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Abstract
LoRa is one of the most popular transmission scheme for

the Internet of Things (IoT). It is used in many applications
such as home automation, smart cities and smart agriculture.
It provides low bitrate transmissions over long ranges, using
unlicensed Industrial, Scientific and Medical (ISM) bands.
Being a relatively new, and proprietary modulation, there
are still challenges and improvements to be addressed and
discovered. In this article, we cover estimation, tracking,
and correction of slow varying timing and frequency off-
sets. Both timing and frequency offsets can arise, in par-
ticular, when oscillators, found in radios, are either of poor
quality, or aged. The latter scenario is a serious concern for
IoT, where devices are envisioned to stay in operation during
decades without maintenance. The proposed estimators are
based on symbol-by-symbol processing of the output of the
demodulator. Tracking and correction are then performed by
including these estimators in a tracking loop. Simulations
show that the proposed closed-loop system can efficiently
and jointly track timing and frequency offsets, even at low
SNR.

1 Introduction
The Internet of Things (IoT) is a paradigm in which

“things” (or objects), usually simple sensors or actuators,
are deployed to help monitor and control complex systems.
These objects are connected to a global network following
the principles of the Internet, using open and standardized
protocols. Typical applications for IoT are entertainment,
home automation, smart cities and factory monitoring and
control. For example, for smart buildings, objects can be
used to perform metering (water, electricity, etc.), or light
and temperature automatic control. In the Industry 4.0, the
IoT can be used in closed-loop systems, in order to monitor
and possibly control production chains.

IoT devices are usually constrained in terms of energy.
This means that they cannot embed a lot of processing power,
nor can they afford high-bitrate transmissions. They need
energy efficient transmission schemes, which usually come
with low spectral efficiency (hence, low bitrates), by virtue
of the Shannon limit [6, chap. 4].

LoRa is one popular modulation for IoT devices, along
with Sigfox and 3GPP NB-IoT. It is a long-range, low-power
communication technology aimed at constrained devices.
The LoRa transmission scheme uses Chirp-Spread Spectrum
(CSS) modulation: an energy-efficient modulation, that per-
forms well under channels suffering from Doppler shift and
multipath propagation. This transmission scheme, as well
as the performance and properties of CSS modulated signals
have been studied in various articles [1, 3, 5, 7, 10], and the
LoRa modulation itself is patented [8]. However, there are
only few works that covers time/frequency synchronization
and tracking for LoRa and, more generally, CSS modula-
tions [2, 9].

IoT sensors and actuators are envisioned with a very long
lifetime (decades, typically). These sensors may be deployed
in locations that make them difficult to be accessed. As a re-
sult, hardware maintenance or other physical operations are
challenging. In particular, regular tuning of oscillators may
not be possible, impacting their precision and stability, and
inducing both time and frequency jitters. At the demodula-
tor level, this jitter translates to Sampling Frequency Offset
(SFO), and Carrier Frequency Offset (CFO), which cause se-
rious performance degradations on communication systems
that use CSS modulations.

While initial estimations of SFO and CFO can be done
using a preamble, tracking is also needed to compensate for
oscillators fluctuations. Considering this issue, the main con-
tributions of this article are:

• A theoretical model of the impact of fine timing and
frequency offsets on CSS modulated signals.

• A symbol-by-symbol estimator for fine frequency off-
sets.

• A symbol-by-symbol estimator for fine timing offsets.

• A tracking loop, based on the proposed estimators, that
uses only one non-coherent demodulator, and whose
loop filters are simple accumulators.

Simulations show that the proposed closed-loop system can
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efficiently track slowly drifting SFO and CFO. In terms of
bit-error rate (BER), it is able to almost completely can-
cel the performance hit induced by slowly drifting SFO and
CFO.

The remainder of this article is organized as follows.
First, in section 2, we give an overview of the literature on
LoRa analysis, and time/frequency offset impairments com-
pensation. Then, section 3 describes a continuous-time CSS
signal model, including timing and frequency offsets impair-
ments. In section 4, a theoretical analysis of the impact of
time and frequency offsets on CSS modulation performance
is given. Next, section 5 presents the contributions of this
article. Finally, section 6 analyses and evaluates the perfor-
mance of the proposed tracking loop, by means of simula-
tions.

