
Lessons from Communication Problems that Nearly Jeopardized
Development of Hardware-Software Support for

a 1000-Device IoT Testbed

Mateusz Banaszek, Inga Rüb, Maciej Dębski, Agnieszka Paszkowska, Maciej Kisiel,
Dawid Łazarczyk, Ewa Głogowska, Przemysław Gumienny, Cezary Siłuszyk, Piotr Ciołkosz,
Jacek Łysiak, Wojciech Dubiel, Szymon Acedański, Przemysław Horban, Konrad Iwanicki

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

{m.banaszek, i.rub, iwanicki}@mimuw.edu.pl

Abstract
While prototyping devices dedicated for a 1000-node

low-power wireless networking testbed, we encountered
over a dozen nontrivial technical problems. This paper an-
alyzes a few selected ones, which we faced during devel-
opment of the hardware-software support for two different
communication channels for supervising experiments on the
testbed. The problems arose despite our employing pop-
ular standards and reputed components, minimizing risky
features, and following modern quality assurance practices.
Moreover, if it had not been for our emphasis on dependabil-
ity, they would have likely passed undetected and doomed
our project. In this light, we believe that the presented
lessons we learned the hard way when debugging the prob-
lems may be of interest to the community.
Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—network communications
General Terms

Design, Experimentation, Management, Reliability
Keywords

testbed, experimental platform, prototyping, Ethernet,
WiFi, low-power wireless network, Internet of Things
1 Introduction

In January 2016, we started a project whose goals
involved, among others, building a 1000-device one-site
testbed for experimentation with low-power wireless com-
munication protocols for the Internet of Things (IoT). By Oc-
tober 2019, all devices had been manufactured, tested, and
delivered, and we deployed over 75% of them. With those
devices operational and some experiments on them already

completed, we have every reason to believe that the under-
taking may indeed ultimately be successful. Nevertheless,
throughout the duration of the project, that was not obvious
at all, considering the multitude of problems that we faced.

Although the scope of the undertaking entailed problems
of virtually every conceivable nature, for this paper we se-
lected just a few communication-related technical ones that
we had encountered when prototyping the devices. We be-
lieve that an analysis of the problems may be of interest to the
community for at least two reasons. They emerged when de-
signing rather standard hardware-software functionality that
was going to be used in a fairly typical manner, as such being
completely unpredicted. At the same time, if they had passed
undetected or we had not emphasized certain requirements,
they would have likely doomed the entire project.

To give more context, serving as a platform for experi-
mentation, our devices were expected to be extensively used.
Their low-power wireless system-on-chips (SoCs) would be
frequently reprogrammed with custom images whose oper-
ation would be monitored and altered in real time. Existing
testbeds addressed that issue by providing remote supervi-
sion of the experiments by means of a backbone control net-
work. Such networks were built out of ordinary computers
or embedded ones, yet powerful enough to run classic oper-
ating systems and protocol suites. In an extreme case, each
computer hosted only one low-power wireless SoC. That was
also the approach we followed: combining in a single device
an embedded computer for control and a board with a low-
power wireless SoC for actual experimentation. Yet, due to
the aforementioned and some other constraints of the project,
we were unable to adopt complete off-the-shelf devices to
this end, thereby being forced to design dedicated ones.

When deciding upon the hardware-software support that
the embedded computers should have provided for the con-
trol infrastructure, apart from other constraints such as a tight
budget and limited facilities of the target deployment site,
two issues were of particular importance: the scale of the
testbed and highly limited post-deployment access to indi-
vidual devices. The poor physical access implied that the
devices had to operate autonomously for extended periods
of time. The embedded computers had to be responsive over
the network in the presence of software bugs, potential mis-

259
International Conference on Embedded Wireless Systems and Networks (EWSN) 2020 
17–19 February, Lyon, France © 2020 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library 
ISBN: 978-0-9949886-4-5



use, or after global calamities like power or network outages.
When it comes to the scale, in turn, in the case of a smaller
testbed, even a major malfunction might be often overcome
by replacing faulty components or even rebuilding parts of
the infrastructure. In our case, that was hardly viable. In fact,
the sheer scale of testbed made it challenging to merely col-
lect logging statements from the low-power wireless SoCs,
not to mention upgrading the operating system image on the
embedded computers. Consequently, throughout the entire
project we emphasized dependability: from individual com-
ponents, to subsystems, to the entire testbed. In particular,
we strove to ensure that the control network formed by the
embedded computers of the devices would be truly reliable,
much like in many industrial IoT applications [7].

