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Abstract
Energy harvesting battery-less embedded devices com-

pute intermittently, as energy is available. Intermittent exe-
cutions may differ from continuous ones due to repeated ex-
ecutions of non-idempotent code. This anomaly is normally
recognized as a “bug” and solutions exist to retain equiva-
lence between intermittent and continuous executions. We
argue that our current understanding of these “bugs” is lim-
ited. We address this issue by devising techniques to com-
prehensively identify where and how intermittent and contin-
uous executions possibly differ and by implementing them
in SCEPTIC: a code analysis tool for intermittent programs.
Thereby, we find execution anomalies and their manifested
impact on program behavior in ways previously not consid-
ered. This analysis is enabled by SCEPTIC design, implemen-
tation, and performance. SCEPTIC runs up to ten orders of
magnitude faster than the baselines we consider, enabling
many types of analyses that would be otherwise impractical.

1 Introduction
Energy harvesting is enabling a battery-less Internet of

Things (IoT) of resource-constrained devices with small
form factors [17, 34, 35, 39]. However, energy supply from
the environment is generally erratic, causing frequent and
unanticipated device shutdowns. For example, harvesting
ambient RF energy for the execution of a simple CRC cal-
culation leads to 16 power failures over a 6 seconds pe-
riod [32, 6]. Executions thus become intermittent, as they
consist of intervals of active computation interleaved by pe-
riods of recharging energy buffers.

Existing systems rely on small capacitors as energy
buffers and on persistent state to ensure forward progress.
Many solutions target mixed-volatile platforms, which facil-
itate handling persistent state as they map slices of the ad-
dress space to non-volatile memory (NVM) [38, 20, 23].
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Fig. 1: Ther re-execution of line 2 incorrectly updates vari-
able a allocated on NVM, leading to a memory anomaly.

Explicit checkpoints create persistent duplicates of volatile
data, including registers and program counter.

Intermittent executions on mixed-volatile platforms intro-
duce the possibility of execution anomalies [9, 31, 23, 38,
29], where programs reach states unattainable in a continu-
ous execution. Anomalies may, for example, occur in mem-
ory due to hazardous read/write patterns caused by the re-
execution of non-idempotent code. Fig. 1 shows an example.
Variable a is allocated on NVM. A checkpoint occurs after
line 1. Lines 2 to 4 eventually modify the value of a. The
execution continues until power fails. When energy is back,
the execution resumes with the state of volatile data from
the checkpoint, that is, it restarts from line 2. However, a
being on NVM, it retains its value from line 4 before the
power failure, that is, the value produced by a later instruc-
tion compared to where execution resumes after the power
failure [31]. Lines 2 to 4 increment a again, producing a
different result than a continuous execution.

As we elaborate in Sec. 2, this type of memory anomaly
is caused by a specific pattern of load-store memory ac-
cesses that creates a write-after-read (WAR) hazard. This
anomaly is arguably the only one the literature distinctly ac-
knowledges [38, 25, 23, 10, 24, 29]. Existing solutions rem-
edy the problem with custom programming abstractions or
compile-time techniques to retain equivalence between inter-
mittent and continuous executions [38, 25, 23, 10, 24]. A few
efforts also exist that aim to locate these anomalies and to
provide guidelines to programmers for refactoring code [29].

We aim at gaining a deeper understanding of how inter-
mittence affects program behavior. In Sec. 3, we describe
techniques to exhaustively check the presence of memory
anomalies. Using SCEPTIC, we demonstrate that intermit-
tent programs are vulnerable to a wide variety of memory
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Fig. 2: Accessing a stale temperature reading.

anomalies, beyond those the literature commonly considers.
The anomalies we recognize still originate from WAR haz-
ards, and possibly manifest from a disparate set of mem-
ory access instructions, such as stack push-pop and function
call-ret. Little discussion exists on these issues [29].

Execution anomalies due to environment interactions are
also possible and generally harder to ascertain [8, 2, 5]. A
power failure may cause programs to process stale environ-
ment state, such as an old sensor reading, or to perform unex-
pected actions on the environment, such as wrongly moving
a rotor multiple times. Fig. 2 shows an example. Suppose a
system suffers an unpredictably long power failure immedi-
ately after the execution of line 2. When the system resumes,
the temperature might have changed, but the if-condition
still evaluates to false with the old value of t. However, we
can construct a different example where stale data may be
valuable; for example, to compute long-term averages.

Determining whether and how execution anomalies affect
environment interactions requires analyzing the causal im-
pact of intermittence on the latter. The literature currently
lacks the concepts and tools for this. In Sec. 4, we describe
custom abstractions to qualify different types of environment
interactions and implement proper support in SCEPTIC. Our
tool tracks accesses to memory locations of interest and rec-
ognizes when a program is vulnerable to processing stale en-
vironment data. SCEPTIC also keeps track of the evolution of
the environment state, for example, as determined by actua-
tion, and determines if repeated executions of certain output
actions can produce undesirable states.

Efficiently enabling the required code analysis is a chal-
lenge. A static analysis of the program would not provide
run-time information required for analyzing the memory and
environment. Checking actual executions in principle re-
quires to analyze any possible combination of checkpoint
placement and number of (re-executed) instructions. Run-
ning programs on target hardware is therefore plainly im-
practical, whereas source-level simulation may miss relevant
read/write patterns that only manifest in machine code.

It would then appear that machine-level emulation is the
only viable choice. That is, however, likely inefficient. A
simple CRC computation [38] includes 5 ·104 machine-code
instructions. If we were to test all possible combinations of
checkpoint placement and number of (re-executed) instruc-
tions, we would need to analyze 2.34 · 1013 machine-code
instructions. As an example, our prototype emulator runs
5 ·104 instructions per second on a modern PC, which would
mean 14 years for testing CRC computation.

Our tool SCEPTIC, described in Sec. 5, makes analysis of
intermittent programs practical. SCEPTIC helps both system
designers and developers analyze various programs, mem-
ory configurations, and forward progress mechanisms, to

identify the most efficient configurations. System design-
ers may also rely on SCEPTIC to evaluate different strate-
gies for their forward progress mechanisms, which may be
tuned accordingly to SCEPTIC results. Our tool is based on
custom techniques we devise for analyzing memory anoma-
lies as well as environment interactions. It takes LLVM
intermediate-representation (IR) instructions as input to re-
tain platform independence, and captures all occurrences of
program anomalies due to intermittence, the conditions that
cause them, and the effects they bear on program behavior.

In Sec. 6, we quantify the performance of SCEPTIC across
different benchmarks and memory configurations. We com-
pare SCEPTIC against a baseline that applies a brute-force ap-
proach to exhaustively analyze any possible intermittent ex-
ecution as a function of checkpoint placement, interaction
with the environment, and point of power failure. We show
that SCEPTIC is up to ten orders of magnitudes faster. This
means returning the results of code analysis in a matter of
minutes rather than hundreds of days, enabling many types
of investigations that would be otherwise impractical.

We end the paper in Sec. 7 with brief concluding remarks.
SCEPTIC is available as open-source software [28].

