
SERVOUS: Cross-Technology Neighbour Discovery and
Rendezvous for Low-Power Wireless Devices

Rainer Hofmann
Institute of Technical Informatics

Graz University of Technology, AT

rainer.hofmann@tugraz.at

Carlo Alberto Boano
Institute of Technical Informatics

Graz University of Technology, AT

cboano@tugraz.at

Kay Römer
Institute of Technical Informatics

Graz University of Technology, AT

roemer@tugraz.at

Abstract
Cross-technology communication (CTC) supports a di-

rect message exchange between different wireless technolo-
gies, enabling explicit interaction between devices with in-
compatible physical layer (PHY). State-of-the-art work typ-
ically neglects the integration of CTC alongside the native
communication stack of a device. As result, current schemes
assume that CTC can be carried out at any time and that de-
vices know their neighbours in advance, which is unrealistic
or impractical for most duty-cycled low-power wireless sys-
tems. In this paper, we fill this gap and present SERVOUS, a
cross-technology neighbour discovery and rendezvous pro-
tocol allowing a device to autonomously discover and com-
municate with surrounding nodes operating on another PHY,
while still operating at low duty cycle. SERVOUS reuses a
fraction of the radio idle time to discover the presence of
nearby appliances capable of CTC and learns their config-
uration. It then exploits the Chinese remainder theorem to
determine the minimum amount of idle time that needs to be
reused to guarantee a cross-technology rendezvous, and can
adjust itself to maximize energy efficiency while satisfying
specific application requirements. We base SERVOUS on low-
power probing to minimize the channel utilization and inte-
grate it into IEEE 802.15.4 and Bluetooth Low Energy de-
vices running Contiki. We further evaluate the performance
of SERVOUS experimentally and show its ability to let hetero-
geneous low-power wireless devices interact with each other
using CTC, without affecting their native communications.
Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Wireless communication
General Terms

Design, Algorithms, Performance, Efficiency.
Keywords

Cross-Technology Communication, Internet of Things,
Media Access Control, Neighbour Discovery, Rendezvous.

1 Introduction
Cross-technology communication (CTC) has emerged as

a suitable alternative to multi-radio gateways to allow a direct
interaction between wireless devices with incompatible phy-
sical layer (PHY). CTC is usually achieved by making use
of a mutually-available side channel and allows the creation
of attractive services, such as clock synchronization [1],
channel coordination [2], and sensor re-configuration [3].
A large body of work has focused on devices sharing the
2.4 GHz ISM band and designed CTC schemes enabling a
direct communication between popular wireless technolo-
gies such as Bluetooth Low Energy (BLE), IEEE 802.15.4,
and Wi-Fi [4]. In particular, existing CTC approaches make
use of either packet-level modulation or PHY emulation to
convey information across devices using different standards.
In packet-level modulation, data can be encoded into differ-
ent frame lengths [5], gap durations [6], beacon intervals [7],
or power levels [8]; and decoded using energy detection, i.e.,
by letting the radio perform a high-frequency sampling of the
received signal strength (RSS). In PHY emulation, instead,
the payload of a frame is adjusted such that a portion of it can
be recognized by a device using another technology as a le-
gitimate frame, thereby achieving a high throughput [9–12].

State-of-the-art work on CTC has mainly focused on
demonstrating that a data exchange across various technolo-
gies is possible and on achieving a high throughput or long
range [11, 13]. However, they often rely on strong assump-
tions (e.g., that all devices know about each other’s existence
beforehand) and have ignored the challenge of integrating
CTC with the native communication stack of a device (i.e.,
they assume that a device can carry out CTC at anytime).
CTC is not intended as a standalone functionality. Cross-
technology communication is commonly meant as an add-on
feature giving a device the ability to interact with nearby ap-
pliances alongside its normal operations. Therefore, CTC
functionality (i.e., the transmission and reception of cross-
technology frames) should coexist in parallel and not inter-
fere with the normal communications of a device. This is es-
pecially challenging for low-power wireless systems, which
make use of duty-cycled MAC protocols to orchestrate
communication while minimizing their energy consumption.
Indeed, radio duty-cycling operations cannot be easily post-
poned or rearranged on an individual device, as this would
affect the connectivity with the other nodes in the network.
Hence, one cannot allocate the radio for CTC activities
arbitrarily or permanently, as currently done in most CTC
prototypes [6–11]. Moreover, the time a device spends car-

International Conference on Embedded Wireless Systems and Networks (EWSN) 2021
17–19 February, Delft, The Netherlands © 2021 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-5-2

1

Article 14

rying out CTC should be kept low to affect the energy budget
of a device only minimally – an aspect that has rarely been
considered by existing work [14]. To ensure a seamless co-
existence alongside existing communications, the transmis-
sion and reception of cross-technology frames should hence
take place only when a device’s radio is idle. Even better,
CTC activities should occur during a tiny portion of this idle
time, so to minimize energy expenditure.
Ensuring a cross-technology rendezvous. The reuse of a
radio’s idle time, however, makes it challenging to sustain a
successful and efficient cross-technology data exchange, as
devices employ different standards and are unaware of each
other’s radio activities. As a result, a device may be transmit-
ting cross-technology frames during a portion of idle time
that does not overlap with the period during which its in-
tended receiver listens for incoming CTC transmissions. To
enable and guarantee a cross-technology rendezvous, i.e., the
existence of a common timeslot during which two devices
with incompatible PHY can complete a cross-technology
data exchange, several key challenges need to be tackled.

First, every device should be able to model its radio
activity and exchange this information with devices in its
surroundings, so to inform them about its idle time and
hence about the chances of successfully establishing a cross-
technology rendezvous. Such radio activity model needs to
be generic, i.e., applicable to different wireless standards, as
well as lightweight, i.e., a device should be able to share this
information by sending only a few bytes over the air.

Second, exchanging information with surrounding de-
vices entails the ability to discover their presence and to
initiate an interaction despite the incompatible PHY. There
is hence a need for a cross-technology neighbour discovery
scheme that allows to find surrounding devices employing
different wireless standards. Unfortunately, existing neigh-
bour discovery schemes focus only on devices using the
same technology, requiring the same duty cycle [15–20] or
foregoing extensive pre-configuration [21–24]. This calls
for novel neighbour discovery approaches, which should be
agnostic to the technology employed by the communicat-
ing devices – a complex task, as many CTC schemes require
prior knowledge about the involved devices or only allow a
unidirectional exchange between two specific technologies.

Third, all cross-technology data exchanges need to be
highly efficient to let a device operate at low duty cycle at
all times. A device should hence be able to anticipate when
its intended peers are available to carry out CTC (so to mini-
mize its radio on-time), as well as to initiate a data transmis-
sion only if the receiver’s radio is known to remain in an idle
state for a sufficient time to complete the data exchange.
Our contributions. In this paper we present SERVOUS, a
cross-technology neighbour discovery and rendezvous pro-
tocol allowing low-power wireless devices using incompat-
ible PHYs to autonomously find and directly communicate
with each other, while still operating at low duty cycle. In
particular, SERVOUS1 reuses a portion of the time during
which a device’s radio is idle to exchange cross-technology

1Servus is an informal greeting / salutation used in many parts of Central
and Eastern Europe that originates from Latin and means “at your service”.

frames with surrounding appliances, while ensuring a seam-
less coexistence with existing MAC protocols. To this end,
each device builds a lightweight model capturing when and
how often its radio is active or in low-power mode. By shar-
ing this model with nearby devices during a discovery phase
and by using the Chinese remainder theorem (CRT) [25],
SERVOUS determines the minimum amount of time α dur-
ing which a device should keep its radio active to guarantee
a cross-technology rendezvous. SERVOUS can further adjust
α to minimize the radio-on time, while still maximizing the
probability of rendezvous and while satisfying specific ap-
plication requirements on the acceptable latency of the cross-
technology rendezvous or on the increased duty cycle.

SERVOUS neither requires time synchronization nor as-
sumes prior knowledge about the communicating devices,
other than the existence of a common RF channel and CTC
alphabet. The exchange of cross-technology frames and
the discovery procedure are both receiver-initiated using a
scheme resembling low-power probing [26]: this allows to
minimize the radio-on time and the RF spectrum utilization.

We further integrate SERVOUS into several off-the-shelf
BLE and IEEE 802.15.4 devices running Contiki, making
CTC functionality a practical add-on feature alongside the
normal operations of a device. Our implementation can be
installed besides the native communication stack of a de-
vice and does not require any modification to its duty-cycling
strategy, preventing compatibility problems.

Finally, we evaluate SERVOUS experimentally, quantifying
its performance and memory footprint, as well as showcasing
that it enables CTC between heterogeneous low-power wire-
less devices without affecting normal communications and
without significantly increasing their energy expenditure.
In summary, this paper makes the following contributions:
• We present SERVOUS, a cross-technology neighbour dis-

covery and rendezvous protocol for low-power wireless
devices, highlighting its key design principles (Sect. 2);
• We show how to model and exchange the radio activity

of low-power wireless devices, which allows SERVOUS
to operate only when their radio is idle (Sect. 3);
• We illustrate in detail the design of SERVOUS, describing

how it carries out discovery and establishes rendezvous
using a receiver-initiated scheme (Sect. 4);
• We show how SERVOUS computes the minimum amount

of time in which a device should keep its radio active
to guarantee a cross-technology rendezvous, and how it
can help achieving a low energy consumption (Sect. 5);
• We describe SERVOUS’ seamless integration into the

Contiki operating system and its implementation on off-
the-shelf BLE and IEEE 802.15.4 devices (Sect. 6);
• We evaluate the performance of SERVOUS experimen-

tally and showcase its operations (Sect. 7).
After discussing SERVOUS’ limitations and how to further

increase its energy efficiency and throughput by making de-
vices aware of their hardware characteristics (Sect. 8), we re-
view related work (Sect. 9) and conclude the paper (Sect. 10).