2 Related Work
Because of the proprietary nature of LoRa, several

reverse-engineering efforts have been conducted to under-
stand and analyze its properties. Knight et al. [4] made
the earliest attempt to implement and document a LoRa de-
coder, with partial success. Later on, Robyns et al. [7] gave a
thorough description of LoRa modulation and demodulation
chains, but described a highly sub-optimal CSS demodula-
tor. More recently Marquet et al. [5] presented procedures to
determine the key-parameters of the different algorithms of
LoRa transmission chain (code generator matrix, whitening
sequences, etc.), compared several demodulation strategies
for CSS, and assessed LoRa performance under time and fre-
quency selective channels.

Regarding the CSS modulation, described in the LoRa
patent of Seller et al. [8], a continuous-time expression of
CSS modulated signals was given by Goursaud et al. [3], and
a discrete-time baseband complex equivalent was derived by
Marquet et al. [5]. Theoretical performance over Additive
White Gaussian Noise (AWGN) channel and Rayleigh fad-
ing channels were given by Elshabrawy et al. [1].

Interestingly, timing and carrier frequency offset estima-
tions and compensations for CSS modulated signal received
very few research interest. The patents of Tanaka et al. [9]
and Seller et al. [8] describe procedures to estimate timing
offset and CFO, based on the detection of a preamble. More
recently Ghanaatian et al. [2] proposed a method to track and
correct SFO. They also described a CFO estimator, but no as-
sociated tracking algorithm. Moreover, their article does not
cover the association of their two estimators, which would
allow joint SFO and CFO estimation, as required by practi-
cal systems.

3 System Model
We consider the baseband complex equivalent of the

signal resulting from the transmission of the vector c =
{cn}n∈[0;K−1] of K ∈ N∗ symbols cn ∈ [0;M− 1] (M ∈ N∗),
using a CSS modulation. Considering an occupied band-
width of B Hz and a symbol time of T seconds, such a CSS
signal is defined as [5]:

s(t) =
K−1

∑
n=0

gcn(t−nT ) ∀t ∈ R. (1)

The pulse-shape gc(t) ∈ C is defined as:

gc(t) = ΠT (t)e jπ B
T t2

.e j2π
c
T t .e− j2πb B

T t+ c
T et , (2)

with b·e the rounding operator, and ΠT (t) = 1 if t ∈ [0;T [,
and ΠT (t) = 0 otherwise. The waveform corresponding
to g0(t) is called a linear chirp, and gc(t) is obtained by
frequency-shifting g0(t) by c/B Hz, and wrapping the ob-
tained shifted linear chirp between 0 and B Hz (see Fig. 1).
One can show that, when B.T = M, then {gc(t)}c∈[0;M−1]
forms an orthogonal set [10]:∫ +∞

−∞

g∗i (t)g j(t)dt = T δi− j ∀i, j ∈ Z, (3)

where δi = 1 if i = 0, and δi = 0 ∀i ∈ Z∗. Also, because
pulse-shapes only last T seconds, as enforced by the term
ΠT (t) in (2), orthogonality is also guaranteed between suc-
cessive symbols:∫ +∞

−∞

g∗i (t−nT )g j(t−qT )dt = T δi− jδn−q ∀i, j,n,q ∈ Z.
(4)

Conversely, the CSS modulation belongs to the family of or-
thogonal modulations (just like frequency-shift keying, and
pulse-position modulation, for example).
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Figure 1. Frequency content of a chirp corresponding to
the transmission of symbol c = 50, with M = 128.

A time and frequency shifted version of the signal (2) is
received, corrupted by an Additive White Gaussian Noise
z(t):

r(t) = s(t−δt)e j2πδ f t + z(t), (5)

with δt ∈ R (in seconds) and δ f ∈ R (in Hz) the timing and
frequency offsets, respectively.