The rest of this paper presents an analysis of selected
major technical problems that arose when trying to achieve
this goal. We start in Section 2 by discussing the hardware-
software support for the control networking that our devices
were expected to provide. Then, in Sections 3 and 4, we an-
alyze the problems and offer short stories about their debug-
ging process, the results of our investigation, and universal
advice. Finally, we conclude in Section 5.

2 HW/SW Support for the Control Network
The embedded computer and the low-power wireless SoC

were the two main components of our devices, dubbed
Cherry devices (see Fig. 1). The selection of those particu-
lar components was motivated directly by the functionalities
they provided and protocols they supported,1 but their power
consumption and our budget also played major roles.

In case of the embedded computer, the choice was mainly
driven by our design of the control network. Ethernet was
decided to be the primary communication channel due to its
stability and throughput. The embedded computer thus had
to support Ethernet out of the box. Moreover, we wanted to
base our control network on an already existing LAN infras-
tructure at the deployment location, but free Ethernet sockets
were hardly available there. Buying a few hundred network
switches was not an option due to our strict budget. There-
fore, we chose an embedded computer that provided 2 Eth-
ernet ports and an integrated switch that could be configured
to relay network traffic between those ports and the device
itself. In that way, at each location where our Cherry devices
were deployed, only one free Ethernet socket was required:
one device had to be connected to it and other nearby devices
could be connected to one another in a chain-like way.

Figure 1. Cherry device

1To avoid positive/negative marketing of their manufacturers, we do not
provide names or detailed specifications of these components.

Although the selected embedded computer had built-in
Ethernet support, it did not have Ethernet ports. Only bare
electrical pins were provided. For that reason we had to de-
sign a printed circuit board (PCB) that connected the embed-
ded computer with the 2 Ethernet ports located at the front of
Cherry device. However, the manufacturer of the computer
provided also an evaluation board to facilitate quick proto-
typing with its products. Not only had the evaluation board
exactly 2 Ethernet ports, but also electronic schematics di-
agrams presenting its design were publicly available. That
way we could preliminarily test our design using those eval-
uation boards and then simply copy the Ethernet section to
our PCB directly from the original schematics.

With the high dependability in mind, we decided that
our control network needed a backup communication chan-
nel. In some locations it might have not been possible to
connect Cherry devices to the LAN directly. Furthermore,
someone could (accidentally or deliberately) disconnect our
Ethernet cables relatively easy. Consequently, in addition
to Ethernet, we decided to employ WiFi as a failover com-
munication channel in the control network. For that reason
the selected embedded computers were based on a Ralink
RT5350 WiSoC [10] supporting the WiFi 802.11n standard.
That standard was required by the expected volume of traf-
fic within the control network. Furthermore, the embedded
computer already had an on-board WiFi antenna, so no hard-
ware modifications were required.

With both technologies on board, Cherry devices were to
communicate via Ethernet always when it was possible, and
to automatically switch to WiFi when the former route was
no longer accessible. Importantly, we did not want Cherry
devices to be connected to any external WiFi network but to
autonomously form a dedicated one, in which Cherry devices
connected via Ethernet acted as access points.

Regarding software, the embedded computers were pow-
ered by OpenWrt [1]. It was a natural choice for us since
that Linux-based open-source operating system targeted ex-
actly embedded and network devices. It could be found in
many home WiFi routers. Moreover, it was recommended by
the manufacturer of the embedded computer. The manufac-
turer even provided additional modifications and configura-
tions for those devices. Since OpenWrt supported an exten-
sive network configuration, to achieve the required behavior
of the control network (Ethernet being the primary commu-
nication channel, WiFi being the fallback, relaying network
traffic both via cable and wirelessly, etc.) all we had to do
was to set proper options in OpenWrt configuration files.

3 Ethernet Problems
Employing Ethernet communication into Cherry devices

required preparing a printed circuit board to connect the em-
bedded computer with Ethernet ports and customizing Open-
Wrt network configuration (cf. Section 2). That process went
smoothly, so we moved to evaluating our solution.