2 Background and Related Work
We provide here the necessary background and an ac-

count of related work.
Mixed-volatile platforms. Low-power microcontroller
units (MCUs) normally employ traditional SRAM as main
memory. Thus, power failures cause a complete loss of state.

Frequent power failures motivate the design and manu-
facturing of mixed-volatile MCUs [30], where slices of the
address space map to non-volatile memory facilities, such
as FRAM. Data mapped to FRAM do not need to be check-
pointed, as they are already persistent, thus sparing the corre-
sponding overhead. This comes at the expense of increased
energy consumption and slower memory access during nor-
mal operation [16]. FRAM-equipped MSP430 MCUs, for
example, increase energy consumption by 2-3× compared to
their volatile memory counterparts, and the MCU may only
operate up to half of the maximum frequency without intro-
ducing waiting states to synchronize memory accesses [30].

Most importantly, registers and program counter, in addi-
tion to any volatile slice of main memory, need to be check-
pointed anyways. The dichotomy between non-volatile and
volatile memory spaces creates many of the issues we tackle.
Forward progress. Existing checkpoint systems focus on
striking a trade-off between postponing the checkpoint; for
example, to leverage new ambient energy, and anticipating it
to ensure sufficient energy is available to complete it.

For example, Hibernus [3] and Hibernus++ [4] employ
specialized hardware support to monitor the energy left.
They operate in a reactive manner: whenever available en-
ergy falls below a threshold, they react by firing an interrupt
that preempts the application and forces the system to take a
checkpoint. Checkpoints may thus take place at any arbitrary
point along the execution of a program.

Systems such as Mementos [32], HarvOS [7], and Chin-
chilla [25] employ compile-time strategies to insert special-
ized system calls to check the energy buffer. These triggers
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bind checkpoint operations with a certain condition; for ex-
ample, a checkpoint is only taken if available energy voltage
falls below a threshold. Checkpoints thus happen proactively
and only whenever the execution reaches one of these calls.

A similar duality exists in the solutions available to in-
teract with the environment in intermittent programs, as two
approaches exist. The preventive method seeks to achieve
atomic interactions with the environment, and only initi-
ates them when the remaining energy guarantees comple-
tion [21, 12]. Differently, the recovery method represents
the evolution of peripheral states in main memory to bring
the system back to a consistent state when resuming compu-
tations [8, 5, 2, 26]. Both of these methods integrate equally
well with the techniques we explain next.
Debugging intermittent programs. Tools exist for the gen-
eral problem of debugging intermittent programs, regardless
of execution anomalies. For example, Ekho [15] recreates
energy harvesting patterns to enable repeatable in-lab tests.
CleanCut [11] identifies non-termination bugs in systems us-
ing task-based programming with transactional semantics.

Somehow closer to our work are EDB [9] and Siren [14].
In addition to traditional debugging features, EDB can emu-
late power failures and subsequent reboots. Siren introduces
NVM and energy simulation capabilities in MSPSim. Us-
ing either tool, one may recognize a subset of the execu-
tion anomalies we identify by manually placing breakpoints
and resets. This may be extremely laborious without apri-
ori information, for example, a suspect of certain anomalies.
Moreover, with Siren breakpoints and resets must be placed
at the level of machine instructions and, unlike our work, nei-
ther tool provides any automated technique to cover all pos-
sible program executions that may manifest anomalies. They
also do not consider environment interactions as we do.
Execution anomalies. Ransford and Lucia identify spe-
cific instances of memory-related execution anomalies [31].
Their insights provide a foundation for several later works
that mask or avoid their occurrence [23, 10, 24, 38].

A specific analysis technique is presented by Van Der
Woude et al. [38], who also solely acknowledge the same
specific instances. They are, however, unable to assess the
actual effects of anomalies and to recognize other instances,
such as anomalies occurring on the heap.

Surbatovich et al. [37] identify a subset of the issues we
identify for environment interactions. They assume that non-
idempotent behaviors due to repeated I/O operations are to
avoid, and thus provide a tool that determines the reach of
input data through the program so developers fix these be-
haviors.

Our preliminary work on intermittence anomalies [29]
covers only anomalies in main memory and on the stack. We
extend our previous contribution with the support for anoma-
lies happening on the heap. Different than our previous con-
tribution, we also provide an analysis of environment inter-
actions, which current literature overlooks, and a quantitative
evaluation of our tool’s performance.

3 Memory
We present techniques for locating memory anomalies

and for evaluating their effects on program behavior. Both

techniques are sound and complete, namely, they identify all
and only the actual cases of memory anomalies.
3.1 Locating Anomalies

In general, memory anomalies due to intermittent execu-
tions may occur because of hazardous read/write patterns in
NVM and depending on their interleaving with checkpoints.

To locate these anomalies, one should search for the con-
ditions where a checkpoint occurs before a read on NVM,
and there exist a write to the same NVM location before a
following power failure. If so, a memory anomaly may oc-
cur due to WAR hazards, as in Fig. 1. This occurs because of
the re-execution of read instructions after resuming, which
may cause the program to load a value that was written by a
later instruction, but before the power failure.

To be complete in identifying these cases, in principle,
one should check all possible combinations of read/write op-
erations on the same NVM address and all possible interleav-
ings with checkpoint locations. For each different setting,
one should execute the code for understanding how a given
anomaly possibly propagates within the considered execu-
tion. As checkpoints might potentially occur at any point in
the execution [3, 4], this creates an exponential increase in
the number of possible executions that are to be checked, as
discussed in the Introduction.

To address this issue, we determine the minimal amount
of information necessary for the identification of memory
anomalies and devise corresponding analysis techniques.
These are based on the crucial observation that if one is only
interested in locating these anomalies, looking for specific
sequences of read/write accesses on NVM in a single se-
quential execution of the code suffices. Depending on the
memory segment, these operations may take the form of
load/store, push/pop, or call/ret pairs.

Note that we execute the program once to gather informa-
tion that is usually not avaiable at compile time, such as the
address of each accessed memory location, the evaluation of
conditional instructions, and the executed branch paths. We
then rely on developers to provide a sufficient set of tests that
cover all execution paths that are input-dependent.

These techniques and their implementation in SCEPTIC
eventually lead us to confirm current findings [31] and to
recognize additional memory anomalies.
3.1.1 Data Access Anomaly

Fig. 1 is a case of data access anomaly, as reported in
literature [31]. We recognize such an anomaly whenever x
is a memory address in NVM and an ordered sequence of
machine-code instructions I1, ..., In exists such that:

• I1 loads a value from an address x,

• In modifies the value stored at address x,

• no checkpoint exists in the sequence I1, ..., In.
These conditions entail that if a power failure occurs after

In, the system resumes before I1 which is then re-executed; I1
then reads the value produced by In before the power failure,
that is, from a later instruction. A fix for this is placing a
checkpoint between I1 and In to avoid re-executing the load
operation when resuming [38].

Here, we reduce the information necessary for locating
memory anomalies based on two key observations:
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Fig. 3: Return address overwritten by call to f2 showing an
activation record anomaly.