2 SERVOUS: Design Rationale
We motivate our discussion by describing a scenario in

which two co-located low-power wireless devices employing

2

IEEE 802.15.4

1

IEEE 802.15.4

C

D

2 3 4

Radio
transmission

Radio
reception

Radio idle
(sleep)

Cross-technology
rendezvous possible

CTC

B

A

Figure 1: Sketch of the problem tackled by SERVOUS: two
devices B© and C© using different low-power wireless techno-
logies want to interact using CTC besides their normal oper-
ations. Due to the existing communication activities, a cross-
technology rendezvous is only possible at irregular intervals
(marked in orange). Without prior knowledge of their con-
figuration, the two devices should still find each other and
exchange cross-technology frames in a bounded time, while
reusing as little of their radio’s idle time as possible.

diverse technologies operating in the same frequency band
(e.g., BLE and IEEE 802.15.4) want to exchange data using
CTC besides their normal operations. This can be useful, for
example, to coordinate the channel usage and improve co-
existence [2], or to synchronize the device clocks, thereby
enabling a consistent time-stamping of related events [1,27].

Such a scenario is depicted in Fig. 1. Devices A© and B©
form a BLE network, with A© sporadically broadcasting ad-
vertisements and B© periodically scanning for them. De-
vices C© and D© form an IEEE 802.15.4 network and make
use of a low-power listening protocol such as Contiki-
MAC [15], where devices periodically perform a clear chan-
nel assessment (CCA) to assess whether waking up to receive
a message (and confirm its reception) or keep sleeping.

Let’s suppose that device B© and C© want to interact using
CTC. As they do not want to affect their ongoing communi-
cations, the two devices should exchange cross-technology
frames only when their radio is idle. Due to the different
medium access control scheme and duty cycle configuration,
the instants of time in which the radio of both devices are
idle are scattered and irregular [28]. Therefore, unless the
two devices have been pre-configured with a very detailed
knowledge of each other’s protocol and configuration, nei-
ther B© nor C© knows beforehand when and for how long its
counterpart can carry out CTC, i.e., when a cross-technology
rendezvous is possible (in the case of Fig. 1, during the four
time-slots coloured in orange). On the one hand, B© and C©
could simply attempt a cross-technology data transmission
or reception whenever their radio is idle. This, however,
would result in a very large energy expenditure draining the
devices’ battery, especially if B© and C© need to exchange
data frequently. On the other hand, the two devices could at-
tempt a cross-technology data transmission or reception only
occasionally during their idle time, hence preserving their
limited energy budget. When doing this blindly, however,
there is no guarantee of a successful rendezvous, which is
undesirable, as it leads to potentially unbounded delays when
the two devices attempt a cross-technology data exchange.

Lightweight model of the radio usage. With SERVOUS, we
tackle this problem by firstly getting a detailed understand-
ing of when and for how long a device’s radio is idle, so to
schedule CTC activities without affecting normal operations.
To this end, we exploit the fact that the majority of low-
power wireless systems have a well-defined periodic access
to the media. In the example shown in Fig. 1, one can in-
deed observe how both B©’s scanning interval and C©’s pe-
riodic CCA check follow a periodic pattern, which can be
modelled as described in Sect. 3. We show that such a peri-
odic access to the media can be inferred based on the knowl-
edge of the employed MAC protocol and its parameters, and
later learnt from an analysis of the radio access timings.
This allows SERVOUS to make use of a lightweight model in
which two parameters are sufficient to describe the behaviour
of a device’s radio and schedule CTC activities accordingly.
Moreover, by exchanging this model with nearby devices
during a cross-technology discovery, SERVOUS can guarantee
a cross-technology rendezvous in bounded time, even when
reusing only a tiny portion of a device radio’s idle time.
Cross-technology broadcast transmissions. To keep our
solution generic and allow communication between arbitrary
technologies sharing the same frequency, we let SERVOUS
exchange cross-technology frames using packet-level mod-
ulation. In contrast to CTC solutions making use of PHY
emulation (which can sustain a very high throughput, but
are often limited to one direction only [9–12]), this allows
cross-technology broadcast transmissions, i.e., the dispatch-
ing of cross-technology frames to multiple devices using di-
verse technologies at once2. This does not only simplify dis-
covery significantly (as a device can advertise its presence
to multiple recipients at once), but further enables a bidirec-
tional data exchange allowing, for example, the transmission
of acknowledgement messages confirming a successful dis-
covery or rendezvous. SERVOUS can hence be implemented
on top of packet-level modulation CTC schemes such as
X-Burst [14], which was shown to enable a cross-technology
broadcast communication among off-the-shelf Wi-Fi, BLE
and IEEE 802.15.4 devices [29]. Such CTC schemes, how-
ever, encode information into the length of data packets and
decode it by performing a high frequency sampling of the
received signal strength, which results in long transmission
times (e.g., ≈ 63 ms for a 20-byte frame). Because of this,
the design of SERVOUS needs to be steered in the direction of
minimizing the amount of data exchanged via CTC, also to
avoid an unnecessary congestion of the RF channel.
Spectrum-friendly receiver-initiated scheme. We hence
base SERVOUS on a receiver-initiated scheme in which a
device periodically sends short cross-technology probes to
announce that it is awake and ready to receive a cross-
technology message through high-frequency RSS sampling.
This resembles the operations of low-power probing (LPP)
protocols [26], where a device willing to transmit data to
one of its neighbours listens for the corresponding probe and
sends information upon its reception. In contrast to sender-

2Using packet-level modulation, one can also exchange data between
devices using the same wireless standard, which enables communication
between co-located networks using the same technology.

3

S S

A

DATA

duty cycle period

Sender

(a) low-power listening

P

DATA

duty cycle period

(b) low-power probing

P P

S S S Sender
ack probes

Receiver
timetime

Receiver
strobes

Radio transmission Radio reception

Figure 2: Sender- vs. receiver-initiated approaches.

initiated schemes such as low-power listening (LPL) [17],
where a transmitter repeatedly sends data (e.g., strobes [18])
until the intended recipient signals its reception, receiver-
initiated schemes require less information to be sent, as
shown in Fig. 2. This result in a lower channel utilization and
a higher spectrum friendliness, which is important given that
devices share the same frequency channel to carry out CTC.
The use of a receiver-initiated scheme also allows a device to
discover and keep track about the presence of nearby appli-
ances by passively listening to probes, as discussed in Sect. 4.
Energy-efficient rendezvous in bounded time. Traditional
LPL and LPP protocols are based on a key assumption,
namely that sender and receiver operate on the same duty cy-
cle. This way, a sender can be sure to have a rendezvous with
its intended receiver by sending strobes (LPL) or by listening
for probes (LPP) for an entire duty cycle period. However, as
CTC is an add-on feature carried out when a device’s radio
is idle, sender and receiver do not have a common notion of
duty cycle period, as shown in Fig. 1. A fundamental design
challenge in SERVOUS is hence how often and for how long
a sender should listen for probes to successfully establish a
rendezvous with the intended receiver. By sharing the model
describing the behaviour of a device’s radio during discov-
ery, SERVOUS is able to calculate the probability as well as an
upper bound on the latency of a successful cross-technology
rendezvous, which are both proportional to the amount of the
radio’s idle time α used to listen for probes. Based on spe-
cific application requirements (e.g., on the acceptable latency
of the cross-technology rendezvous or on the acceptable in-
crease in duty cycle when enabling CTC), SERVOUS can then
adjust α to minimize the necessary radio on-time for a suc-
cessful rendezvous, thereby reducing energy consumption.

3 Modelling the Radio Activities of a Device
To schedule CTC activities without affecting normal op-

erations, SERVOUS needs to model the usage of a device’s
radio and reuse portions of its idle time. This is possible, as
the majority of low-power wireless systems uses duty-cycled
MAC protocols to schedule communications: this results in
a well-defined periodic access to the media that can be ex-
ploited to create a lightweight model describing the radio ac-
tivities of a device. Specifically, one can model a radio as
either performing its usual activities (classical communica-
tions) or as idle (low-power mode), as illustrated in Fig. 3.

Note that the grey area in Fig. 3 marked as “usual ac-
tivities” does not necessarily imply that the radio is con-
tinuously active the entire time, but could also represent a
sequence of radio on/off states, as discussed below. This

IDLE

tidle

T T

tidle

IDLEUSUAL ACTIVITIES USUAL ACTIVITIES

Figure 3: Lightweight model of low-power wireless devices.