3.1 The Problem
When first prototype devices were produced, their Ether-

net ports were tested. We observed no issues: Cherry device
plugged to an off-the-shelf home router successfully estab-
lished a connection. The chaining feature (cf. Section 2) was

260



also simply tested: a laptop connected to Cherry device also
established an Internet connection after a short while. Since
the design of Cherry device’s PCB strictly followed the origi-
nal evaluation board, which we had used earlier to prototype
the chaining feature, we assumed that no further Ethernet-
related tests were required. However, when we later started
conducting integration tests by assembling a small network
from a succeeding version of our prototypes, some Cherry
devices could not connect to the Internet!

Starting with simple tests it quickly became obvious that
the problem was occurring only when two Cherry devices
where connected to each other. Ethernet ports’ LEDs were
flashing abnormally and system logs where full of unex-
pected entries. However, connecting Cherry device to a lap-
top or a home router still worked flawlessly as it had be-
fore. Moreover, connecting two Cherry devices together was
sometimes succeeding after short waiting periods. It seemed
to us that the occurrence of the problem was correlated some-
how with a selection of used Ethernet ports (2 devices with 2
Ethernet ports means 4 possible network configurations) and
a particular cable model. However, when the same experi-
ments were conducted using the original evaluation boards,
everything worked smoothly in all possible configurations.

3.2 Debugging the Problem
To facilitate further debugging, a ‘very bad cable’2 was

found: it was so long that Cherry devices connected via it
could never establish a connection, even regardless of se-
lected ports. Meanwhile, a few laptops were tested also with
the ‘very bad cable’ and they all were able to connect to a
variety of networks without any problems. That result dis-
proved our guess that only certain Ethernet ports were flawed
and allowed us to repeatedly reproduce the issue.

Then our suspicion was that there was a problem dur-
ing an autonegotiation procedure. According to the Ethernet
standard [6], it is automatically performed by just connected
devices to choose right transmission parameters (speed, du-
plex mode, flow control, etc.). Based on symptoms we sus-
pected that Cherry devices’ network driver could not deter-
mine the right transmission speed. To verify that conjuncture
an experiment was run in which all connection parameters
were pre-configured so that the autonegotiation phase was
not needed. However, it turned out that our guess was incor-
rect: even with those settings establishing a connection was
still constantly failing.

Finally, we decided to use an oscilloscope to examine
electrical signals transmitted by Cherry devices over an Eth-
ernet cable. Even first measurements explained why they
could not establish a connection: it was clearly visible from
the eye diagram that the signal was heavily distorted (see
Fig. 2). A corresponding eye diagram of a connection with
the evaluation board looked significantly cleaner (see Fig. 3).
It indicated that the problem was related not to software but
to hardware. Moreover, since that Cherry device and that
evaluation board employed identical embedded computers,
we learned that the problem laid in the PCB which connected
the embedded computer with Ethernet ports within Cherry

2It was a worn (but still functional) long (over 10 meters) shielded Eth-
ernet cable.

device. To find out what we had done wrong when preparing
that PCB we had to verify everything from the beginning.

Once again our design was compared with the corre-
sponding part of the electronic schematic diagram of the
evaluation board. They looked exactly the same. Since the
design was correct, maybe there was an issue with the actual
PCB, e.g. it had not been manufactured properly? How-
ever, it looked that not only had it been produced correctly,
but it was also manufactured accurately according to our de-
sign and it was the right latest version of our design. Maybe
we had incorrectly designed traces on the PCB? There are
well-known recommendations [4, 9, 5] describing how Eth-
ernet traces should be routed on a PCB: their widths should
not vary, Tx+/Tx- and Rx+/Rx- pairs should be routed to-
gether, they should be separated by a proper distance, etc.
Not following them may result in interference between indi-
vidual signals. Every rule that could be verified was verified
and also there no issues were noticed. We even analyzed
whether an antenna of Cherry device’s low-power wireless
SoC was placed in a way minimizing possible interference,
but it seemed to be mounted in a right place and direction.
Looking for any clue on what could be wrong, once again all
values and parameters of related electronic components were
reviewed, but they still looked correctly.