1. any non-write access after I1 need not to be checked
separately, because the potential memory anomaly it
may cause is already captured by the analysis from I1;

2. only write accesses occurring in the sequence I1, ..., In
meet the conditions to produce a WAR hazard; in fact,
any other write access that follows a checkpoint after
this sequence can not affect prior read accesses, and be-
comes part of a different sequence In+1, ..., Im.

These two criteria form the basis to efficiently analyze
other, previously unseen kinds of memory anomalies.
3.1.2 Activation Record Anomaly

We uncover executions whereby allocating the stack on
NVM, upon resuming from a power failure, non-volatile in-
formation is read from the activation record of a function to
be executed later. This activation record anomaly may lead
to wrong results, unwanted jumps, or a program crash.

Fig. 3 shows an example. A call to function f1 executes
first and its activation record is placed on the stack. A check-
point takes place after line 2 inside f1. When f1 returns, its
activation record pops from the stack and execution contin-
ues from line 7. The stack content on NVM is not deleted
when returning from f1; only the stack pointer changes.
When placing the activation record of f2 on the stack, the
one of f1 is overwritten. If a shutdown happens during the
execution of f2, the execution resumes inside f1 according to
the checkpoint data, but the activation record is that of f2.

Note that Fig. 3 shows the case where the return address
from f2 is read as the one of f1 when execution resumes.
This is only one of the possible outcomes. Worse is if f2
overwrites f1 return address with data representing an invalid
address, such as a local variable or a saved register, causing
a program crash when execution resumes. In general, the
sequence of pop instruction belonging to the epilogue of f1
may read the values produced by push instructions belong-
ing to the prologue of f2. Also, note that f2 may equally
be a programmer-defined interrupt handler that fires asyn-
chronously, making the issue even more difficult to track.

We find that an activation record anomaly exists when-
ever the stack is allocated on NVM and an ordered sequence
of machine-code instructions I1, ..., In exists such that:

• I1 is a call instruction for function fx,

• the execution of fx includes at least one checkpoint,

• In is a call instruction,

• no checkpoint exists in the sequence I1, ..., In.
The anomaly exists because a checkpoint is saved inside

the context of a function f1, f1 returns, and a subsequent call

p:
0xF3B16260

Heap content:

Address Content

0xF3B16260 5

0xF3B16264 Free

Initial
state

1. int ∗p;
2. p = malloc(sizeof(int));
3. ∗p = 5;

<CHECKPOINT>
4. c = ∗p+ 7;
5. free(p);

Shutdown

7. ...

p:
0xF3B16260

Heap content:

Address Content

0xF3B16260 Free

0xF3B16264 Free

State
after

restore

2. ...
3. ∗p = 5;
<CHECKPOINT>
4. c = ∗a+ 7;

?

Fig. 4: Example of memory map anomaly.

to f2 overwrites parts of the activation record of f1. Check-
pointing between the return of f1 and the call to f2 addresses
the issue, preventing the execution from resuming inside f1.

Here, we reduce the information to check for locating
these anomalies by applying the two criteria in Sec. 3.1.1, but
also noticing that the analysis need not to consider the code
of fx. Only the fact that fx somewhere includes a check-
point matters. We may analyze the code of fx separately
compared to the search of the conditions above, and no in-
formation from the analysis at the level of function calls need
to percolate into the analysis of callees.

Ratchet [38] identifies a specific instance of the problem
arising with interrupts. The general case is, however, over-
looked in existing literature and may be recognized only by
reasoning at the level of machine code, not source code.
3.1.3 Memory Map Anomaly

When read/write instructions on NVM involve operations
that possibly change the heap state, a memory map anomaly
occurs whereby a dynamic memory operation observes a fu-
ture state of memory upon resuming from a power failure.

Fig. 4 shows an example. Line 2 allocates a heap block
and saves its address in pointer p. A checkpoint occurs be-
fore line 5, which de-allocates the same memory block. If a
shutdown happens after line 5, the execution resumes from
line 4, whose memory access may now lead to unpredictable
results [40] as the block was previously de-allocated.

It would be possible to construct arbitrary combinations
of heap operations before and after a checkpoint, leading to
this kind of anomaly. If pointer information are not updated,
the re-execution targets the memory address before the shut-
down, whereas the memory block may now be freed or re-
allocated somewhere else.

We find that a memory map anomaly exists whenever
the heap is allocated on NVM and an ordered sequence of
machine-code instructions I1, ..., In exists such that:

• I1 is a load or store instruction targeting the heap
block pointed by x,

• In is a free or realloc instruction that modifies the
heap block pointed by x,

• no checkpoint exists in the sequence I1, ..., In.
The anomaly exists because pointer information are not

consistent with the state of the heap. Properly placing check-
points to avoid re-executing instructions based on possibly
inconsistent pointer information solves the issue.

Similar to the stack, the two criteria in Sec. 3.1.1 are valid
here too to help locate heap anomalies efficiently. In ad-
dition, we note how allocating the heap on NVM with a
transactional memory controller [36] does not ensure atom-
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icity for heap modifications, either. Power failures happen-
ing during the execution of any such instructions leave the
heap state partially changed. The re-execution of instructions
that perform destructive changes to the heap, such as free
or realloc, is also a possible source of anomaly, whereas
re-executing memory allocation operations, such as malloc,
does not affect correctness but may yield memory leaks.

Existing literature overlooks the existence of this kind of
anomaly too, which again may only be recognized by reason-
ing at the level of machine code and raw memory accesses.
3.2 Evaluating Effects

The observations above serve to recognize and locate
memory anomalies, but they do not suffice to examine how
their effects change the program state compared to a con-
tinuous execution. Information on this may be crucial for
identifying the cause of a program crash or for performing
a post-mortem analysis, as the change of behavior may, for
example, corrupt the state in subtle ways and thus percolate
throughout possible long-running executions [40].

To this end, a single sequential program execution can
only provide partial information. We rather need to emulate
the code re-execution, by pretending checkpoints at certain
code locations are executed and power failures occur later.
We crucially observe that we may use the conditions we
identify in Sec. 3.1 also to reduce the number of locations
where checkpoints and power failures need to be emulated.
In essence, it is sufficient to first locate the anomaly and only
then, to re-execute the relevant parts of code.

For example, consider analyzing data access anomalies
according to the conditions in Sec. 3.1.1. To understand their
effects, we create a new emulated execution starting at I1
with the state that a continuous execution would have at that
point, and proceed up to In where we pretend a power failure
to happen. Then, we take the state of the NVM there, bring it
back to I1, and combine it with information in the checkpoint
that we assume to occur right before I1. We resume the exe-
cution as if the device had new energy and proceed again up
to In. The program state at this point represents how the data
access anomaly alters the program state. Similar techniques
are applicable for all memory anomalies in Sec. 3.1.