A → B C → B IDLE IDLE IDLE IDLE IDLE

B → C

Time offset

C
h

a
n

n
e
l
o
ff
s
e
t T = slotframe

tidletimeslot

Figure 4: Model applied to the operations of TSCH.

simplification allows to identify periodic patterns more eas-
ily and let SERVOUS seamlessly schedule CTC during tidle.
Moreover, by exchanging the wake-up interval T during a
cross-technology discovery, SERVOUS can guarantee an effi-
cient cross-technology rendezvous, as discussed in Sect. 4.

We show next how this radio activity model with only
two parameters can be applied to devices using popular low-
power wireless technologies like BLE and IEEE 802.15.4.

3.1 IEEE 802.15.4
MAC protocols based on IEEE 802.15.4 can be syn-

chronous or asynchronous. We discuss in detail Time Slotted
Channel Hopping (TSCH) and ContikiMAC as an example
of synchronous and asynchronous protocol, respectively.
Time Slotted Channel Hopping. TSCH is a MAC layer
specified in the IEEE 802.15.4-2015 amendment that builds
a globally synchronized mesh network. Essentially, time is
sliced into periodically repeating timeslots that are grouped
into one or more slotframes, as shown in Fig. 4. Each times-
lot can be allocated to one or more pairs of devices for their
communications. In case a timeslot is not allocated, the radio
remains idle during this time. Therefore, one can identify a
period T corresponding to the slotframe length, and tidle as
the longest idle duration (i.e., the longest number of consecu-
tive timeslots during which the radio is idle). In the example
shown in Fig. 4, the first five slots of the slotframe would be
considered as usual activities, and the last three as idle time:
a portion of the latter may be exploited to carry out CTC.
Note that aggregating assigned and idle timeslots (e.g., the
first 5 timeslots) reduces the amount of idle time that can be
reused by SERVOUS. This is not an issue, as CTC is an add-on
feature and our aim is ensuring a seamless coexistence with
normal operations while guaranteeing a cross-technology
data exchange rather than achieving a high CTC throughput.

Whilst the slotframe size of a TSCH network is typically
static and fixed at compile time, the timeslots are often allo-
cated dynamically. For this reason, T does not change at run-
time, but tidle may vary: it is hence important that either the
new schedule is communicated to SERVOUS, or that the latter
adjusts the model autonomously, for example by analysing
the radio access timings, as discussed in Sect. 3.3.
ContikiMAC. Developed by Dunkels [15], ContikiMAC is
an asynchronous sender-initiated protocol based on LPL,
whose operations are illustrated in Fig. 5. Nodes periodi-
cally wake up every twake up, perform a clear channel assess-
ment (tcca), and remain active to receive messages (trx) if they
detect activity on the channel. Otherwise, they return to low-
power mode until the next scheduled wake-up time.

When carrying out broadcast transmissions, a device
sends a message repeatedly for the full duration of a wake-up
interval (ttx broadcast) to ensure that all neighbours are able to
receive it. When carrying out unicast transmissions, a device
follows the same principle, but can stop sending data as soon

4

t

tR
e
c
e

iv
e

r
T

ra
n

s
m

it
te

r

C
C
A

T = 2 * twake_up

IDLE

IDLE
C
C
A

IDLE IDLE IDLE
C
C
A

ttx_unicast

C
C
A

IDLES S S
C
C
A

S

IDLE
R

X

S S

C
C
A

S S S S
R

X

C
C
A

S

twake_up twake_up

ID

LE
S

ttx_broadcast twake_up tidle

tack

tcca

trx

A

C

K

R

X

Figure 5: Model applied to ContikiMAC’s operations.

t

tS
c
a

n
n

e
r

A
d

v
e
rt

is
e

r

 IDLE

IDLE

A AA

advIntervaltadv

advEvent

SCAN

A AA

IDLE

 IDLE

T = scanIntervalscanWindow

SCAN

advDelay

A Advertisement
T

tidle

tidle

Figure 6: Model applied to connection-less BLE.

as a link-layer ACK is received (ttx unicast). For our model,
we need to account that a device can act as both transmitter
and receiver over time. To derive tidle, we consider that a re-
ceiver may be idle for at most twake up - tcca - trx - tack, where
trx corresponds to the necessary time to receive a frame with
the maximum length allowed by the standard (127 bytes). To
derive T , we consider that a transmitter may use up to one
full wake-up interval to send data during a broadcast trans-
mission, and that during the following twake up remains idle
(because ttx broadcast is slightly larger than twake up to ensure
that all neighbours can be reached, causing the device to omit
the CCA check): from this, we derive that T = 2 · twake up.

3.2 Bluetooth Low Energy
BLE devices can operate in two different modes:

connection-less and connection-based.
Connection-less mode. When using connection-less mode,
a BLE device can either operate as advertiser or scanner.
Advertisers periodically transmit a message (on up to the
three advertising channels) at the beginning of each adver-
tising event (advEvent), which has a fixed duration specified
by the advInterval parameter plus a pseudo-random offset
specified by the advDelay parameter (uniformly distributed
between 0 and 10 ms). Scanners, instead, periodically listen
for messages (for a duration specified by the scanWindow
parameter) at the beginning of each scanInterval, as shown
in Fig. 6. One can hence model T as the scanner’s scanIn-
terval and the advertiser’s advInterval + 5 ms3. Instead, tidle
is proportional to the difference between scanInterval and
scanWindow for a scanner. For an advertiser, tidle is propor-
tional to the difference between advInterval and the duration
of three consecutive advertisement messages (tadv), which is
bounded to 30 ms by the BLE specification [30].
Connection-based mode. When using connection-based
mode, BLE devices operate in a periodic manner, acting ei-
ther as master or slave, as depicted in Fig. 7. After a con-
nection is established, devices periodically exchange data at
the beginning of connection events (connEvent), as speci-
fied by the connInterval parameter. Master and slave can
exchange multiple frames within one connection event, up
to a maximum connection time (connMaxTime): one can
hence subtract this value from the connInterval to derive a

3In SERVOUS, we account for the randomness introduced by advDelay by
anticipating or postponing the transmission of a probe, as shown in Sect. 6.

t

tM
a

s
te

r
S

la
v
e

IDLE

IDLE

IDLE

IDLE

A AA

SCAN

Connection setup

T = connInterval

connMaxTime

connEventA Advertisement

T

X

R

X

R

X

T

X

T

X

R

X

T

X

R

X

T

X

R

X

T

X

T

X

R

X

skip (connSlaveLatency)tidle

Figure 7: Model applied to connection-based BLE.

minimum tidle for the slave. As the master can have sev-
eral slaves, tidle corresponds to the largest (connInterval−
connMaxTime) across all slaves. The period T corresponds
to the connInterval for the slave and to the sum of all the
connection intervals of the connected slaves for the master4.

The parameters of a BLE connection can be changed at
runtime [31]: as for TSCH, it is hence important that either
the new parameters are communicated to SERVOUS, or that
the latter adjusts the model autonomously, for example by
analysing the radio access timings, as discussed in Sect. 3.3.
3.3 Deriving the Model

As just discussed, the radio activity model used by
SERVOUS can be derived using knowledge of the employed
MAC protocol and its parameters. To this end, SERVOUS can
be configured at compile time accordingly. However, in case
a protocol configuration is changed at runtime (e.g., when-
ever the BLE connection’s parameters or the TSCH schedule
has changed), it is necessary to update the model. Whilst the
protocol could directly convey this information to SERVOUS
using an application programming interface, SERVOUS can
also learn the new radio settings autonomously by analysing
the function calls to the radio, i.e., by deriving a sequence of
“radio on” and “radio off ” durations [14]. If the operations
(and peculiarities) of a protocol are known, it is relatively
simple to derive T and tidle from such a sequence. For exam-
ple, when using ContikiMAC, one can look for the two con-
secutive CCA checks carried out within tcca at the beginning
of each wake-up interval to infer the beginning of T . Sim-
ilarly, on a BLE scanner, every “radio on” call corresponds
to the beginning of a scanWindow. In our current implemen-
tation, we follow this approach to learn the two model pa-
rameters based on knowledge of the employed protocol (see
Sect. 6). In principle, one could also learn the model param-
eters without such knowledge by reusing existing work on
periodicity detection in time series [32–34]: this is an add-
on to SERVOUS that is beyond the scope of this paper.

4 SERVOUS: Working Principle
To let a device signal its presence and availability for

CTC, SERVOUS periodically broadcasts a probe (solid red
rectangle) at the beginning of each idle phase, and listens
for a reply (dashed light blue rectangle), as seen in Fig. 8.

A probe consists only of a short address (ID) that allows
to identify a device: this is important to minimize the amount
of transmitted data and hence the energy consumption, as the
transmission of 1-byte of data using packet-level CTC takes
roughly 2-3 ms [14]. Upon a probe reception, a device can
trigger the transmission of either a cross-technology discov-

4To improve energy efficiency, a BLE slave can skip a number of connec-
tion events, as specified by the connSlaveLatency parameter (in the example
shown in Fig. 7, the second connEvent is skipped). In our model, we are
assuming connSlaveLatency = 0 as we need to account for the worst case.