Just like every other orthogonal modulation, its spectral
efficiency is defined as [6, chap. 4]:

η = log2(M)/M. (6)

This allows to define the per-bit signal to noise ratio as:

Eb

N0
=

log2(M)

M
SNR, (7)

where SNR is the signal-to-noise ratio.
4 Problem Statement

In this section, we analyze the impact of timing and fre-
quency offsets on the transmission reliability. We consider
a non-coherent receiver, which relaxes the need to estimate
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phase-shifts impairments in the receiver. This means that
each estimated symbol ĉq is found by searching for the pulse-
shape that correlate the best (in absolute value) with the re-
ceived signal:

ĉq = argmax
ĉ∈[0;M−1]

∣∣∣∣∫ +∞

−∞

g∗ĉ(t−qT )r(t)dt
∣∣∣∣ (8)

= argmax
ĉ∈[0;M−1]

∣∣γq,ĉ
∣∣ ∀q ∈ [0;K−1]. (9)

In presence of timing (δt seconds) and frequency (δ f Hz)
offsets, we have:

γq,ĉ =
∫ +∞

−∞

g∗ĉ(t−qT )s(t−δt)e j2πδ f tdt

+
∫ +∞

−∞

g∗ĉ(t−qT )z(t)dt︸ ︷︷ ︸
Filtered noise term zq,ĉ.

(10)

=
∫ +∞

−∞

e j2πδ f t
K−1

∑
n=0

g∗ĉ(t−qT )gcn(t−δt−nT )dt

+ zq,ĉ. (11)

The summation in (11) includes a useful term (correla-
tion with the portion of r(t) carrying the q-th symbol),
and an Inter-Symbol Interference (ISI) term (correlations
with the portions of r(t) carrying the symbols sent before
or after the q-th one). We denote this term as: ISIq,ĉ =∫ +∞

−∞
e j2πδ f t

∑n 6=q g∗ĉ(t− qT )gcn(t− δt− nT ). Using this no-
tation, we obtain:

γq,ĉ = e j2πδ f qT
∫ +∞

−∞

e j2πδ f tg∗ĉ(t)gcq(t−δt)dt

+ ISIq,ĉ + zq,ĉ. (12)

In the ideal case, where δt = 0 and δ f = 0, one can show that
γq,ĉ = T δĉ−cq + zq,ĉ ∀ĉ ∈ [0;M−1], by virtue of the orthog-
onality of the CSS modulation (4).
4.1 Fine Time and Frequency Offset

Let us focus on the value of γq,cq , that is, assuming no
demodulation error (ĉ = cq). In this case, we have:

g∗cq(t)gcq(t−δt) = ΠT (t)ΠT (t−δt)

e jπ B
T δt2

e− j2π
B
T δt.te− j2π

cq
T δt

e− j2πb B
T t+

cq
T ete j2πb B

T (t−δt)+
cq
T e(t−δt). (13)

Assuming a fine timing offset (δt� T ), we consider the fol-
lowing approximation:

g∗cq(t)gcq(t−δt)≈ΠT (t)e jπ B
T δt2

e− j2π
B
T δt.te− j2π

cq
T δt . (14)

In the same spirit, we consider that the overlapping of ad-
jacent symbols in time, due to timing offset, is negligible:
ISIq,cq ≈ 0. Using these approximations, we get:

γq,cq ≈ e j2πδ f qT e jπ B
T δt2

e− j2π
cq
T δt∫ +∞

−∞

ΠT (t)e j2π(δ f− B
T δt).tdt + zq,cq . (15)

Recalling that the inverse Fourier transform of ΠT (t) is given
as

∫ +∞

−∞
ΠT (t)e j2π f tdt = T sinc(πT f ), we obtain:

γq,cq ≈ e j2πδ f qT e jπ B
T δt2

e− j2π
cq
T δt

T sinc(π(T δ f −Bδt))+ zq,cq . (16)

On equation (16), we see that fine timing and frequency off-
sets lowers the noise sensibility, by lowering the power of
the useful part of γq,cq , with respect to noise (see Fig. 2). In
particular, when T δ f −Bδt = ∆ ∈ Z∗, then the useful part of
γq,cq completely vanishes. This case is analyzed in subsec-
tion 4.2.