At that point we were behind our initial schedule, and
we still knew only that while Cherry devices did not work
properly, the original evaluation boards did. So there must
have been a difference. Not having any better idea how to
find it, we compared both devices by just carefully looking
at them: there it was! Eight resistors were not present on the
evaluation board but they were mounted on Cherry device’s
PCB. Removing them from our design solved the problem!
After just desoldering them Cherry devices were establish-
ing Ethernet connection immediately, even when they were
connected via the ‘very bad cable’. Measurements with an
oscilloscope also confirmed that not mounting those eight re-
sistors significantly improved quality of Ethernet signals.

Figure 2. Oscilloscope measurements: Ethernet commu-
nication with Cherry device

Figure 3. Oscilloscope measurements: Ethernet commu-
nication with the evaluation board

261



3.3 Why Did We Make the Mistake?
Initially we took a guess that the electronic schematic di-

agrams used by the manufacturer of the evaluation board dif-
fered from the published ones. Only a few months later, dur-
ing a post factum analysis, we did notice that those resistors
were marked with NA. The meaning of NA was not explained
on the schematics but, judging from the context, it proba-
bly indicated that those components should not have been
mounted on a PCB (Not Applicable?). Although it is a
common practice to place some components on schematics
and do not mount them on an actual board, they are usually
marked with DNM (Do Not Mount), DNP (Do Not Populate or
Do Not Place), simply Not Mount or something similar to
these. No one from our team had seen the NA mark ever be-
fore. Moreover, the published schematics provided for those
resistors all parameters that were needed to choose the right
ones. Additionally, capacitors connected via those resistors
to Ethernet signal traces were present both in the design and
on the actual evaluation board, despite not being connected
to anything in that case. The resistors seemed to be related
to analog signal, so having found the solution we did not in-
vestigate that issue further. However, one could find similar
sections (with such resistors) in many designs related to Eth-
ernet connections [4, 11, 8].

Figure 4. The problematic part of the evaluation board.
Note prepared places for the resistors (RM3 and RM4) and
mounted capacitors (C88, C87, C11, C12)

It was probably the combination of all abovementioned
reasons that resulted in our faulty design. Unfortunately,
even peer-reviews done by an experienced person during the
design process did not prevent the issue.

3.4 Our Advice
If you are an author of a design, make sure that you fol-

low typical conventions and indicate clearly all non-standard
solutions. Try to also minimize a possibility of any misun-
derstanding, e.g. if you cannot entirely remove an obsolete
component from your design, at least do not provide its pa-
rameters. When using a technical documentation question
each and every detail that seems negligible but its meaning
is unclear, even if it is just two additional letters. Then, to
project a timeline of a design process, plan some additional
time for debugging problems which will highly probably oc-
cur even if you are following all standard good practices.

4 WiFi Problems
Preparing the wireless communication channel of the con-

trol network seemed to be an easier task than adapting Ether-
net for our purposes, since no hardware modifications were
required and only a proper OpenWrt network configuration
had to be created (cf. Section 2). However, experiments car-
ried out to evaluate dependability of those WiFi connections

revealed issues, whose puzzling symptoms required signifi-
cant efforts to identify and eliminate sources of the problems.

4.1 Preliminary tests
Initial tests of WiFi communication were designed to ver-

ify if basic WiFi-related functionalities were correctly sup-
ported as well as to check how much time for Cherry devices
was needed to find an AP, establish connections and send
some data. Preliminarily, we took measurements that in-
volved only two prototype Cherry devices (one of them being
the AP) and carried out experiments in various smart-home-
like conditions and places, starting with our own houses.
The tests were run for two sets of devices: first, with vanilla
embedded computers on which Cherry devices were based,
with their default configuration and random MAC addresses
set by their manufacturer; then with Cherry devices run-
ning modified version of the operating system (mainly en-
hanced with our testbed-related applications), customized
network configuration and MAC addresses from the pool
00:aa:aa:aa:aX:XX (X digits are the device ID).
4.1.1 The Problem With Connectivity