5

C

A

B

3

2

D

NACK

ID: 1

ID: 2

ID: 3

ID: 1

4

TD

TC

TB

TA

1

Usual activities TX / RX probe (probing channel) TX / RX discovery message (data channel)

Figure 8: Cross-technology neighbour discovery in SERVOUS.

ery frame (if the device is unknown) or a CTC frame con-
taining the data to be exchanged (if the device is known).
Cross-technology neighbour discovery. To discover near-
by devices or double-check their reachability, it is hence suf-
ficient to reuse a portion of the radio idle time to listen for
probes (dashed light red rectangle) and transmit a discov-
ery request to which a device answers with a discovery re-
ply (solid blue rectangles). These two messages contain a
mapping between the short address used for probing and the
MAC/IPv6 address of the device, as well as the two model
parameters T and tidle, which can be used to guarantee ren-
dezvous in bounded time (as detailed in Sect. 5) and to infer
the length of the CTC frame to be transmitted, respectively.

In the example shown in Fig. 8, B© wants to discover de-
vices in its surroundings and hence starts the discovery pro-
cedure by listening for probes during its radio idle time 1 .
Every device periodically signals its presence by broadcast-
ing probes: in this case 2 , the probe of C© is the first to be
received by B©, who will answer with a unicast discovery re-
quest communicating its short address (ID: 2), its MAC/IPv6
address, as well as its model parameters TB and tBidle . De-
vice C© updates its neighbour table and answers with a uni-
cast discovery reply containing its short address (ID: 3), its
MAC/IPv6 address, TC, and tCidle . This way, also B© updates
its neighbour table and the two devices have mutually dis-
covered each other (or confirmed their reachability). The
same procedure is followed upon reception of A©’s probe 3 .

Fig. 8 also shows an example of discovery without a pos-
itive ending: in this case, D© is a hidden terminal to A© (and
vice-versa), but both devices can talk to B©. In this case, A©
and D© have the same short address (ID 1), which is derived
as a hash function of their MAC/IPv6 address. As B© already
has one entry in its neighbour table with ID 1, it will answer
to D©’s discovery reply with a NACK message indicating the
duplicate short address in its neighbour table 4 . Upon re-
ception of this message, D© should change its ID and perform
a new discovery, during which it will automatically inform
all its neighbours about the change of its short address when
sending out discovery request messages. Note that a device
receiving a probe with the same ID of its own will immedi-
ately change its short address and trigger a new discovery.

This way, SERVOUS ensures that there are no duplicate ad-
dresses within a two-hop neighbourhood, which allows to
cope with hidden terminals and ensures that short probes can
be used, thereby ensuring energy efficiency. The size of the
short address can be determined at compile time depending
on the number of expected nearby devices and on the chosen
hash function’s ability to minimize the number of collisions.

2
1

Discovery TB

TA α ACK

Usual activities TX / RX probe (probing channel) TX / RX data message (data channel)

tAidleAidle

tBidleBidle

B

A

Figure 9: Cross-technology data exchange in SERVOUS.

The device discovery procedure terminates as soon as no
new device is detected within a given time. The procedure is
triggered at device startup as well as periodically: the inter-
val can be chosen at compile time based on the expected dy-
namicity of the network, but can also be adapted at runtime
if several devices have joined the network or are no longer
reachable with respect to the previous discovery. Note that a
device still broadcasts probes while in discovery mode: this
maximizes the chances that two devices carrying out discov-
ery at the same time find each other.
Cross-technology data exchange. Once two devices have
discovered each other, they can exchange cross-technology
data. Also this process follows a receiver-initiated approach:
a device willing to transmit data using CTC listens for the
probe of the intended device, which indicates its availabil-
ity to receive a CTC frame. Differently from the discovery
procedure, a device looks for the intended probe using only
a portion of its idle duration (α), which allows to trade the
probability and latency of a successful rendezvous for en-
ergy efficiency, as discussed in Sect. 5. SERVOUS also makes
use of two separate RF channels for probing and for data
exchange (discovery requests and replies also use the data
channel), both known at compile time by all devices: this
allows to minimize collisions and channel congestion.

Fig. 9 illustrates the data exchange between device A© and
B©, who have previously successfully discovered. Device B©
wants to transmit data to A©: after its usual activities, B© first
sends a probe to advertise its presence during its idle time
and shortly listens for replies 1 . If no node is trying to con-
tact B©, the device starts listening for A©’s probe for a portion
of its idle time α. This operation is repeated until a probe
from device A© is received: thereafter, B© can send its data
and A© can optionally acknowledge its reception 2 . When
sending its data, B© can infer the length of the CTC frame
that can be received by A© from the tAidle parameter of the
model exchanged during discovery. Once B© has no more
data to send, it stops listening for A©’s probes and only keeps
broadcasting probes periodically, remaining idle otherwise.
5 Efficient Rendezvous in Bounded Time

The duration of α plays a key role w.r.t. the probability of
successful rendezvous, its potential maximum latency (Ω),
as well as the necessary radio on-time until its completion.
SERVOUS can pick the most efficient α that guarantees (or
maximizes the probability of) a successful rendezvous based
on application-specific requirements, as we show next.
5.1 Probability of Finding a Probe

In our context, rendezvous occurs when the transmission
of a probe falls within the time during which a device listens
for it: the latter corresponds to α, as discussed in Sect. 4.

To bound the rendezvous’ latency as a function of α and
to find the minimum length of α that guarantees a ren-
dezvous in bounded time (αmin), we divide time into discrete

6

1 2 3 4 5 6 87 9

TA

...

TB

...

tslot

...

TA

α

TB

 global timeslot x

1 2 3 4 5 0 210 3

0 1 2 3 4 5 6 07 1

Usual radio activities

 sA

 sB

2

4

10

overlapping slot

B

A

B listening for probes

A ‘s probe transmission

tBidleBidle

tAidleAidle

0

Figure 10: Illustration of the rendezvous problem: A© sends
a probe in its second slot within TA, whereas B© listens for
probes in its fourth slot within TB: the two overlap at x = 9.
Our aim is to predict and bound the time until an overlap.

timeslots with fixed length tslot , as shown in Fig. 10. We as-
sume that a probe is transmitted in the first idle slot after the
usual activities5, and that a device willing to transmit data lis-
tens for the recipient’s probes for a time α right afterwards.

Fig. 10 exemplifies the rendezvous problem with two de-
vices A© and B© having TA = 8 and TB = 6. In this example,
B© wants to transmit data to A© and is hence looking for its
probes. Assuming a global timebase x, A©’s probe is detected
by B© at global timeslot x= 9, i.e., when A©’s second timeslot
within TA and B©’s fourth timeslot within TB overlap.

In order to calculate such an overlapping timeslot among
two devices, the global timeslot x needs to be mapped to the
timeslot s of each device. As devices are operating periodi-
cally, this can be done using the modulo operator:

x≡ s (mod m) with m = T/tslot (1)
where T is the period and m the amount of timeslots within
T . Thus, finding the global timeslot x in which two specific
timeslots of A© and B© overlap can be described as a pair of
congruences x≡ sA (mod mA) and x≡ sB (mod mB).
Co-prime periods. Such a set of congruences is known to
always have a solution by the Chinese remainder theorem
when mA and mB are relatively prime (co-prime), i.e., when
their greatest common divisor (gcd) is 1 [25]. Thus, if

gcd(mA,mB) = 1, (2)
there exists a solution for every possible combination of
timeslots among both devices, i.e., each timeslot of A© over-
laps with each timeslot of B©, within their common period
TAB = TA ·TB. As an example, consider two devices A© and
B© with TA = 40 ms and TB = 50 ms. We define tslot = 10 ms,
which results in mA = 4 and mB = 5, respectively.

As gcd(4,5) = 1, it is guaranteed that each timeslot of
A© will overlap with each timeslot of B© within their com-
mon period TAB = 200 ms (20 timeslots). Fig. 11 shows the
resulting timeslot distribution until TAB: A©’s third timeslot
and B©’s fourth timeslot overlap at x = 18, i.e., within the
20th timeslot. Indeed, the CRT gives as solution x = 18 for
the two congruences x≡ 2 (mod 4) and x≡ 3 (mod 5).
Non co-prime periods. All previous observations hold only
when mA and mB are co-prime. If this is not true, namely:

gcd(mA,mB) = g with g 6= 1, (3)
there still exists an overlapping timeslot every g timeslots:
sA≡ sB (mod g), i.e., one timeslot of A© overlaps with exactly

5After a probe transmission, a device also checks for incoming answers
to the probe. Note that, in principle, any idle slot can be selected for the
probe transmission, as long as this choice is consistent over time.

0 1 2 3 4 5 6 7 8 9

0

0

1 2 3 0 1 2 3 0 1

1 2 3 4 0 1 2 3 4

10 11 12 13 14 15 16 17 18 19

2

0

3 0 1 2 3 0 1 2 3

1 2 3 4 0 1 2 3 4

20

0

0

 x

 sA

 sB

TAB

Figure 11: Example of overlapping slots with co-prime periods.