−1 −0.5 0 0.5 1
0

T/2

T

T δ f −Bδt
|γ

q,
c q
|

Figure 2. Impact of fine time and frequency offsets in
absence of noise, on the magnitude of γq,cq .

4.2 Coarse Time and Frequency Offset
Let us assume that T δ f −Bδt = ∆ ∈ Z∗, and compute γq,ĉ

in this case. As in the previous subsection, we will assume
that ISIq,ĉ ≈ 0, which requires δt� T :

γq,ĉ ≈ e j2πδ f qT
∫ +∞

−∞

e j2πδ f tg∗ĉ(t)gcq(t−δt)dt

+ zq,ĉ. (17)

As for the term under the integral, we use an approximation
similar to (14):

g∗cq(t−δt)gĉ(t)≈ΠT (t)e jπ B
T δt2

e j2π
1
T (ĉ−cq−δt.B)te− j2π

ĉ
T δt .

(18)

Combining the two last equations yields:

γq,ĉ ≈ e j2πδ f qT e jπ B
T δt2

e− j2π
ĉ
T δt

T sinc(π(∆+ ĉ− cq))+ zq,ĉ. (19)

Because sinc(πn) = 1 if n = 0 and sinc(πn) = 0 ∀n ∈ Z∗
then, even in complete absence of noise (zq,ĉ = 0), we have:

ĉq = argmax
ĉ∈[0;M−1]

∣∣γq,ĉ
∣∣= cq +∆ mod M. (20)

To sum up, coarse timing or frequency offsets cause a con-
stant error floor, even in the absence of noise.

More generally, any combination of timing and frequency
offsets for which it exists ∆∈ [0;M−1] such that sinc(T δ f −
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Bδt) < sinc(T δ f −Bδt ±∆) induces an error floor. Moti-
vated by this result, we formally define fine and coarse tim-
ing and frequency offsets as follows:

• Fine frequency offset: |δ f |< 0.5/T .

• Fine timing offset: |δt|< 0.5/B.

• Coarse frequency offset: |δ f | ≥ 0.5/T .

• Coarse timing offset: |δt| ≥ 0.5/B.
On the one hand, with these definitions, a fine timing (respec-
tively, frequency) offset alone cannot yield an error floor. On
the other hand, a coarse timing or frequency offset alone will
systematically yield an error floor. Combinations of time and
frequency offsets yields more complicated scenarii as, de-
pending on their sign, they may either add up, or compensate
each other in T δ f −Bδt.

5 Fine Time-Fequency Shift Estimation and
Tracking

5.1 Fine Frequency Offset Estimation
In the following, we propose a frequency offset estimator

that is robust against timing offsets. It basically consists in
an estimation of the remaining phase variation between suc-
cessive decision variables (γq,ĉq ) using a quadrature detector.
Let us assume perfect decisions (ĉq = cq ∀q ∈ [0;K − 1]),
then:

γq,ĉq .γ
∗
q−1,ĉq−1

≈ T sinc(2π(T δ f −Bδt))[
e j2πδ f T e− j2π

ĉq−ĉq−1
T δtT sinc(2π(T δ f −Bδt))

+ z∗q−1,ĉq−1
e j2πδ f qT e jπ B

T δt2
e j2π

cq
T δt

+zq,ĉqe− j2πδ f (q−1)T e− jπ B
T δt2

e− j2π
cq−1

T δt
]

+ zq,ĉqz∗q−1,ĉq−1
. (21)

Assuming that symbols are Independent and Identically Dis-
tributed (IID), that noise samples are mutually independent,
and independent from the modulated symbols, we have:

E{γq,ĉq .γ
∗
q−1,ĉq−1

} ≈ e j2πδ f T T 2sinc(2π(T δ f −Bδt))2. (22)

Motivated by this result, we propose to estimate δ f as:

δ̂ f ≈ T
2π

argE{γq,ĉq .γ
∗
q−1,ĉq−1

}, (23)

where the expected value can by practically estimated by av-
eraging successive values of γq,ĉq .γ

∗
q−1,ĉq−1

.
One can notice that the frequency offset estimation of (23)

is not susceptible to timing offsets, and is linear with δ f . In
practice, timing offset reduces the range of the estimator, as
shown in the simulation of Fig. 3.