After deploying the experimental setup we observed that,
as expected, the Cherry device connected to Ethernet became
an access point and broadcast information on its network.
The Non-AP Cherry device, in turn, received the broadcast
packets and reacted correctly, that is: it attempted to join the
network. With no success. Even though, according to the
collected logs, the client device was instantly authenticated
every time it tried to establish the connection, 2 or 3 attempts
on average were needed to complete the whole operation.
We immediately envisioned a setting, in which the connec-
tion was not possible at all and the watchdog restarted the
device infinitely. Oddly enough, client Cherry devices were
perfectly able to join networks governed by ‘ordinary APs’
(such as home routers) in the first try. After careful investi-
gation, just when we started to question each and every line
of the code responsible for WiFi connectivity, it turned out
that switching from WPA2 to the older authentication pro-
tocol, WPA, solved the problem but. . . WPA is flawed and
insecure [2]. Therefore, it was WPA2 in OpenWrt that was
the culprit and needed to be fixed. Unsure how to fix it our-
selves, we analyzed history of changes applied to hostapd
– a piece of software that handled AP’s behavior and acted
as an authentication server. One look at the newest hostapd
from OpenWrt official repository was enough to realize that
hostapd we used (the one included in the latest release of
OpenWrt dedicated for the embedded computer by its man-
ufacturer) missed at that time recent and significant modifi-
cations. As soon as our OpenWrt-based image for Cherry
devices incorporated the newest hostapd, the problem van-
ished completely and the devices became able to connect via
WiFi with WPA2 in the first attempt. Unfortunately, the dif-
ference between both versions was so immense that we could
not analyze it and point the exact problem in hostapd.
4.1.2 The Problem With Interference

At the deployment location hundreds of users connected
daily to a wireless network available there. It was, therefore,
paramount to minimize interference between data transfers
in our setup and the high-volume WiFi traffic that already

262



Figure 5. The setup for the integration test

existed in the building. One way of achieving that goal was
to use the less congested 5 GHz WiFi, but devices support-
ing it were significantly more expensive back then, so our
embedded computer provided only 2,4 GHz WiFi. The other
way to minimize interference was to use the least occupied
WiFi channel for the new network.

Most of the modern access points automatically sought
the unexploited ranges of frequencies and chose the quietest
channel for their network. We expected such behavior from
our Cherry devices too since hostapd in OpenWrt imple-
mented Automatic Channel Selection (ACS): a survey-based
algorithm that relies on information on the current situation
on the medium. Specifically, prior to selecting the channel
ACS monitors the noise floor and intervals when each of the
WiFi channels is busy. This way ACS should minimize in-
terference between networks present in a single location.

When we ran preliminary tests, however, regardless of cir-
cumstances our APs always selected the same channel. Their
choice did not change even if other channels seemed better
and, as we verified manually, were indeed better. It raised our
concerns whether ACS worked correctly and soon most pes-
simistic suppositions got confirmed. The ACS procedure had
not even run on the devices since it missed important data on
the noise floor, without which the algorithm failed uncondi-
tionally. From developers’ mailing list [3] we learned that
Ralink RT5350 WiSoC, which powered WiFi in the embed-
ded computers, did not support ACS and it would have been
extremely difficult to provide ACS with indispensable input.
Fortunately, the main wireless network present in the build-
ing exploited only certain channels, so for the sake of our
particular deployment we decided to set manually a chan-
nel that was designated by administrators as unused. Further
tests indicated that it was a fully satisfactory solution for us.
4.2 Integration tests

Successful preliminary tests encouraged us to perform an
integration test with a more complex setup: four prototype
Cherry devices connected as presented in Figure 5. Our goal
was to verify if such a miniature testbed was able to revive af-
ter possible network failures, e.g. caused by a suddenly dis-
connected Ethernet cable or cutting off the access point. Be-
fore we even got started, a disruptive issue appeared, which
was much more troublesome than any of the potential prob-
lems being the subject of the trial.
4.2.1 The Mystery of Packet Loss

When all four devices were connected, we experienced
difficulties with collecting diagnostic information from
them. After taking a closer look we realized that our ssh-
based tools were barely able to initialize the ssh session via
WiFi and the wireless data transfer was slow or, momen-
tarily, impossible. Our initial observations were soon con-

Table 1. Results of the WiFi connectivity tests
The AP Device Connected Devices Packet Loss Resp.

off-the-shelf router laptop 0%
off-the-shelf router Cherry device 7%

Cherry device laptop 38%
Cherry device Cherry device, laptop 9%, 60%

laptop Cherry device, Cherry device 5%, 17%

firmed quantitatively: the packet loss was abnormally high,
moreover, it soared with the increasing number of devices
connected to the AP and occurred for all our devices. With
additional experimental setups we compared performance of
Cherry devices with an off-the-shelf router and a laptop. Col-
lected results (see Table 1) led to a conclusion that our de-
vices were not handling WiFi connections properly, regard-
less of whether they played the role of the AP or not.