0 1 2 3 4 5 6 7 8 9

0

0

1 2 3 0 1 2 3 0 1

1 2 3 4 5 0 1 2 3

10 11 12

2

4

3 0

5 0

x

sA

sB

TAB

0 2 0 1 2

13

1

sB 1

1

0

Figure 12: Example of scenario with non co-prime periods.
When combining timeslot into a multislot, one can ensure
that each of A’s timeslots overlaps with each of B’s multislots.

one out of g consecutive timeslots of B©within their common
period TAB. In the following, such a set of g consecutive
timeslots is referred to as multislot. Thus, by listening for a
multislot, B© is able to find the probe of A© even if mA and
mB are not relatively prime. As gcd > 1, TAB is defined by:

TAB = TA·TB/gcd(TA,TB). (4)
As an example, consider two devices A© and B© with

TA = 40 ms and TB = 60 ms, as shown in Fig. 12. We keep
tslot = 10 ms as in the previous example, which results in
mA = 4 and mB = 6. A©’s third timeslot and B©’s fourth times-
lot will never overlap, i.e., a rendezvous cannot be estab-
lished. However, as g = gcd(4,6) = 2, one can define a mul-
tislot as two consecutive timeslots: when doing so, one can
guarantee again rendezvous. Suppose that A© sends probes
in timeslot 2 (γ) and that B© listens for them in every multi-
slot 1. By satisfying the equation γ ≡ sB (mod 2), one can
compute which timeslots of B© overlap with γ. For sB = 0
(multislot #0), sB = 2 (multislot #1) and sB = 4 (multislot
#2), using the CRT, one can derive x = 6, x = 2, and x = 10.
In the example shown in Fig. 12, B© looks for probes in its
second multislot, which corresponds to x = 2.

Based on the above, the minimum listening time αmin that
ensures the detection of a probe can hence be defined as:

αmin = gcd(TA,TB). (5)
Note that there are cases where a device’s maximum idle

time (tidle) available to listen for probes is shorter than the
required αmin, e.g., when both devices operate on the same
wake-up interval or are a multiple of each other. In those
cases, a device would have to listen for the whole wake-
up interval (αmin = T) to ensure a rendezvous: this, how-
ever, would defeat SERVOUS’ purpose, as one would affect
the usual communications of the device. Although a guaran-
tee cannot be provided in such cases, one can still calculate
the probability of a successful rendezvous as:

P = tidle/gcd(TA,TB) (6)
5.2 Upper Bound for Rendezvous

In Sect. 5.1, the upper bound Ω on the latency of a
rendezvous was defined as the common period TAB of two
devices. However, when listening for probes for longer than
αmin, one can significantly reduce Ω. To compute Ω as a
function of an arbitrary α value, one can use Algorithm 1,
which takes as input the period of the two devices (TA and
TB), as well as the duration of a timeslot (tslot). As discussed
in Sect. 4, this algorithm is carried out after two devices
have discovered and exchanged their model parameters.

7

Algorithm 1: Upper bound for rendezvous.
Input: TA, TB, α, tslot
Output: Ω

1 mA = TA/tslot , mB = TB/tslot , nB = α/tslot
2 stotal = mA, schecked = [], T = 0, f lag = f alse
3 if α≥ TA then
4 return TA
5 end
6 for i = 0; i < mA; i++ do
7 f lag = f alse
8 for j = 0; j < nB; j++ do
9 slot = (i∗mB + j) mod mA

10 if slot not in schecked then
11 add slot to schecked
12 stotal −−
13 f lag = true
14 end
15 end
16 if stotal == 0 then
17 return (nB +mB ∗T)∗ tslot
18 else if f lag == f alse then
19 return (nB +mB ∗ (T −1))∗ tslot
20 end
21 T++
22 end

The algorithm first translates the two periods as well as
α into discrete timeslots of length tslot . It then verifies if
α, used by device B© to detect probes from A©, is greater or
equal than TA: if this is the case, then B© can surely detect
the probe within TA. If α < TA, the algorithm determines the
maximum amount of periods during which B© has to look for
probes to ensure that one is surely be detected. Due to the
periodicity of TA and TB, there are exactly mA periods of B©
that are of interest. For each of them, the timeslots used by
B© to listen for probes are mapped to a timeslot of A© (line
9). The algorithm checks if there was already an overlap
with this timeslot (line 10); if not, the amount of possible
timeslots of A© is reduced. The algorithm terminates if the
amount of possible timeslots drops to zero, or when no new
timeslot of A© was found within a period of B©.
5.3 Misaligned Timeslots and Clock Drift

So far, we have assumed that the timeslots of the two de-
vices are fully aligned. In reality, this assumption does not
hold, as heterogeneous devices run independently, are un-
synchronized, and may experience a clock drift over time.
Misaligned timeslots. Fig. 13 shows the implication of mis-
aligned timeslots: the rendezvous is no longer at x = 18 (as
in Fig. 11), but at x = 14. Indeed, for a rendezvous to be suc-
cessful, it is fundamental that the beginning of the probe (i.e.,
the beginning of A©’s third timeslot) is contained within B©’s
(multi)slot. This is no longer the case at x = 18: instead, the
probe is detected at x = 14, which may force B© to use also a
portion of its fifth timeslot to listen for A©’s probe. Still, A©’s
probe transmission will overlap with one (multi)slot of B©
within the common period TAB, i.e., the rendezvous will only
be shifted within TAB and the computation of Ω is unaffected.
Clock drift. The clock drift, instead, has a more severe im-
pact, as it may affect the periodicity of devices. Indeed, as
shown in Fig. 14, the clock drift causes slots to move away,
potentially causing the absence of an alignment at x = 18
(i.e., a rendezvous may not be established even when listen-
ing for probes for αmin). However, the drift of interest for the
establishment of a rendezvous is limited to TAB and is inde-

0 1 2 3 4 5 6 7 8 9

0

0

1 2 3 0 1 2 3 0 1

1 2 3 4 0 1 2 3 4

10 11 12 13 14 15 16 17 18 19

2

0

3 0 1 2 3 0 1 2 3

1 2 3 4 0 1 2 3 4 0

 x

 sA

 sB

0

20

Figure 13: Rendezvous are shifted due to misaligned slots.
0 1 2 3 4 5 6 7 8 9

0

0

1 2 3 0 1 2 3 0 1

1 2 3 1 2 3

10 11 12 13 14 15 16 17 18 19

2 3 0 1 2 3 0 1 2 3

1 2 3 1 2 3

20

0

0

 x

 sA

 sB

α α ɛ

 0 0 0

Figure 14: Impact of clock drift on the alignment of slots.

pendent across data exchanges. Hence, the maximum clock
drift ε between two devices within TAB can be determined as:

ε =
TA ·TB

gcd(TA,TB)
·2 ·δ, (7)

where δ is the worst-case drift of a device expressed in ppm.
A survey of available HC-49S packaged crystals [35] reveals
that the majority of inexpensive parts experiences a drift over
the temperature range [−20◦C, +70◦C] of δ =±50 ppm.

To compensate for the drift ε, the minimum listening time
αmin needs to be adjusted accordingly:

αmin =

{
TA·TB·2·δ

gcd(TA,TB)
, if ε > gcd(TA,TB)

gcd(TA,TB), otherwise
(8)

In particular, to ensure overlapping slots, and thus the es-
tablishment of rendezvous, α needs to be greater than the
maximum drift within the common period of both devices.
Hence, the drift can be neglected over short timescales, but
needs to be compensated for longer ones using Eq. 8.
5.4 Energy-efficient Rendezvous

As discussed in Sect. 5.2, by listening for probes for
longer than αmin, a device can significantly reduce Ω. How-
ever, different values of α result not only in a different Ω,
but also in a different radio-on time RON , which has a direct
implication on the energy consumption of the device.

Fig. 15 shows the worst-case RON and the upper bound
on the rendezvous latency Ω among two devices A© and B©
(TA = 250 ms, TB = 197 ms, TAidle = 117 ms, TBidle = 186 ms)
for different values of α in range [0, TB]. Specifically, Fig. 15
shows that, whilst Ω decreases as α increases, the resulting
worst-case RON follows an irregular pattern as α changes.

As its ultimate goal is to enable CTC communication on
top of existing activities without significantly increasing the
energy expenditure, SERVOUS allows to choose α such that a
minimum RON is sustained while satisfying specific applica-
tion requirements. To this end, SERVOUS first computes the
suitable range of values for α. As discussed in Sect. 5.3, αmin
can be computed using Eq. 8, which results in 5 ms when as-
suming a drift δ = ±50 ppm. The maximum length of α

(αmax) is limited by the remaining idle duration of A© and B©,
as well as by the amount of data that needs to be exchanged
between the two devices. In this example, we assume that
B© wants to send A© 10 bytes of data without expecting an
ACK, which results in a αmax = 148 ms (the transmission
and reception of a probe takes 8 ms in our implementation,
whereas transmitting a 10 bytes payload takes 35 ms).

After deriving αmin and αmax, SERVOUS loops through all
the values within this range and determines for each of them
the worst-case rendezvous latency Ω using Algorithm 1, as
well as the worst-case radio-on time as RON = α ·Ω/TB.

8

0 15 30 45 60 75 90 105 120 135 150 165 180 195
α [ms]

250
300
350
400
450
500
550
600

W
or

st
-c

as
e
R O

N
 [m

s]

1
2
3
4
5
6
7
8
9

Ω
[s

]

αmin αmax α0min (Ω < 2 s)

Figure 15: Worst-case radio-on time (RON) and upper bound
on the rendezvous latency (Ω) as a function of α’s duration.