4 Environment Interactions
Interactions with the environment are a key functionality

of embedded sensing devices. As the notion of correctness
here is application-specific, understanding how they affect
intermittent executions requires to develop both appropriate
abstractions and analysis techniques. The problem takes dif-
ferent forms for input (sensing) and output (actuation) in-
teractions. When integrated with approaches to cope with
power failures during the interaction itself, as explained in
Sec. 2, the techniques we explain next apply to both methods
using preventive and recovery techniques.
4.1 Input Interactions

Intermittent executions create a data-time depen-
dency [18]. A piece of urgent data may expire after a long
energy outage, requiring the system to sense again before
resuming the execution. Old data may still be valuable
depending on applications requirements; for example, in
applications that are interested in long term trends.

Abstractions. We define two concepts to qualify how, ac-
cording to the programmers’ intentions, input environment
data should be accessed in intermittent programs. Under a
most-recent access model, a program is expected to access
the input data only if it is gathered within the same power
cycle, that is, no power failure occurs between the time the
data is acquired and when it is used. This is the case where
applications must take decisions based on the most up-to-
date environment data. Differently, under a long-term access
model, a program may access the input data independent of
when it is originally gathered, that is, an arbitrary number of
power failures may occur between when the data is acquired
and when it is used. This is the case where data is valuable
because of its long-term significance.

We ask programmers to tag individual variables storing
sensor data as behaving according to either model. The tech-
niques we illustrate next allow programmers to understand
whether, depending on checkpoint placement, the semantics
of their variables matches the required access model. Note
that this analysis is meaningful for system support employ-
ing proactive techniques [32, 7, 25], as explained in Sec. 2.
Programmers may move the placement of checkpoint calls
to ensure that given variables behave according to the de-
sired access model. Differently, in systems employing re-
active techniques, checkpoints may happen anywhere in the
code [3, 4]. Variables that store sensor data thus behave ac-
cording to a long-term access model, because checkpoints
might potentially happen anytime between when the data is
gathered and when it is later used.
Analysis. We perform a single sequential execution of the
code and use two additional bookkeeping data structures, a
checkpoint clock and an access record. The former estab-
lishes an ordering of the events in the code and is incre-
mented each time we pretend a checkpoint to happen. This
corresponds to every location in the code where a call to the
checkpoint routine is inserted. The access record tracks ac-
cesses to memory locations of interest.

We explain the process with the help of Fig. 2. Initially,
the checkpoint clock is set to 0. After executing line 1, the
access record for variable t is updated as 〈t, temperature,0〉,
where variable t contains the value of a given sensor when
the checkpoint clock is 0. Next, the checkpoint clock is
incremented by one as we encounter a further call to the
checkpoint routine. Thereafter, the execution of line 2
leads to another update in the access record for t with
〈t, temperature,1〉. The variable is thus accessed across
checkpoint call, and thus behaves according to a long-term
access model. If the latter differs from the access model the
variable is tagged with, a warning is returned.

Note that memory buffers for sensed data on NVM may
also suffer from memory anomalies, which can be tested
with the techniques described in Sec. 3.

4.2 Output Interactions
Intermittence may cause an application to perform a stale,

duplicate, or falsified action on the environment. Fig. 5
shows an example. Line 1 rotates the servo relatively by 45◦.
A power failure occurs right after line 1. When execution
resumes from the checkpoint, the servo is rotated again by a
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Fig. 5: The re-execution of instruction 1 yields an unex-
pected environment state.

further 45◦, taking its current position to 90◦. The outcome
does not correspond to a continuous execution.
Abstractions. Similar to Sec. 4.1, we define two semantics
for actuation commands: absolute or relative. The former
models the cases of idempotent actuation commands. The
latter models the opposite, that is, the resulting state of the
environment is a function of the initial state and of actuation.

Application requirements dictate whether to rely on ei-
ther semantics. Unlike Fig. 5, some applications may want
to affect the state of environment whenever an actuation
command is executed, regardless of the number of repeti-
tions. Consider, for example, an application that sends an
announcement whenever it wakes up from a power failure.

To enable code analysis, programmers are required to ex-
press the semantics they expect by tagging the individual
calls to actuation commands as behaving according to either
model. In addition, they are to provide an abstract specifi-
cation of how the environment changes in response to the
(possibly partial) execution of actuation commands. This
specification is primarily meant to check that two environ-
ment states are semantically equivalent. This information is,
in general, application-dependent. Vast literature exists on
the subject [13]. We thus omit the description of such speci-
fication for brevity, which is nonetheless available [27].
Analysis. To understand whether intermittent executions
match the expected actuation semantics, we execute the pro-
gram until encountering an actuation command. There, we
record the state of environment up to the point of the power
failure, either during or after the command execution, ac-
cording to the abstract environment specification. We re-
execute the code from the previous checkpoint up to the same
actuation command. We can now compare the new environ-
ment state with the previously recorded one.

If the states differ, the command behaves as relative, oth-
erwise, it behaves as absolute. If this behavior does not
match the programmers’ expectations, a warning is returned.
Programmers may now change the implementation accord-
ing to application requirements. For example, they may re-
place an actuation command exposing a relative semantics
with one implementing an absolute one, or build a wrapper
around the former to achieve the desired behavior.
5 Implementation

We implement the techniques in Sec. 3 and Sec. 4 in a tool
called SCEPTIC, which works in four different modes:

1. SCEPTIC-LOCATE performs the analysis to locate mem-
ory anomalies, as in Sec. 3.1.

2. SCEPTIC-EVALUATE performs the analysis to locate mem-
ory anomalies and to evaluate their effects, as in
Sec. 3.2.

Table 1: Consumers and producers of memory anomalies.
Data Access - Sec. 3.1.1 Activation Record - Sec. 3.1.2 Memory Map - Sec. 3.1.3

Consumer load ret/pop load, store, realloc, free
Producer store call/push malloc, realloc, free

3. ENVIRONMENT-INPUTS verifies the coherence of in-
put interactions with programmer-specified semantics,
as discussed in Sec. 4.1.

4. ENVIRONMENT-OUTPUTS behaves symmetrically
w.r.t. the previous option for output interactions, as
discussed in Sec. 4.2.

We describe next the architecture of SCEPTIC and the de-
tails of the first two modes. The processing required for the
other two options is a minimal variation of the former.

5.1 Architecture
SCEPTIC is written in Python and processes LLVM inter-

mediate representation (IR) code to gain independence from
specific platforms. It comprises two main modules: the
abstract-syntax tree (AST) builder and the emulator.

The regular LLVM AST builder is augmented with
architecture-specific components such as registers, libraries,
and proxies for emulating environment interactions, as de-
scribed next. The resulting AST is then translated to be exe-
cuted by the emulator module.

SCEPTIC also allows users to annotate functions used for
environment interactions. The annotation takes as input: i)
the type of interaction, namely, input or output; ii) the name
of the function that interacts with the environment; iii) a
list of LLVM IR types, representing the function argument
types; and iv) the type of return value and a logic to generate
such values, for example, a generator function or a statically-
defined list of values.