Presented results refer to the chosen WiFi standard,
802.11n. In case of the older standards the devices per-
formed better: for 802.11b there was no packet loss at all;
for 802.11g the packet loss depended on the network size
(0%, 15%, 35% for, respectively, one, two and three de-
vices connected to the Cherry device AP). Whereas sticking
to 802.11b could have been our fallback option, its low speed
and features of 802.11n convinced us to put some effort into
debugging the problem of flawed reception of data.

Could it be the fault of the particular kind of the em-
bedded computers’ chips? Doubtfully, since Ralink RT5350
WiSoC was widely used in home routers and access point
devices. Then we checked if the problem had source in our
modifications of the operating system: Cherry devices with
original OpenWrt behaved identically to those with the mod-
ified software. When signal strength, modulation and chan-
nel were taken into account the outcome was similar: we
run tests with network traffic sniffers, and they did not detect
any abnormalities concerning the signal quality. It seemed
that that even though the packets were transmitted correctly,
some of them were not received.

Confused by the arisen issue, unnoticed during simple
preliminary tests, we found information provided by the
manufacturer on how to fix WiFi connectivity in their em-
bedded computers: to assure flawless wireless communi-
cation one needed to restore certain factory settings of the
chip. The instructions had been valid for a newer revision of
the embedded computers, therefore we had had to put some
effort into adjusting them before they were applied. After-
wards the packet loss for 802.11g equaled 0%, 1% and 9%
respectively for one, two and three Cherry devices connected
to the Cherry device AP. To our dissatisfaction, the situation
did not improve for 802.11n.

Determined to fix the problem we bought a bunch of em-
bedded computers of the most recent revision, which was
said to contain WiFi-related modifications. The new devices,
similarly to their predecessors, got configured with our ver-
sion of OpenWrt as well as our factory image, used consec-
utive MAC addresses in accordance with their IDs and run
a simplistic program to send data. They did not show any
improvement with regard to our particular issue. Similarly
disappointing results were brought about by installation of
the up-to-date Linux kernel.

Another examination of the sniffed packets revealed that,

263



after all the actions we had taken, the situation had not
changed a bit: a lot of packets were retransmitted as though
they were ignored by the receiver. It seemed that the source
of the problem lied in the firmware or the radio driver and
since the latter turned out to be a simple and seemingly harm-
less program, suspicion was cast upon the former one. We
checked the factory partition: maybe our image had over-
written the radio firmware? Or maybe it had configured radio
incorrectly? To verify those possibilities we took new vanilla
embedded computers (with the factory image) and run the
experiment without applying any modifications. WiFi con-
nection (802.11n) worked. Taken aback, we installed on the
very same devices a factory image taken from Cherry de-
vices. WiFi connection (802.11n) worked perfectly.

4.2.2 The Problem Demystification
There was one overlooked difference between the devices

with working WiFi and those that were not able to trans-
fer data via 802.11n. It was their MAC addresses. The
embedded computers with original, random MAC addresses
worked well while the devices with our MACs had their radio
malfunctioning. That valuable observation let us to finally
understand the problem. In the Ralink’s documentation [10]
of more than 200 pages, on page 179, in the third line of the
fourth table we found the missing puzzle pieces:

“In multiple-BSSID AP mode, BSSID is the same
as MAC_ADDR, that is, this device owns multiple
MAC_ADDR in this mode.”