Accounting for application-specific requirements. De-
pending on the application’s requirements, SERVOUS can pick
the most suitable value of α. For example, if the latency of
the rendezvous is irrelevant, SERVOUS can simply use the α

leading to the lowest RON within [αmin, αmax]. In the exam-
ple shown in Fig. 15, this corresponds to α = 53 ms.

If the latency of the rendezvous matters, αmin will be
adapted accordingly. Specifically, SERVOUS selects as new
α′min the first value that allows to sustain less than the de-
sired Ω (in Fig. 15, Ω< 2 s) and picks the α value leading to
the lowest RON within [α′min, αmax]. An application may also
want to privilege energy-efficiency and specify, for exam-
ple, that SERVOUS can only increase a device’s radio-on time
by 10 %. In this case, SERVOUS adjusts αmax accordingly as
α′max = DCinc · T , where DCinc is the maximum percentage
increase in radio-on time within T . SERVOUS then picks the
α value leading to the lowest RON within [αmin, α′max].

6 Implementation
We implement SERVOUS in Contiki on top of X-Burst [14].

The latter is a packet-level CTC framework allowing to en-
code data into the duration of energy bursts (generated by
transmitting legitimate packets), and to decode information
by means of high-frequency RSS sampling. As X-Burst can
already determine ContikiMAC’s wake-up interval at run-
time, we extend its functionality to let SERVOUS model tidle
and the radio activities of connection-less BLE devices as
described in Sect. 3. To compensate for the randomness in-
troduced by the advDelay, we anticipate or postpone the
transmission of a probe. Specifically, we use a compensation
window, limited by tidle and by the maximum data to be ex-
changed (i.e., two discovery messages); initially transmitting
the CTC probe in the middle of this window. If, over time,
the transmission of a CTC probe falls outside this compensa-
tion window (because of too many consecutive anticipations
or posticipations), SERVOUS would either affect the usual be-
haviour of a device or reduce the maximum amount of CTC
data that can be exchanged. To avoid this, we postpone the
probe transmission so that it can be sent again at the mid-
dle of the next compensation window: this ensures that the
usual behaviour of a device is unaffected, although it breaks
SERVOUS’ periodic operations6. The transmission of probes
and data packets is made on two separate channels located at
2450 and 2460 MHz, respectively. The transmission of CTC
data is carried out using X-Burst’s default alphabet, which
describes the set of properties used to convey information
via CTC, e.g., the mapping between symbols and burst dura-

6Alternatively, one can adjust the start of the next advEvent: this allows
to retain SERVOUS’ periodicity while affecting a device’s usual behaviour.

CTC

TI CC2650 LaunchPadZolertia Firefly

ContikiMAC
BLE

Connection-less

IEEE 802.15.4 Network BLE Network

TX
(T = 250 ms)

TX
(T = 197 ms / 200 ms)

RX
(T = 5000 ms)

RX
(T = 250 ms)

Figure 16: Experimental setup used to evaluate SERVOUS.

tions. The CTC frames contain a preamble consisting of five
bursts of pre-defined duration, a header specifying the type
of message and other options (e.g., whether an ACK is re-
quested), as well as a 1-byte checksum to verify integrity.
Each device has its own neighbour table, containing a 8-
bit short ID, the 64-bit MAC address, as well as T , tidle, α,
and Ω for each neighbour. We use discrete timeslots with
tslot = 1 ms: this allows to control α in a fine-grained way.
Hardware platforms. We implement SERVOUS on two
off-the-shelf IoT devices supported by Contiki, namely
the TI CC2650 LaunchPad supporting both, BLE and
IEEE 802.15.4, as well as the Zolertia Firefly employing an
IEEE 802.15.4-compatible TI CC2538 transceiver.

7 Evaluation
We evaluate SERVOUS experimentally. We first showcase

its functionality by setting up two independent heteroge-
neous networks and let two devices carrying out CTC in
parallel to their normal communications, i.e., resembling the
setting depicted in Fig. 1 (Sect. 7.1). Thereafter, we evalu-
ate SERVOUS’ memory footprint (Sect. 7.2), discovery latency
(Sect. 7.3), and energy consumption (Sect. 7.4).
Experimental setup. We set up two networks as shown
in Fig. 16. Two Zolertia Firefly act as an IEEE 802.15.4-
based network using ContikiMAC (with its default channel
check rate of 8 Hz), and two TI CC2650 LaunchPads act
as a BLE-based network7. One of the CC2650 LaunchPads
acts as BLE advertiser with an advInterval of 192 or 195 ms
(depending on the evaluation type), resulting in T = 197
or 200 ms (including the 5ms advDelay) and tidle = 186
or 189 ms. The other CC2650 LaunchPad acts as a BLE
scanner with a scanInterval of 5000 ms and a scanWin-
dow of 2000 ms (default scan parameters on Android:
SCAN MODE BALANCED). This results in T = 5000 ms
and tidle = 3000 ms. For the Zolertia Firefly devices, only
each second idle phase is used by SERVOUS resulting in
T = 250 ms and tidle = 117 ms, as explained in Sect. 3.1.

We carry out all experiments in an RF interference-free
environment with the devices placed at 1 m distance and us-
ing a transmission power of 0 dBm. During all evaluations,
SERVOUS runs alongside a device’s normal activities.

7.1 Upper Bounds on Rendezvous’ Latency
We start by checking whether SERVOUS can guarantee ren-

dezvous in bounded time as illustrated in Sect. 5 and whether
the calculated upper bounds on the rendezvous latency Ω

hold. To this end, we measure the time between a device
starts listening for a probe and the probe being successfully
detected. We distinguish between two cases: co-prime and

7The TI CC2650 LaunchPad can operate either as BLE or IEEE 802.15.4
device: in all our experiments, we use it as BLE device only.

9

0 5000 10000 15000 20000 25000 30000 35000
Rendezvous latency [ms]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
. d

ist
r.

fu
nc

tio
n

Ω for α = 3 ms
LaunchPad → Firefly (fully periodic)
Firefly → LaunchPad (fully periodic)
Firefly → LaunchPad (partly periodic)

(a) α = 3 ms (minimum)

0 1000 2000 3000 4000 5000 6000
Rendezvous latency [ms]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
. d

ist
r.

fu
nc

tio
n

Ω for α = 10 ms
LaunchPad → Firefly (fully periodic)
Firefly → LaunchPad (fully periodic)
Firefly → LaunchPad (partly periodic)

(b) α = 10 ms (common value)

0 200 400 600 800 1000 1200 1400 1600
Rendezvous latency [ms]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
. d

ist
r.

fu
nc

tio
n

Ω for α = 115 ms
Ω for α = 45 ms
LaunchPad → Firefly (fully periodic)
Firefly → LaunchPad (fully periodic)
Firefly → LaunchPad (partly periodic)

(c) α = 45 ms / 115 ms (maximum)
Figure 17: Measured rendezvous latency when using co-prime periods (T = 197 ms on the LaunchPad and 250 ms on the Firefly).

0 100 200 300 400 500 600 700 800
Rendezvous latency [ms]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
. d

ist
r.

fu
nc

tio
n Ω for α = 10 ms

Ω for α = 50 ms
α = 10 ms
α = 50 ms

Figure 18: Measured rendezvous latency when using non co-
prime numbers (T = 200 ms on the TI CC2650 LaunchPad
and 250 ms on the Zolertia Firefly for different values of α).

non co-prime wake-up intervals T . Each experiment is re-
peated 1000 times with the devices being restarted, in or-
der to generate different constellations of slot alignments be-
tween the two devices. We also run SERVOUS on different
pairs of devices to show the universality of the approach.
Co-prime periods. We run SERVOUS on both transmitting
devices and set the advInterval of BLE to 192 ms, which
makes the two periods co-prime, as gcd(250,197)=1. Fig. 17
shows the cumulative distribution function (CDF) over the
measured rendezvous latency of all 1000 runs for different α

values and for different directions (BLE → IEEE 802.15.4,
IEEE 802.15.4→ BLE). The dashed lines indicate the upper
bound Ω calculated by SERVOUS. When using δ = 50 ppm,
we derive αmin = 5 ms, although we have noticed that the drift
is actually much lower than that (we could correctly operate
even at αmin = 3 ms). αmax is specified as 45 and 115 ms on
the Zolertia Firefly and the TI CC2650 LaunchPad, respec-
tively, which allows the exchange of 20 bytes of data. When
making use of larger values of α (Fig. 17(b) and (c)), the
duration of a rendezvous never exceeds the upper bound Ω

computed by SERVOUS, confirming the correctness of its es-
timation. For smaller values of α, the upper bound may not
be met if SERVOUS’ operations are not fully periodic (partly
periodic – orange line). As discussed in Sect. 6, to compen-
sate the advDelay randomness, we shift the probe within a
115 ms window, which may cause SERVOUS to postpone the
transmission of some probes. If, instead, we retain SERVOUS’
periodicity by adjusting the start of the next advEvent when-
ever the transmission of a CTC probe falls outside the com-
pensation window, the latency of a rendezvous never exceeds
the upper bound Ω (fully periodic – green / blue line).
Non co-prime periods. We change the advInterval of the
TI CC2650 LaunchPad from 192 to 195 ms and let SERVOUS
run on the receiving Zolertia Firefly. This makes the wake-up
intervals no longer co-prime as gcd(250,200) = 50. Thus,
as explained in Sect. 5.1, αmin needs to be at least 50 ms to
guarantee rendezvous. Fig. 18 shows the measured latency
of 1000 rendezvous for different values of α. When using
α= 50 ms, all rendezvous occur within Ω= 850 ms, as com-
puted by SERVOUS. When using α= 10 ms, the probability of
rendezvous within 810 ms drops to 20 % as shown by Eq. 6.