5.2 Fine Time Shift Estimation
In this subsection, we propose a timing offset estimator.

Assuming perfect decisions (ĉq = cq), it is straightforward
for a receiver to generate any time-shifted version of gcq(t−
qT ). Hence, the value of the time-shift could be recovered

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

T.δ f

T
.δ̂

f

δt = 0.0
δt = 0.25/B

Figure 3. Simulation of the frequency offset estimator
with M = 512 and no noise. We observe how a timing
offset reduces the range of this estimator.

by finding the timing offset δ̂t that allows the pulse-shape to
correlates the best with the received signal:

δ̂t = argmax
δ̂t∈[−0.5/B;0.5/B[

∣∣∣∣∫ +∞

−∞

g∗ĉq(t−qT − δ̂t)r(t)dt
∣∣∣∣ . (24)

However, because δt is a continuous quantity, it is not possi-
ble to evaluate (24) directly. One simple way to circumvent
this limitation, is to discretize the search space with N ∈ N∗
values:

δ̂t =−1
2

+
1
N

argmax
n∈[0;N−1]

∣∣∣∣∫ +∞

−∞

g∗ĉq(t−qT − (n/N−0.5))r(t)dt
∣∣∣∣ .
(25)

Because of the discretization, the estimator (25) is piece-
wise constant linear with respect to δt (see Fig. 4). Interest-
ingly, in practice, this estimator is not particularly suscep-
tible to fine frequency offsets, as shown in simulations of
Fig. 5.

5.3 Joint Time-Frequency Shift Correction
The frequency and timing offset estimators proposed in

subsections 5.1 and 5.2, respectively, both require outputs
from a non-coherent demodulator. Hence, the only solu-
tion, in order to use these estimators without requiring mul-
tiple demodulators, is to use feedback loops. This not only
reduces the overall complexity of the receiver, but also al-
lows to correct coarse time and frequency offsets (|δt|> 1/B
and |δ f |> 1/T ), as long as they result from slow variations
(that is, fine timing and frequency offsets between successive
symbols).

The proposed closed-loop system (see Fig. 6) is actually
composed of two nested loops: one for the frequency offset
compensation, and the other for the timing offset compensa-
tion. Both use a first-order IIR (Infinite Impulse Response)

280



−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

B.δt

B
.δ̂

t

N = 4
N = 16

Figure 4. Simulation of the timing offset estimator with
M = 512, no noise and various levels of discretization (N).
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Figure 5. Robustness of the timing offset estimator to
frequency offsets, with M = 512 and no noise.

loop filter, whose impulse response is given by:

H(z) =
a

1− z−1 , (26)

where a ∈R+∗ is the gain of the loop. We denote a f the gain
of the frequency offset compensation loop, and at the gain
of the timing offset compensation loop. Usually, to keep the
loop stable, these gains are kept bellow unity: at < 1 and
a f < 1. This type of filters allow for very low-complexity
updates of the estimates:

δ̂tq+1 = δ̂tq +at δ̂t and δ̂ f q+1 = δ̂ f q +a f δ̂ f , (27)

where δ̂tq (respectively, δ̂ f q) is the filtered time (respec-
tively, frequency) estimate after reception of the q-th sym-
bol, and δ̂t (respectively, δ̂ f ) is the output of the estima-
tor, as given by (25) (respectively, (23)). Note that in this
system, it is the loop filter that is in charge of approximat-
ing the expectancy in (23), by averaging successive values
of γq,ĉq .γ

∗
q−1,ĉq−1

. These filtered time and frequency offsets
estimates are then used to drive a variable delay line and a
Voltage Controlled Oscillator (VCO), in order to present the
demodulator with a time and frequency synchronized signal.

VCO
a f

1−z−1
Frequency offset

estimator

Timing offset
estimator

at
1−z−1

r[k]
Variable

delay Demodulator ĉq

γq,ĉq

−δ̂ f−δ̂ f q γq,ĉq

δ̂tδ̂tq

Figure 6. Timing and frequency offsets tracking using a
loop and first order filters.