The SCEPTIC emulator models user-specified general reg-
isters and special purpose registers that exist on all platforms,
such as the program counter (PC) and the stack base pointer
(EBP). The emulator divides the available memory into three
segments: the global symbol table (GST), the stack, and the
heap. The GST segment is further subdivided into volatile
and non-volatile regions, placing the global variables accord-
ing to programmer’s requirements.

5.2 Locating Memory Anomalies
We call producer (consumer) any instruction that alters

(accesses) the content of NVM. By generalizing the concepts
of Sec. 3, we argue that to locate a memory anomaly, we need
to identify an ordered sequence of instructions I1, ..., In, such
that I1 is a consumer, In is a producer, I1 and In operate on
the same NVM location, and no checkpoint occurs between
I1 and In. The pair 〈I1, In〉 is the one causing the memory
anomaly. Tab. 1 indicates the consumers and producers for
the memory anomalies discussed in Sec. 3.

The processing we devise for locating memory anomalies
only requires sequentially executing the program and collect-
ing a trace of NVM memory states. To create the trace, when
a producer or consumer is encountered, we save the state
of the target memory locations, the value of an instruction
counter that corresponds to its execution, the operation type
among those of Tab. 1, and the program counter. We orga-
nize this information into a two-level dictionary that has the
memory address as first key and the operation type as the
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Procedure 1: Locating memory anomalies for a
given NVM location.

1 function SCEPTIC-Locate (trace, consumer, producer, ED)
2 anomalies← /0

3 consumers← trace[consumer]
4 producers← trace[producer]

5 foreach pair 〈counter, consumer pc〉 ∈ consumers do
6 window← SlideWindow(producers, counter, ED)

7 foreach 〈producer counter, producer pc〉 ∈ window do
8 insert 〈consumer pc, producer pc〉 into anomalies

9 return anomalies

10 function SlideWindow (producers, consumer counter, ED)
11 min counter← consumer counter
12 max counter← consumer counter+ED

13 return ∀ producer ∈ producers s.t. min counter ≤
Istruction counter(producer)≤ max counter

I1. b = a;
I2. b = b+ 1;
I3. a = b;

...
I6. c = a;

...
I9. a = 7;

Collect
execution trace

Consumers of a

Instr. Counter

I1 1

I6 6

Producers of a

Instr. Counter

I3 3

I9 9

C

SlideWindow(I1, 1, ED)

P

Execution trace

ScEpTIC-Locate() ED = 10

Anomalies

〈I1, I3〉
〈I1, I9〉

Iterate on
next consumer

Consumers of a

Instr. Counter

I1 1

I6 6

Producers of a

Instr. Counter

I3 3

I9 9

C

SlideWindow(I6, 6, ED)

P

Execution trace

ScEpTIC-Locate()

Anomalies

〈I1, I3〉
〈I1, I9〉
〈I6, I9〉

Fig. 6: SCEPTIC-LOCATE identifies memory anomalies in the
execution trace by considering a sliding window of producer
instructions altering a given variable.

second one. This allows for an efficient search of memory
anomalies when traversing the trace.

Procedure 1 shows the core logic to process the execu-
tion trace for a given pair of producer and consumer that
possibly cause a memory anomaly. Fig. 6 helps understand
the processing with a concrete example. Starting from every
consumer, that is, a candidate I1 that accesses a given mem-
ory location (line 5), the procedure operates on a window of
producer instructions determined by SlideWindow (line 6),
with a corresponding instruction counter higher than that of
the consumer, and as a function of the checkpoint strategy.
In the example of Fig. 6, this extends up to I9 for consumer
I1. We start from I1 as we emulate a checkpoint immedi-
ately before it; in this case, every producer in the window is
a potential In that causes a memory anomaly (lines 7-8).

The key for correct and efficient analysis rests in the inter-
play between SCEPTIC-Locate and SlideWindow. For the
latter, Procedure 1 shows the case of reactive checkpoints,
which can potentially happen anywhere in the code. Given
the instruction counter corresponding to a consumer opera-
tion we consider as the first instruction after a checkpoint, the
window extends for a number of instructions whose energy
cost equals the energy left after the checkpoint operation and
eventually leading to a power failure. These are the instruc-
tions that would be possibly re-executed upon resuming. We
call this quantity execution depth (ED)

Actual meaningful values for ED depends on the device
energy consumption, capacitor size, and checkpoint energy
consumption. In Sec. 6.1 we show how to accurately cal-

culate ED, as this is essential for obtaining accurate infor-
mation on intermittence anomalies. Underestimating ED
may cause the analysis not to identify some intermittence
anomaly, whereas overestimating ED may cause the analy-
sis to identify bogus intermittence anomalies.

As the analysis of the current window completes, SCEP-
TIC-Locate slides the trace down to the next consumer (line
5), which SlideWindow now considers the first instruction
executing after a potential checkpoint, that is, a new candi-
date I1. In Fig. 6, this happens to be the assignment c=a.
Note how sliding the instruction window down to any in-
struction between the former I1 and the new one does not un-
cover memory anomalies this procedure would not uncover,
and thus represents unnecessary overhead. For example, the
instructions between b=a and c=a in Fig. 6 are covered al-
ready by the first iteration of the procedure.

The case of proactive checkpoints is a simplified version
of Procedure 1. Instead of considering every consumer as
the first instruction executed after a potential checkpoint, we
simply consider as the candidate I1 the set of consumer in-
structions between every statically-inlined checkpoint call
and the next producer In. Considering consumers In+k, k > 0
past the producer In is unnecessary, as they necessarily read
the value produced by In, as in a continuous execution.

Accordingly, SlideWindow now stretches the window of
producer instructions from I1 up to the next statically-inlined
checkpoint call, regardless of ED. This is the most conserva-
tive choice, as it assumes the system has just enough energy
to execute every following instruction, but fails to complete
the next checkpoint call. The number of possibly re-executed
instructions is thus highest. When sliding the window down,
SCEPTIC-Locate proceeds to the set of consumer instruction
after the next checkpoint call, and the procedure repeats.
5.3 Evaluating Effects

The analysis of how memory anomalies possibly impact
the program behavior requires the concrete emulation of
power failures, with the corresponding code re-execution.

Consider again the case of reactive checkpoints; the case
of proactive checkpoints is obtained as a variation of this,
similar to Procedure 1. For the analysis to be complete,
based on the observations illustrated earlier for locating
memory anomalies, it suffices to investigate the case when
checkpoints happen before every consumer instruction. This
is a candidate I1. The window of instructions that we re-
execute extends for ED instructions starting from I1. The
instructions that possibly cause the memory anomaly are the
producers In within this window, whereas the effects of the
memory anomaly are manifest, for example, as a consumer
instruction I1 accesses an altered value when it is re-executed
upon resuming after a power failure.

