

[6] S. Barrett and D. Pack. Microcontroller Programming and Interfacing
TI MSP430. Number pt. 1 in Synthesis Lectures on Digital Circuits
and Systems. Morgan & Claypool Publishers, 2011.

[7] V. Blue. Turns out, pacemaker security is terrifying
[online]. 2017. URL: https://www.engadget.com/
2017-04-21-pacemaker-security-is-terrifying.html.

[8] Bluetooth SIG. View previously qualified designs and declared prod-
ucts [online]. 2020. URL: https://launchstudio.bluetooth.
com/Listings/Search.

[9] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amana-
tidis. Estimating the breaking point for technical debt. In 2015 IEEE
7th International Workshop on Managing Technical Debt (MTD),
pages 53–56. IEEE, 2015.

[10] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493,
1994.

[11] CISA. ICS Advisory (ICSMA-17-241-01) [online]. 2017.
URL: https://www.us-cert.gov/ics/advisories/
ICSMA-17-241-01.

11

[12] CISA. ICS Advisory (ICSMA-18-179-01) [online]. 2018.
URL: https://www.us-cert.gov/ics/advisories/
ICSMA-18-179-01.

[13] CISA. ICS Medical Advisory (ICSMA-19-080-01) [online].
2020. URL: https://www.us-cert.gov/ics/advisories/
ICSMA-19-080-01.

[14] W. Cunningham. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4(2):29–30, 1992.

[15] M. Deterre. Toward an energy harvester for leadless pacemakers.
Theses, Université Paris Sud - Paris XI, July 2013. URL: https:
//tel.archives-ouvertes.fr/tel-00868838.

[16] U. Eliasson, A. Martini, R. Kaufmann, and S. Odeh. Identifying and
visualizing architectural debt and its efficiency interest in the automo-
tive domain: A case study. In 2015 IEEE 7th International Workshop
on Managing Technical Debt (MTD), pages 33–40. IEEE, 2015.

[17] N. Ellouze, S. Rekhis, N. Boudriga, and M. Allouche. Powerless se-
curity for cardiac implantable medical devices: Use of wireless iden-
tification and sensing platform. Journal of Network and Computer
Applications, 107:1–21, 2018.

[18] Emergo. Compare the time, cost and complexity of get-
ting regulatory approval for medical devices [online]. 2017.
URL: https://www.emergobyul.com/resources/worldwide/
global-regulatory-comparison-tool.

[19] FDA. ADX Pulse Generator Firmware Anomaly Correction. De-
vices@FDA, 2003.

[20] FDA. Radio Frequency Wireless Technology in Medical Devices -
Guidance for Industry and FDA Staff. Guidance Document, 2013.

[21] C. Fu, X. Du, L. Wu, Q. Zeng, A. Mohamed, and M. Guizani. POKs
Based Secure and Energy-Efficient Access Control for Implantable
Medical Devices. In Security and Privacy in Communication Net-
works, pages 105–125, 2019.

[22] K. Fu. On the Technical Debt of Medical Device Security. In Frontiers
of Engineering: Reports on Leading-Edge Engineering from the 2015
Symposium. National Academies Press, 2016.

[23] Grand View Research. Microelectronic Medical Im-
plants Market Analysis Report by Product, by Technol-
ogy, And Segment Forecasts, 2018 - 2025, 2018. URL:
https://www.grandviewresearch.com/industry-analysis/
microelectronic-medical-implants-market.

[24] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. De-
fend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-
power defenses. In 2008 IEEE Symposium on Security and Privacy
(sp 2008), pages 129–142. IEEE, 2008.

[25] L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and H. P.
Zaveri. Seizure prediction—ready for a new era. Nature Reviews
Neurology, 14(10):618–630, 2018.

[26] M. E. Leckrone and V. T. Cutolo Jr. Multi-mode microprocessor-based
programmable cardiac pacer, Dec. 4 1984. US Patent 4,485,818.

[27] J.-L. Letouzey. The SQALE method for evaluating technical debt.
In 2012 Third International Workshop on Managing Technical Debt
(MTD), pages 31–36. IEEE, 2012.

[28] Medtronic. GEM® III VR 7231 Implantable Cardioverter Defibrilla-
tor - System Reference Guide, 2001.

[29] Medtronic. Kappa® 400 series and DX2 pacemakers Model 9952 -
Volume II, Pacemaker Reference Guide, 2001.

[30] Medtronic. AzureTM S SR MRI SureScanTM W3SR01 - Device Manual,
2017.

[31] Microsemi. ZL70103 Medical Implantable RF Transceiver -
Datasheet, Revision 2, 2015.

[32] NeuroPace. RNS® System User Manual, 2019.
[33] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia.