Table 1: Memory footprint for different hardware platforms.
Hardware
platform

RAM / ROM (kB)
w/o SERVOUS w/ SERVOUS SERVOUS only

LaunchPad 16.48 / 50.57 18.36 / 59.90 1.88 / 9.33
Firefly 5.86 / 20.41 7.60 / 30.16 1.74 / 9.75

Coexistence with other communications. During the pre-
vious evaluation, both networks were operating normally
while SERVOUS was running in parallel. Specifically, the two
Zolertia Firefly have exchanged one message every second
and the BLE advertiser transmitted a message every 197 or
200 ms (depending on the setup). To verify that SERVOUS
runs seamlessly on top of existing devices, we measured the
packet reception rate (PRR) of all communications, includ-
ing the CTC exchange of 20 bytes on every rendezvous. The
PRR has been 100% for all our experiments, showing that
SERVOUS does indeed not affect existing communications.
7.2 Memory Footprint

We quantify next the memory footprint of SERVOUS using
the gcc-size command. Table 1 shows the memory foot-
print of SERVOUS in terms of RAM and ROM usage for both,
the TI CC2650 LaunchPad and the Zolertia Firefly. The ta-
ble also reports the memory footprint of the entire Contiki
application running with and without SERVOUS. The tiny
differences in SERVOUS’ memory footprint between the two
platforms are due to slightly different implementations of
X-Burst, on top of which SERVOUS is built. With a footprint
below 2 kB of RAM and 10 kB of ROM for both platforms,
SERVOUS is well-suited for resource-constrained IoT devices.
7.3 Discovery Latency

We evaluate next how long it takes to discover nearby de-
vices as a function of their number. To this end, we use one
Zolertia Firefly and five TI CC2650 LaunchPads (with the
same wake-up interval). We measure how much time it takes
for a Zolertia Firefly (with α = 45 ms) to successfully dis-
cover up to five surrounding TI CC2650 LaunchPads that are
manually configured with non-duplicated addresses. As for
Sect. 7.1, all devices are randomly restarted 1000 times in
order to generate different constellations of slot alignments.
Fig. 19 shows the time it takes to discover the surrounding
devices as a function of their number. As expected, as all de-
vices have the same wake-up period T , the discovery latency
is proportional to the upper bound on the necessary time to
discover a probe times the number of nearby devices. The
high number of outliers are due to the random restart of all
devices and their rather small and similar wake up intervals.
7.4 Power Consumption

We evaluate next the additional power consumption in-
troduced by SERVOUS. To this end, we measure the aver-
age power consumption of the devices used in our evaluation
setup using a Monsoon power monitor. Specifically, we first

10

1 2 3 4 5
Neighbour number

0
2
4
6
8

10
12
14
16

Di
sc

ov
er

y
la

te
nc

y
[s

]

Figure 19: Discovery latency for the 1st, 2nd, 3rd, 4th, and
5th neighbour independent of the actually discovered device.

run all devices without SERVOUS to have a baseline. We then
repeat the same measurements when SERVOUS is running on
the devices. As the power consumption strongly depends on
the use case, i.e., on how long and how often a device is dis-
covering, on how frequently rendezvous are established, as
well as on the relation between the devices’ wake-up inter-
vals, we measured the average power consumption while a
device is probing only. Table 2 shows the results: SERVOUS’
probing message is relatively lightweight and increases the
power consumption on the Zolertia Firefly by only 12 and
21% when in transmitting and receiving mode, respectively.
On the TI CC2650 LaunchPad, the power consumption in-
creases minimally on the BLE scanner (0.47%) and by 112%
of the BLE advertiser. However, please note that the BLE
advertiser’s power consumption is in the order of sub-mW:
therefore, despite this difference SERVOUS is quite efficient.

8 Discussion, Limitations, and Future Work
Broadcast support. SERVOUS is designed and optimized for
unicast communication. A device willing to transmit to all
nearby devices the same data should hence send individual
unicast messages to all entries in its neighbour table.
Phase lock. Instead of continuously listening for a probe, the
transmitter could estimate the recipient’s next wake-up time
and use a form of phase lock (e.g., as in ContikiMAC [15]).
This can decrease the necessary radio-on time for ren-
dezvous even further: we will investigate this in future work.
Increasing CTC throughput. The throughput of packet-
level CTC approaches strongly depends on the hardware
characteristics of the involved devices, e.g., on the frequency
of RSS sampling, and on the speed at which radio instruc-
tions can be loaded and executed [14]. Based on knowledge
of those hardware characteristics, one can derive a faster al-
phabet (i.e., the set of properties used to encode symbols)
to increase the throughput between a group of devices. For
example, X-Burst embeds a dedicated module that aids the
automated creation of a CTC alphabet that is supported by
two or more communicating devices [14]. SERVOUS could
hence allow an exchange of these parameters during discov-
ery and store in the neighbour table which alphabet could be
used to speed-up a cross-technology data exchange. We will
implement this functionality in future work.
Support of other technologies. Our implementation fo-
cuses on BLE and IEEE 802.15.4 devices given their per-
vasiveness in today’s IoT landscape. However, in principle,
SERVOUS is generic and can be used with other technologies
operating in the 2.4 GHz band supported by X-Burst [29].
When it comes to Wi-Fi devices, which also use these fre-
quencies, one should note that these devices typically do not
sleep: one should hence explicitly allocate a portion of their
time to be devoted for CTC (tidle) on a periodic basis (T).

Table 2: Power consumption with and without SERVOUS.

Device T (ms) Avg. power cons. (mW)
w/o SERVOUS w/ SERVOUS

LaunchPad (TX) 197 0.84 1.87
LaunchPad (RX) 5000 10.7 10.75

Firefly (TX) 250 23.37 26.18
Firefly (RX) 250 10.8 13.16

Impact of RF interference and collisions. The computa-
tion of the probability of successful rendezvous and of the
upper bound on its latency described in Sect. 5 currently as-
sumes absence of collisions when devices broadcast a cross-
technology probe. While the use of a dedicated channel and
the short probe duration helps in this regard, collisions may
occur or the presence of RF interference may prevent the
correct probe reception on one or more nearby devices. With
knowledge of the channel occupancy or of the link’s packet
reception rate, one could revise the equations to account for
this probability and adjust the upper bound accordingly. We
will implement this functionality in future work.

9 Related Work
We analyse next related work on CTC as well as on device
discovery and rendezvous in low-power wireless networks.
Cross-technology communication. A large body of work
has explored how to enable communication between devices
with incompatible PHY. Chebrolu et al. [5] have been among
the first to highlight the possibility of exploiting a side chan-
nel to enable CTC. Following this seminal work, a number of
studies have proposed CTC schemes between Wi-Fi, BLE,
and/or IEEE 802.15.4 devices using packet-level informa-
tion such as the duration [36, 37], interval [6, 7] and trans-
mission power [8, 38] to encode data. Later works exploit
the concept of PHY emulation to significantly increase the
data rate of CTC [9, 11, 39] or investigate the feasibility of
CTC among devices beyond the 2.4 GHz band [40].

However, existing works typically focus on showcasing
the viability of CTC (possibly on off-the-shelf devices), or
on achieving a high throughput or long range [11,13], mostly
neglecting the integration of CTC alongside the functional-
ity of a device. This results in the assumption that all devices
know about each other’s existence beforehand and that a de-
vice can carry out CTC at anytime. Only Hofmann et al. [14]
have argued the need to relax these assumptions, but with-
out proposing a tangible solution. SERVOUS fills this gap by
proposing – to the best of our knowledge – the first generic
cross-technology device discovery and rendezvous protocol,
tailoring it to low-power wireless IoT devices.
Device discovery and rendezvous. Neighbour discovery
and rendezvous are tightly-coupled problems that have been
long investigated by the low-power wireless community [41,
42], among others, in the context of synchronous [16,43] and
asynchronous MAC schemes [17, 18]. Prior work in asyn-
chronous neighbour discovery made use of quorum tech-
niques [19, 20] or stochastic approaches (e.g., the use of
Birthday protocols [44] to let nodes choose whether to trans-
mit, listen, or sleep with different probabilities). Several
protocols, however, require global coordination of the em-
ployed duty cycle. Disco is a notable exception in this re-
gard [21]: by scheduling radio wake-up times at multiples

11

of prime numbers, it ensures deterministic pairwise discov-
ery and rendezvous. Similar approaches are followed by U-
Connect [22], Searchlight [23], and BlindDate [24].

However, the entirety of existing literature has consid-
ered device discovery and/or rendezvous in the context of
homogeneous networks employing the same technology.
SERVOUS, instead, is the first work studying how to perform
discovery and ensure an efficient rendezvous among hetero-
geneous devices with incompatible PHY – with the addi-
tional constraint that a portion of their time cannot be reused
in order to not affect ongoing communications. In the con-
text of CTC, only NewBee [45] has touched the topic of
neighbour discovery, but with a completely different goal.
NewBee, indeed, makes use of PHY emulation to let a Wi-Fi
station assist ZigBee devices in finding their neighbours.