Procedure 2 shows the core logic for evaluating the ef-
fects of memory anomalies. The example of Fig. 7 helps
understand the processing. Before emulating a consumer
instruction operating on NVM, we run procedure SCEP-

TIC-Evaluate. It starts off by saving a snapshot of the em-
ulation state, including the current instruction counter (line
2). This information is necessary to roll back the emulated
execution to a consistent state in case no memory anoma-
lies are found by re-executing the code from the considered
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a: 0

instr. count: 1

lookup[a]:

alter PC

alter IC

prev. val

State after
consumer I1

I1. b = a;
I2. b = b+ 1;
I3. a = b;

ScEpTIC-Evaluate()

TestPowerFailure()

Simulate power failure
and restore checkpoint

a: 1

instr. count: 3

lookup[a]:

alter PC I3

alter IC 3

prev. val 0

State after
producer I3

I1. b = a;
I2. b = b+ 1;
I3. a = b;

TestPowerFailure()

instr. count < alter IC

and

a 6= prev. val

signal anomaly
〈I1, I3〉

a: 1

instr. count: 1

lookup[a]:

alter PC I3

alter IC 3

prev. val 0

State after
consumer I1

Fig. 7: SCEPTIC-EVALUATE procedure to test a checkpoint be-
fore instruction I1.

Procedure 2: Evaluating the effects of memory
anomalies for a given NVM location.

1 function SCEPTIC-Evaluate (state, checkpoint data, ED)
2 snapshot← snapshot o f state
3 target counter← InstructionCounter(state)+ED
4 lookup←{}
5 while InstructionCounter(state)< target counter do
6 pc← ProgramCounter(state)
7 addr← TargetAddress(pc)
8 old content← NVMContent(state, addr)

9 execute pc

10 if pc is consumer then
11 init lookup[addr] with empty values

12 if pc is producer and addr ∈ keys(lookup) then
13 current counter← InstructionCounter(state)
14 lookup[addr]←〈current counter, old content, pc〉
15 if no failure previously simulated after pc then
16 〈state, lookup〉 ←

TestPowerFailure(state, snapshot,
checkpoint data, current counter, lookup)

17 function TestPowerFailure (state, snapshot, checkpoint data,
target counter, lookup)

18 simulate power failure
19 restore checkpoint data

20 while InstructionCounter(state)< target counter do
21 pc← ProgramCounter(state)
22 execute pc

23 if pc is consumer then
24 addr← TargetAddress (pc)

25 if addr ∈ keys (lookup) then
26 val← NVMContent (state, addr)
27 〈counter2, value2, pc2〉 ← lookup[address]

28 if counter2 >
InstructionCounter(state) and val2 6= val
then

29 signal memory anomaly 〈pc, pc2〉
30 if at least one anomaly was found then
31 lookup← /0

32 restore snapshot

33 return 〈state, lookup〉

consumer. Then, it calculates the length of the instruction
window to analyze (line 3) and initializes the lookup infor-
mation used for tracking the NVM state (line 4).

For every consumer operation, SCEPTIC-Evaluate ini-
tializes the lookup information associated to the target ad-
dresses (line 6-11). In Fig. 7, this is shown on the leftmost
box for variable a. As the execution continues and a pro-
ducer is found, SCEPTIC-Evaluate verifies if any lookup
information is present for the target address (line 12). This

may entail that an earlier consumer instruction can access an
altered information in case of a power failure and subsequent
re-execution. If so, we update the lookup information of the
altered memory location (line 13-14). This is the case for
producer I3 in Fig. 7, as shown in the middle box.

If it is the first time we analyze a specific consumer/pro-
ducer pair (line 15), we test the effects of a power failure at
this point with TestPowerFailure. This resets the volatile
state (line 18) and restores the checkpoint (line 19) with the
instruction counter at the time of checkpoint. This effec-
tively rolls back the execution to the consumer that triggered
the processing, that is, I1 in Fig. 7. It re-executes the code
until it reaches the point of the earlier power failure. When-
ever a consumer is executed (line 23), TestPowerFailure
accesses the lookup information to verify if it accesses the
value of a producer in the previous power cycle (line 25-
29). TestPowerFailure thus identifies a memory anomaly.
Fig. 7 shows this happening as soon as I1 is re-executed,
based on the information in the rightmost box.

By continuing the execution, TestPowerFailure as-
sesses the effects that the memory anomaly causes on pro-
gram behavior, including also other memory anomalies, and
up to ED instructions from I1. Upon completion, if any
memory anomaly is found, TestPowerFailure restores the
snapshot and empties the lookup information (line 30-32)
before returning control to SCEPTIC-Evaluate. This allows
the latter to proceed with the analysis from a clean consistent
state, not altered by the effects of memory anomalies.

6 Evaluation
We evaluate our techniques using SCEPTIC on a system

with an Intel Xeon E3-1270, 64 Gb of RAM, Ubuntu 19.04,
and Python 3.7.2. We use Clang 5.0.1-4 with LLVM 5.0 [22]
to produce the LLVM IR [22].
6.1 Memory Anomalies: Setup

We evaluate the performance of the techniques in Sec. 3
by comparing them to a baseline that operates only based
on the conditions that possibly lead to a memory anomaly.
In contrast, existing forward progress mechanisms [23, 24,
25, 38] avoid the occurrence of intermittence anomalies with
analysis techniques that are strictly tied to their system or
memory configuration. These may fail to identify the oc-
currence of anomalies with different memory configurations.
As they operate at compile time, they also cannot identify
the occurrence of intermittence anomalies that happen across
branches, conditional operations, and dynamic memory ac-
cesses. Because of this, we use as baseline a “layman” ap-
proach that does identify the occurrence of all anomalies.
Baseline. Initially, LAYMAN-MEMORY executes the code se-
quentially. Every time it needs to analyze a potential check-
point location, it saves snapshot of the emulation state and
then proceeds with the execution. Following the checkpoint
location in the code, LAYMAN-MEMORY records a snapshot of
the memory state as the execution unfolds, until it emulates
a subsequent power failure. Then, it rolls the execution back
to the checkpoint location, emulates a resume operation, and
proceeds with the (re-)execution by comparing the snapshots
of the memory states produced by the (re-)executed code
against those collected earlier.
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An anomaly is found whenever a mismatch is detected,
as the intermittent execution would be different from the
continuous one. Because the comparison occurs on snap-
shots of the entire memory state, LAYMAN-MEMORY can only
provide coarse-grained memory information and cannot pin-
point what instructions are responsible for a given anomaly.
Benchmarks and configurations. We select three bench-
marks commonly used in intermittent computing [3, 32,
4, 7, 1]: Cyclic Redundancy Check (CRC) for data in-
tegrity, Fast Fourier Transform (FFT) for signal analysis, and
Advanced Encryption Standard (AES) for security. They
span diverse functionality and expose very different program
structures. We use their open-source implementations from
MiBench2 [19], that is, a benchmark suite already used for
evaluating system support for intermittent computing [38].

For each benchmark, we choose two different memory
configurations. One configuration places only global vari-
ables onto NVM, while allocating all other memory seg-
ments, including the stack, on volatile main memory; the
other configuration places only the content of the stack onto
NVM, while allocating all other memory segments, includ-
ing global data, on volatile main memory.