On the impact of code smells on the energy consumption of mobile
applications. Information and Software Technology, 105:43–55, 2019.

[34] C.-S. Park. Security mechanism based on hospital authentication
server for secure application of implantable medical devices. BioMed
research international, 2014, 2014.

[35] Pike and I. Fischer. Communications Regulation. Communications

Regulation. Pike & Fischer, 2003.
[36] G. Pinto, F. Soares-Neto, and F. Castor. Refactoring for energy effi-

ciency: A reflection on the state of the art. In 2015 IEEE/ACM 4th
International Workshop on Green and Sustainable Software, pages
29–35. IEEE, 2015.

[37] K. Rindell, K. Bernsmed, and M. G. Jaatun. Managing security in
software: Or: How i learned to stop worrying and manage the security
technical debt. In Proceedings of the 14th International Conference
on Availability, Reliability and Security, pages 1–8, 2019.

[38] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson. SoK:
Security and privacy in implantable medical devices and body area
networks. In 2014 IEEE Symposium on Security and Privacy, pages
524–539. IEEE, 2014.

[39] M. Siavvas, D. Tsoukalas, M. Janković, D. Kehagias, A. Chatzigeor-
giou, D. Tzovaras, N. Aničić, and E. Gelenbe. An empirical evaluation
of the relationship between technical debt and software security. In
9th International Conference on Information Society and Technology,
2019.

[40] M. G. Siavvas, K. C. Chatzidimitriou, and A. L. Symeonidis. Qatch-an
adaptive framework for software product quality assessment. Expert
Systems with Applications, 86:350–366, 2017.

[41] M. A. Siddiqi, C. Doerr, and C. Strydis. IMDfence: Architecting
a Secure Protocol for Implantable Medical Devices. IEEE Access,
8:147948–147964, 2020.

[42] M. A. Siddiqi and C. Strydis. IMD security vs. energy: are we tilting at
windmills? POSTER. In Proceedings of the 16th ACM international
conference on computing frontiers, pages 283–285, 2019.

[43] Silicon Labs. EFM32 Tiny Gecko 11 Family - Reference Manual,
2018.

[44] Silicon Labs. UG103.6: Bootloader Fundamentals, 2020.
[45] F. Simon, J. P. Martinez, P. Laguna, B. van Grinsven, C. Rutten, and

R. Houben. Impact of sampling rate reduction on automatic ecg delin-
eation. In 2007 29th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, pages 2587–2590. IEEE,
2007.

[46] St. Jude Medical. Product Performance Report - Cardiac Rhythm
Management, 2006.

[47] St. Jude Medical. Clinician Programmer App For Spinal Cord Stimu-
lation Systems Model 3874 - Clinician’s Manual, 2015.

[48] St. Jude Medical. FAQs - Merlin.netTM Patient Care Network (PCN)
8.0 Q&A, 2015.

[49] C. Strydis. Universal Processor Architecture for Biomedical Implants:
The SiMS Project. PhD thesis, Delft University of Technology, Delft,
Netherlands, March 2011.

[50] C. Strydis, R. M. Seepers, P. Peris-Lopez, D. Siskos, and I. Sourdis.
A system architecture, processor, and communication protocol for se-
cure implants. ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 10(4):1–23, 2013.

[51] W. O. Tatum. Ellen R. Grass Lecture: Extraordinary EEG. The Neu-
rodiagnostic Journal, 54(1):3–21, 2014.

[52] Texas Instruments. MSP430F15x, MSP430F16x, MSP430F161x
Mixed Signal Microcontroller - Datasheet, 2002.

[53] Texas Instruments. MSP430FG47x Mixed Signal Microcontroller -
Datasheet, 2008.

[54] U.S. Bureau of Labor Statistics. May 2019 National Occupational
Employment and Wage Estimates United States [online]. 2019. URL:
https://www.bls.gov/oes/current/oes_nat.htm.

[55] M. N. van Dongen, A. Karapatis, L. Kros, O. E. Rooda, R. M. Seep-
ers, C. Strydis, C. I. De Zeeuw, F. E. Hoebeek, and W. A. Serdijn.
An implementation of a wavelet-based seizure detection filter suitable
for realtime closed-loop epileptic seizure suppression. In 2014 IEEE
Biomedical Circuits and Systems Conference (BioCAS) Proceedings,
pages 504–507. IEEE, 2014.

[56] Q. Yang, S. Mai, Y. Zhao, Z. Wang, C. Zhang, and Z. Wang. An
on-chip security guard based on zero-power authentication for im-
plantable medical devices. In Circuits and Systems (MWSCAS), 2014
IEEE 57th International Midwest Symposium on, pages 531–534.
IEEE, 2014.

12