Any embedded computer being the AP was, by default, func-
tioning in 8-BSSID mode. This means it was in fact owning
8 consecutive MAC addresses (including the address manu-
ally set by us – the only address we were aware of since we
put just one wireless network in Cherry device’s configura-
tion). Some of those addresses were assigned by us to other
devices (we used consecutive numbers for IDs and, thereby,
consecutive MAC addresses for other devices), what resulted
in double MAC addresses in the network – the direct reason
for the packet loss. To fix the problem it was enough to en-
sure that no two MAC addresses that we set were within the
range of 8 from each other. From that point onward we were
using MAC addresses ended with 0 (separated by 15 MAC
addresses between) so that they were not doubled by any ad-
ditional MAC addresses used in 8-BSSID mode.

4.3 The Wisdom of Hindsight
If you rely on third-party software do keep it up to date

with changes published by the mainstream. It is also ad-
vised to verify the quality of implementation of important
functionalities (like the discussed channel selection) and, in
general, not to rely on a belief that some features are stan-
dard and omnipresent. One should be careful especially in
case of a large-scale project like ours. Since economizing
on the cost of a single device results in thousands of dollars
in savings, the purchase of cheaper products is much more
tempting or even is the only option possible. Such low-end
products tend not to support functionalities considered to be
basic in recommended pricey counterparts that one may be
used to when working with single devices or small networks.

To avoid further surprises, study thoroughly description
of all modes (literally all of them: default ones and those

set manually) and applied settings in documentation: had
we read everything about the AP mode in the Ralink chip’s
datasheet, we would have known about BSSID from the very
beginning. Also, if you debug a problem that involves third-
party accessories, try to recreate the issue using the original
products with factory configurations. Only then apply your
modifications for further experiments.

Finally, tests run on a few prototypes (like our preliminary
tests) do not prove the whole network of the devices would
work well. You may be unlucky to test working subsets of
the prototypes (e.g. with compatible MAC addresses) with-
out noticing the problem that would appear in other settings.
5 Conclusion

We hope that these examples already illustrate that de-
signing a new device that is expected to operate reliably
at scale is not a trivial task. Even having highly experi-
enced people on the team, employing standard popular com-
ponents, minimizing risky features, and following modern
quality assurance practices may sometimes not be enough.
We learned that in addition a close attention has to be paid to
very tiny details in documentation, that successful tests with
individual devices do not guarantee successful functioning
of the entire system, that even the tiniest sign of atypical yet
totally plausible behavior has to be investigated, and much
more. The assumptions behind our undertaking definitely
made our task harder. Solely at the device design stage we
experienced a dozen other serious technical issues, from re-
liable and precisely controllable power management of low-
power SoCs to not sufficiently reliable persistent storage,
which could likely contribute to a few more papers, not to
mention problems of a different nature or at different stages,
notably during the deployment. At the same time, the goals
and constraints of the project motivated us to act more care-
fully. As a consequence, the fatal technical problems were
detected early enough to allow us to fix them.
Acknowledgments

This work was conducted within the HENI project, sup-
ported by the National Center for Research and Develop-
ment (NCBR) in Poland under grant no. LIDER/434/L-
6/14/NCBR/2015 within the LIDER-VI program.
6 References
[1] OpenWrt. https://openwrt.org/about.
[2] OpenWrt: Configure WiFi encryption. https://openwrt.org/

docs/guide-user/network/wifi/encryption.
[3] rt2800usb and automatic channel selection. http://rt2x00.

serialmonkey.com/pipermail/users_rt2x00.serialmonkey.
com/2014-December/013535.html.

[4] Digi International Inc. PCB Layout for the Ethernet PHY Interface,
2010. TN266.

[5] Freescle Semiconductor Inc. i.MX28 Layout and Design Guidelines,
2009. AN4215.

[6] IEEE. IEEE Standard for Ethernet, 2018. IEEE Std 802.3-2018.
[7] K. Iwanicki. A distributed systems perspective on industrial IoT. In

Proc. 38th IEEE Int’l Conf. Distributed Comput. Syst. (ICDCS), 2018.
[8] Microchip. ENC28J60 Stand-Alone Ethernet Controller with SPI In-

terface, Data Sheet, 2004. DS39662A.
[9] Pulse Electronics. Layout Considerations for Pulse Ethernet Magnet-

ics and Ethernet Connector Modules, 2019.
[10] Ralink. RT5350 Preliminary Datasheet, 2010. Rev. 1.
[11] Texas Instruments. AN-1469 PHYTER Design & Layout Guide, 2013.

SNLA079D.

264