We consider two different use cases. In the a-priori sce-
nario, we use SCEPTIC at a time when the checkpoint strat-
egy is yet to be defined, that is, programmers are to select
the most suitable system support. This means checkpoint
locations in the code are not known, or reactive checkpoint
systems are employed that may preempt the execution at any
point in time. For the analysis to be complete in this sce-
nario, every possible checkpoint location should be exam-
ined along with any potential location of power failure.

In the a-posteriori scenario, we use SCEPTIC when the
checkpoint strategy is fixed and checkpoint calls are stat-
ically placed in the code. This covers the cases where
programmers aim to analyze a specific checkpoint place-
ment [7, 32] or perform a post-mortem analysis of an
already-deployed program. We consider the checkpoint
placement of Mementos [32]. For AES, we consider both
Mementos’ function-return strategy that positions a check-
point after the return of each function and its loop-latch strat-
egy that places a checkpoint at the end of every loop body.
We consider only the latter strategy for the CRC and FFT
benchmarks, since they include no significant function calls.
Metrics. The primary performance figure we consider is the
net execution time required for the analysis, as it determines
how practical is a given technique. Moreover, to perform
the analysis, a certain technique may need to emulate power
failures and possibly re-execute certain instructions, result-
ing in an increase of the number of embedded code instruc-
tions executed. We measure this figure as well, as it impacts
the execution time. Similarly, the different techniques also
collect information about the program state into data struc-
tures that are external to the emulated program, so to verify
the presence of anomalies. These accesses to support mem-
ory introduce an overhead that also influences the execution
time, and is thus worth measuring as well.

Finally, we compare the number of found memory
anomalies by the different systems we test as an indica-

Fig. 8: Execution depth in Hibernus++ [4] with respect to
current draw, capacitance, and checkpoint voltage threshold.

tion of the output noise. As explained in Sec. 3, SCEPTIC-
LOCATE is both sound and complete, and it also returns ev-
ery memory anomaly as a unique data point, essentially pro-
viding the cleanest non-redundant output. Differently, SCEP-
TIC-EVALUATE may return a higher number of found mem-
ory anomalies merely because the effects of the same WAR
hazard may differ at run-time based on actual data. We
refrain to measure this metric for SCEPTIC-EVALUATE. On
the other hand, LAYMAN-MEMORY may point to the same
memory anomaly in multiple seemingly different ways, be-
cause coarse-grained memory information and the inabil-
ity to identify the exact instructions responsible for a given
anomaly prevents it from filtering out redundant information.
Code re-execution. In the a-priori use case where check-
point calls are not statically placed in the code, we need
to specify a realistic value for the ED parameter, discussed
in Sec. 5.2, representing the number of instructions executed
after a checkpoint and before the subsequent power failure.

We consider a configuration similar to the one of Hiber-
nus++ [4], using MSP430 [30] MCUs. When the capaci-
tor voltage goes below a certain threshold Vtrig, Hibernus++
saves a checkpoint. Here, ED corresponds to the number of
instructions that the MCU executes with the remaining en-
ergy, the checkpoint is complete and assuming the ambient
provides no additional energy in the meantime.

The capacitor equipping most intermittently-computing
systems is an electric bipole characterized by the differen-
tial relation

i(t) =C
dv(t)

dt
, (1)

where C is the capacitance, i(t) is the current at time t, and
v(t) is the capacitor voltage at time t. With a constant current
draw, we state

∆t =C
(V2−V1)

I
(2)

to be the time required to discharge the capacitor from volt-
age level V2 to V1, with a constant current draw I.

Let us consider V2 to be the voltage level Vtrig where Hi-
bernus++ [4] triggers a checkpoint and V1 to be the voltage
level Vmin where the MSP430 powers off. We can express
∆t as tchk + tcmp, where tchk is the time required for saving
a checkpoint and tcmp is the remaining running time of the
MCU. From eq (2) we derive
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tcmp = ∆t− tchk =C
(Vtrig−Vmin)

I
− tchk. (3)

Given tcmp as the remaining running time of the MCU,
the number of instructions executed within this time when
running at a clock frequency fMCU is ED = tcmp · fMCU . We
can now calculate

ED = fmcu · (C
(Vtrig−Vmin)

I
− tchk). (4)

The MSP430-FR5737 datasheet [30] states that the cur-
rent draw during the active mode at 1MHz goes from 200µA
up to 420µA, depending on cache hit ratio. A group of rea-
sonable values for current consumption is 250µA, 270µA,
and 310µA, respectively corresponding to a 75%, 66%, and
50% of cache hit. From Hibernus++ [4] we know that tchk is
1.4ms and Vmin is 1.88V . Fig. 8 shows the ED that we cal-
culate according to the above derivations, which ranges from
2470 to 5800 instructions. We run our experiments using
three representative values for ED: 3000, 4000, and 5000.
Measuring the baseline. LAYMAN-MEMORY must generate an
independent test for any possible checkpoint location, which
is at any line of code except the last one. For each of these
potential checkpoint locations, LAYMAN-MEMORY must sim-
ulate a power failure at every instruction that follows the
checkpoint within ED following instructions. As a result,
the entire analysis for LAYMAN-MEMORY would require years
to complete on a standard PC, as we argue earlier.

To obtain a quantitative baseline for comparison, we syn-
thetically calculate the number of instructions executed by
LAYMAN-MEMORY for a given benchmark as

(
nops−1

∑
i=0

(
nops

∑
j=i+1

( j− i)+1))−1, (5)

where i represents the checkpoints, j represents the power
failures, and nops is the number of machine instructions in
a sequential execution of the same code. The execution time
for LAYMAN-MEMORY is consequently obtained by considering
the emulation speed of SCEPTIC, which runs 5 · 104 instruc-
tions per second. With a similar reasoning, we also synthet-
ically calculate the number of accesses to support memory
and memory anomalies that LAYMAN-MEMORY finds.
6.2 Memory Anomalies: Results
A-priori scenario. Checkpoint calls are yet to be placed or
we are employing reactive system support that potentially
triggers checkpoints anywhere in the code. This configu-
ration corresponds to the processing in Procedure 2, where
SCEPTIC-EVALUATE stops at the first anomaly found in a given
window of instructions, assuming that cascading effects of
such anomaly are of no interest. The memory anomaly in-
formation that SCEPTIC-EVALUATE provides is thus equivalent
to SCEPTIC-LOCATE; we only consider the latter.

Fig. 9 shows the results we obtain. Fig. 9a demonstrates
that the execution time of SCEPTIC-LOCATE is 10 orders of
magnitude lower than LAYMAN-MEMORY. In absolute terms,
SCEPTIC-LOCATE constantly concludes the analysis in practi-
cal time across all benchmarks and memory configurations.

 ScEpTIC-Locate (ED 3k)

 ScEpTIC-Locate (ED 4k)

 ScEpTIC-Locate (ED 5k)
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Fig. 9: SCEPTIC-LOCATE is orders of magnitutde faster than
LAYMAN-MEMORY in the a-priori scenario. The X axis repre-
sents the benchmark and the memory slice on NVM.