10 Conclusions
This paper has presented SERVOUS, a protocol allowing a

device to autonomously discover and communicate with sur-
rounding nodes operating on another PHY, while still operat-
ing at low duty cycle and without affecting the normal com-
munications of a device. This protocol can be used as ba-
sis to enable cooperation between co-located devices besides
their normal operations, for example to exchange and coor-
dinate their channel usage, thereby maximizing coexistence.
SERVOUS can also be used by co-located devices with incom-
patible PHY to cooperate and infer the occurrence of specific
events, thereby increasing their context awareness.

Acknowledgments
This work was performed within the TU Graz LEAD project

“Dependable Internet of Things in Adverse Environments”. This
work was also supported by the Austria Wirtschaftsservice Proto-
typenförderung (P1905510-WTG01) and by the SCOTT project. SCOTT
(http://www.scott-project.eu) has received funding from the Elec-
tronic Component Systems for European Leadership Joint Undertaking un-
der grant agreement no. 737422. This joint undertaking receives support
from the European Union’s Horizon 2020 research and innovation pro-
gramme and Austria, Spain, Finland, Ireland, Sweden, Germany, Poland,
Portugal, Netherlands, Belgium, Norway. SCOTT is also funded by the
Austrian Federal Ministry of Transport, Innovation and Technology under
the program “ICT of the Future” (https://iktderzukunft.at/en/).

11 References
[1] Z. Yu et al., “Crocs: Cross-Technology Clock Synchronization for

WiFi and ZigBee,” in Proc. of the 15th EWSN Conf., 2018.
[2] Z. Yin et al., “Explicit Channel Coordination via Cross-technology

Communication,” in Proc. of the 16th ACM MobiSys Conf., 2018.
[3] I. Rüb et al., “Ad Hoc 802.11-802.15.4 Crosstalk-Based Communica-

tion in Practice,” in Proc. of the 3rd ACM MadCom Worksh., 2018.
[4] Y. Chen et al., “Survey of Cross-Technology Communicationfor IoT

Heterogeneous Devices,” IET Communications, vol. 13, 2019.
[5] K. Chebrolu et al., “Esense: Communication through Energy Sens-

ing,” in Proc. of the 15th ACM MobiCom Conf., 2009.
[6] X. Zhang et al., “Gap Sense: Lightweight Coordination of Heteroge-

neous Wireless Devices,” in Proc. of the 32nd INFOCOM Conf., 2013.
[7] S. M. Kim et al., “FreeBee: Cross-Technology Communication via

Free Side-Channel,” in Proc. of the 21st ACM MobiCom Conf., 2015.
[8] Z. Chi et al., “B2W2: N-way Concurrent Communication for IoT De-

vices,” in Proc. of the 14th ACM SenSys Conf., 2015.
[9] Z. Li et al., “WEBee: Physical-Layer Cross-Technology Communica-

tion via Emulation,” in Proc. of the 23rd ACM MobiCom Conf., 2017.
[10] W. Jiang et al., “Achieving Receiver-Side Cross-Technology Commu-

nication with Cross-Decoding,” in Proc. of the MobiCom Conf., 2018.

[11] ——, “BlueBee: a 10,000x Faster Cross-Technology Communication
via PHY Emulation,” in Proc. of the 15th ACM SenSys Conf., 2017.

[12] S. Wang et al., “Networking Support For Physical-Layer Cross-
Technology Communication,” in Proc. of the 26th ICNP Conf., 2018.

[13] Z. Li et al., “LongBee: Enabling Long-Range Cross-Technology
Communication,” in Proc. of the 37th IEEE INFOCOM Conf., 2018.

[14] R. Hofmann et al., “X-Burst: Enabling Multi-Platform Cross-
Technology Communication between Constrained IoT Devices,” in
Proc. of the 16th IEEE SECON Conf., 2019.

[15] A. Dunkels, “The ContikiMAC Radio Duty Cycling Protocol,”
Swedish Institute of Computer Science, Tech. Rep., 2011.

[16] W. Ye et al., “An energy-efficient MAC protocol for wireless sensor
networks,” in Proc. of the 21th IEEE INFOCOM Conf., 2002.

[17] J. Polastre et al., “Versatile Low Power Media Access for Wireless
Sensor Networks,” in Proc. of the 2nd ACM SenSys Conf., 2004.

[18] M. Buettner et al., “X-MAC: A Short Preamble MAC Protocol for
Duty-cycled WSNs,” in Proc. of the 4th SenSys Conf., 2006.

[19] Y.-C. Tseng et al., “Power-Saving Protocols for IEEE 802.11-Based
Multi-Hop Ad Hoc Networks,” in Proc. of the INFOCOM Conf., 2002.

[20] S. Lai et al., “Heterogenous Quorum-Based Wake-Up Scheduling in
Wireless Sensor Networks,” IEEE Trans. on Comp., vol. 59, 2010.

[21] P. Dutta et al., “Practical Asynchronous Neighbor Discovery and Ren-
dezvous for Mobile Sensing Applications,” in Proc. of SenSys’08.

[22] A. Kandhalu et al., “U-connect: A Low-latency Energy-efficient
Asynchronous Neighbor Discovery Protocol,” in Proc. of IPSN’10.

[23] M. Bakht et al., “Searchlight: Won’t You Be My Neighbor?” in Proc.
of the 18th ACM MobiCom Conf., 2012.

[24] K. Wang et al., “BlindDate: A Neighbor Discovery Protocol,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, 2015.

[25] I. Niven et al., An Introduct. to the Theory of Numbers. Wiley, 1991.
[26] R. Musaloiu-E. et al., “Koala: Ultra-Low Power Data Retrieval in

Wireless Sensor Networks,” in Proc. of the 7th IPSN Conf., 2008.
[27] D. Grubmair et al., “Accurate Cross-Technology Clock Synchroniza-

tion Among Off-The-Shelf Wireless Devices,” in Proc. of the 17th

EWSN Conf., poster session, 2020.
[28] T. Todd et al., “Low Power Rendezvous in Embedded Wireless Net-

works,” in Proc. of the 1st MobiHoc Workshop, 2000.
[29] H. Brunner et al., “Cross-Technology Broadcast Communication be-

tween Off-The-Shelf Wi-Fi, BLE, and IEEE 802.15.4 Devices,” in
Proc. of the 17th EWSN Conf., demo session, 2020.

[30] SIG Bluetooth, “Specification of the Bluetooth System v5.0,” 2016.
[31] M. Spörk et al., “BLEach: Exploiting the Full Potential of IPv6 over

BLE in Constrained Embedded IoT Devices,” in Proc. of SenSys’17.
[32] T. Puech et al., “A Fully Automated Periodicity Detection in Time

Series,” in Proc. of the 4th AALTD Workshop, 2019.
[33] M. G. Elfeky et al., “Using Convolution to Mine Obscure Periodic

Patterns in One Pass,” in Proc. of the 9th EDBT Conf., 2004.
[34] B. M. Elahi et al., “Sensor Ranking: A Primitive for Efficient Content-

Based Sensor Search,” in Proc. of the 8th IPSN Conf., 2009.
[35] T. Schmid et al., “XCXO: An Ultra-low Cost Ultra-high Accuracy

Clock System for Wireless Sensor Networks in Harsh Remote Out-
door Environments,” in Proc. of the 45th DAC Conf., 2008.

[36] Y. Zhang et al., “HoWiES: A Holistic Approach to ZigBee Assisted
WiFi Energy Savings in Mobile Devices,” in Proc. of INFOCOM’13.

[37] S. Yin et al., “Interconnecting WiFi Devices with IEEE 802.15.4 De-
vices without Using a Gateway,” in Proc. of the DCOSS Conf., 2015.

[38] X. Guo et al., “Wizig: Cross-technology Energy Communication over
a Noisy Channel,” in Proc. of the 36th INFOCOM Conf., 2017.

[39] Y. Chen, Z. Li, and T. He, “TwinBee: Reliable Physical-Layer CTC
with Symbol-Level Coding,” in Proc. of the INFOCOM Conf., 2018.

[40] P. Gawowicz et al., “Enabling Cross-technology Communication be-
tween LTE Unlicensed and WiFi,” in Proc. of INFOCOM, 2018.

[41] Y. Qiu et al., “Talk More Listen Less: Energy-Efficient Neighbor dis-
covery in WSNs,” in Proc. of the 35th IEEE INFOCOM Conf., 2016.

[42] P. H. Kindt et al., “Griassdi: Mutually Assisted Slotless Neighbor Dis-
covery,” in Proc. of the 16th ACM/IEEE IPSN Conf., 2017.

[43] T. Liu et al., “Implementing Software on Resource-constrained Mo-
bile Sensors,” in Proc. of the MobiSys Conf., 2004.

[44] M. J. McGlynn et al., “Birthday Protocols for Low Energy Deploy-
ment and Flexible Neighbor Discovery in Ad Hoc Wireless Net-
works,” in Proc. of the 2nd ACM MobiHoc Conf., 2001.

[45] D. Gao et al., “Neighbor Discovery based on Cross-Technology Com-
munication for Mobile Applications,” IEEE Trans. Vehic. Tech., 2020.

12