5.4 Discussion
The proposed timing and frequency offsets estimators,

and the associated closed-loop system allows for low-
complexity time-frequency synchronization under the hy-
pothesis of an AWGN channel, and slow varying timing and
frequency offsets.

It is worthwhile mentioning that both estimators, and
the tracking loop, trade reactivity with complexity. Indeed,
both estimators work on demodulated symbols, making them
powerless in face of timing and frequency offsets that vary
significantly during one symbol duration (T ). In the same
spirit, it might be interesting to study the relevance of higher
order loop filter, that may enable better tracking of sudden
timing and/or frequency offsets variations.

Also, the proposed frequency offset estimator is sensitive
to any symbol-to-symbol phase variation, including random
variations that may not be due to CFO. This means that, in
practical system, a prior step of phase shift estimation and
tracking might be needed.
6 Performance Evaluation

This section is dedicated to the analysis, by means of sim-
ulations, of the timing and frequency offset estimators pro-
posed in section 5, as well as the tracking loop of Fig. 6.

On Fig. 7, one can observe the reactivity and stability of
the loop when presented to a simultaneous change of timing
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and frequency offsets, for various values of the loop gains at
and a f . For both loops, a gain between 0.3 and 0.4 gives a
good compromise between loop reactivity and loop stability.

0 10 20 30 40
0.0

0.2

0.4

0.6

Symbol index (n)

T
.δ̂

f n

a f =0.1
a f =0.4
a f =0.8

0 10 20 30 40
0

0.2

0.4

0.6

Symbol index (n)

B
.δ̂

t n

at =0.1
at =0.4
at =0.8

Figure 7. Response of the tracking loop to a simulta-
neous timing offset of B.δt = 0.4, and frequency offset
T.δ f = 0.4, with M = 512 and no noise. The timing offset
estimator is set with N = 4.

Finally, Fig. 8 shows the behaviour of the closed-loop
system in terms of Bit Error Rate (BER) when faced with
slowly changing timing and frequency offsets. The time
drifting is implemented with a sampling frequency offset.
That means that the receiver uses a reference symbol time
which is slightly different than T . This can be modelled as
constant increase (or decrease) of the timing offset between
successive symbols and, consequently, can be corrected by
the tracking loop.

In this scenario, even though the consecutive symbols
only experience fine timing and frequency offsets, the accu-
mulating error can reach timing offsets such that |δt|> 0.5/B
and frequency offsets with |δ f |> 0.5/T . We observe that the
closed-loop system allows to recover performance very close
to CSS over perfect AWGN channel (without timing and fre-
quency offsets) with a penalty of around 0.4 dB of Eb/N0.

7 Conclusion
In this article, we first gave a theoretical analysis of the

implications of timing and frequency offsets on performance
of CSS transmissions. Considering some approximations,
this analysis shows that these two kinds of impairments
yields to the same type of performance hits. Indeed, fine
time and frequency offsets make the modulated signal more
susceptible to noise, while coarse offsets lead to a constant
symbol error floor.

Based on the analysis mentioned above, we derived a tim-
ing offset estimator, and a frequency offset estimator. The
former proves to be resilient to frequency offsets, while the

0 1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

at = 0.0, a f = 0.0
at = 0.0, a f = 0.4
at = 0.4, a f = 0.0
at = 0.4, a f = 0.4
Perfect AWGN

Figure 8. BER performance of the tracking loop of
Fig. 6, with M = 512 and under Gaussian random walk
sampling frequency and carrier frequency offset models.
Both models have a standard deviation of 10−6, and the
maximum sampling frequency offset is set to 50 ppm (no
limit for the carrier frequency offset). The timing offset
estimator is set with N = 4.

latter has is detection ranged reduced by timing offsets. By
introducing this estimator in a simple closed-loop system,
including the demodulator and an accumulator as loop fil-
ter, proved to be an effective solution for joint demodulation,
timing and frequency offset tracking.
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