Fig. 9a also shows that an increase of ED bears a minimal
performance impact on SCEPTIC-LOCATE. The is explained in
the results we obtain for the number of embedded code in-
structions executed and in the number of accesses to support
memory, shown in Fig. 9b and Fig. 9c respectively. SCEPTIC-
LOCATE executes the program sequentially to collect trace in-
formation and later analyzes a sliding window of instructions
to locate memory anomalies. Increasing ED therefore does
not increase the number of instructions that SCEPTIC-LOCATE

executes overall, shown in Fig. 9b. It only slightly increases
the accesses to support memory, shown in Fig. 9c.

Fig. 9d shows the number of found memory anomalies to
analyze the output noise. LAYMAN-MEMORY returns informa-
tion on many more memory anomalies due to the coarse-
grained information it reasons upon. These anomalies are,
however, semantically equivalent to those found by SCEP-
TIC-LOCATE. Programmers gain no insights from these addi-
tional information, which essentially represents a noisy out-
put compared to the programmers’ actual needs.
A-posteriori scenario. Fig. 10 shows the results for the a-
posteriori scenario. For each benchmark, we place check-
points accordingly to the loop-latch (ll) strategy of Memen-
tos [32]. We also consider the function-return (fr) strategy
for the AES benchmark, as it executes a significant number
of function calls. Fig. 10a shows SCEPTIC-LOCATE with the
lowest execution time. SCEPTIC-LOCATE is on average 3 or-
ders of magnitude faster than LAYMAN-MEMORY and 2 orders
of magnitude faster than SCEPTIC-EVALUATE. On the other
hand, SCEPTIC-EVALUATE is on average 5 times faster than
LAYMAN-MEMORY. LAYMAN-MEMORY has better performance
for the AES benchmark as it finds memory anomalies earlier
than SCEPTIC-EVALUATE due to the way the code is structured.

Emulating power failures requires SCEPTIC-EVALUATE and
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(c) Accesses to support memory
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Fig. 10: SCEPTIC-LOCATE is about 3 orders of magnitude
faster than LAYMAN-MEMORY in the a-posteriori scenario.

LAYMAN-MEMORY to save a snapshot of the emulation state
at every checkpoint. This is necessary to continue the anal-
ysis from a valid state, rather than an inconsistent one, in
case any of the re-executed instructions yields a memory
anomaly. This causes more accesses to the support memory,
shown in Fig. 10c, that make SCEPTIC-EVALUATE and LAYMAN-
MEMORY slower than SCEPTIC-LOCATE even when they execute
the same number of instructions. This is the case for CRC
and AES with global variables on NVM.

Fig. 10b also shows that when the stack is on NVM, SCEP-
TIC-EVALUATE executes a higher number of instructions com-
pared to LAYMAN-MEMORY. This is expected, because LAYMAN-
MEMORY cannot pinpoint the instructions that cause a mem-
ory anomaly and the ones consuming the altered value. For
this reason, it may not simulate power failures for executions
where it already recognized a memory anomaly, even though
there may be further memory anomalies in the same slice of
execution that involve different instructions.

Despite the difference in the number of instructions ex-
ecuted, Fig. 10a shows that SCEPTIC-EVALUATE is still faster
than LAYMAN-MEMORY. The reason for this is again in the
accesses to support memory, as shown in Fig. 10c: SCEPTIC-
EVALUATE records only write events and then verifies when a
read happens, whereas LAYMAN-MEMORY compares the entire
emulation state with a snapshot, resulting in higher overhead.

6.3 Input Access Analysis: Setup
We evaluate the performance of our analysis of input in-

teractions with the environment, as explained in Sec. 4.1. As
the analysis of output interactions uses almost identical tech-
niques, as illustrated in Sec. 4.2, the conclusions we obtain
also apply to that. In both cases, the actual procedure we
apply is a limited variation of SCEPTIC-LOCATE.

Similar to Sec. 6.1, we employ a LAYMAN-ENVIRONMENT

baseline representative of how one would naturally operate
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(c) Memory accesses

Fig. 11: SCEPTIC is 7x faster in determining the access se-
mantics for environment input variables.

to verify that, in the presence of arbitrary checkpoint opera-
tions and power failures, the behavior of a given input vari-
able matches the intended semantics. In essence, this entails
determining whether input variables behave according to a
long-term or most-recent semantics against the re-executions
of arbitrary code segments.
Benchmarks and configuration. The few works [18, 33,
26, 8, 37] considering intermittent executions together with
environment interactions typically employ a typical sense-
process-transmit application.

We consider four different input configurations: from one
to four environment inputs through corresponding sensors.
We use Mementos [32] again as checkpoint mechanism and
rely on its manual strategy to keep checkpoint calls balanced
with respect to calls to probe sensors. For example, with two
inputs we place a checkpoint between their access calls, re-
sulting in the sequence read1()→ checkpoint()→ read2().
This also corresponds to the approach that existing system
support [18, 23, 11] employs to interleave calls to peripher-
als with checkpoints to ensure atomic execution of individual
peripheral interactions.

As the procedure we apply is a variation of SCEPTIC-
LOCATE and the baseline is, in fact, a variation of LAYMAN-
MEMORY, we use the same metrics as in Sec. 6.1. The number
of found anomalies is, however, not applicable in this case.
6.4 Input Access Analysis: Results

Fig. 11 shows the results. Both SCEPTIC and LAYMAN-
ENVIRONMENT execute the benchmark within seconds, with
SCEPTIC performing on average 7 times faster, as Fig. 11a
shows. SCEPTIC takes the same time for the execution of the
different input configurations, since it executes the program
sequentially and requires no re-execution. Instead, the per-
formance of LAYMAN-ENVIRONMENT worsens with the number
of inputs, since it needs to re-execute an increasing number
of instructions as the number of inputs grows.

This performance reflects in Fig. 11b, where SCEPTIC is
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shown to execute almost the same amount of instructions,
independent of the number of inputs. The minor increase
is merely due to separately processing different inputs. In-
stead, the number of instructions that LAYMAN-ENVIRONMENT

executes increases with the number of inputs present in the
benchmark, again because of the increase in the number of
re-executed instructions with more inputs.

Fig. 11c accordingly shows that SCEPTIC accesses the sup-
port memory 1.4 times more than LAYMAN-ENVIRONMENT on
average, as required by the processing applied to the relevant
windows of instructions. The overhead that support mem-
ory accesses introduced in SCEPTIC is, however, significantly
lower than the one of the actual re-execution of code seg-
ments in LAYMAN-ENVIRONMENT, ultimately resulting in faster
executions for SCEPTIC.

7 Conclusion
Intermittent executions of battery-less embedded devices

conceal hidden anomalies whose comprehensive treatment
was not addressed by prior work. We fill this gap by investi-
gating the anomalies occurring on memory and through en-
vironment interactions. Our contributions are made concrete
in SCEPTIC, a code analysis tool for intermittent programs
that uncovers previously unknown anomalies. Our evalu-
ation indicates that SCEPTIC is orders of magnitude faster
than the baselines we consider across a significant set of di-
verse benchmarks and configurations, enabling many types
of analyses that would be otherwise impractical.
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