
Demo: PhyForm - A Cloud SDR Framework for Security 
Research Supporting Machine Learning of Wireless IoT Signal 

Data Sets
Antony Chung

School of Computing and Communications / Security Lancaster
Lancaster University, UK

a.chung@lancaster.ac.uk

Abstract
Software defined radio (SDR) enables the use of digital

signal processing (DSP) to identify IoT security issues based
on waveform analysis. Such research requires the handling,
processing and interaction with large data sets of digitised
RF. Those supporting activities are a high overhead.

An extensible framework is introduced for the curation,
filtering, pre-processing, and analysis tasks associated with
RF data sets in machine learning and IoT research. It pro-
vides a web interface, API, SigMF data sharing and integra-
tion with GNU Radio. The aim is improved data set and
algorithm collaboration. A LoRa example provides context.

1 Introduction
Many Internet-of-Things (IoT) and Machine-to-Machine

(M2M) systems use wireless communication. This is often
more exposed to attack than wired solutions. For system op-
erators to benefit from this technology they need to control
threats like malicious data injection. It may not be possible
to depend solely on cryptographic keys or device integrity.

Other sources of data can provide situational awareness
that might help to identify security breaches and give the
confidence network operators need in secure environments.
Waveform analysis is one approach to provide detection of
physical anomalies potentially linked to malicious activity
on a wireless network, thus augmenting cryptography[1].

A received signal is a function of the overall system in-
cluding transmitter, channel and receiver. The waveform can
be influenced by manufacturing differences, device health
and the propagation environment. Development of algo-
rithms that isolate those properties and provide security in-
dications is complex. It requires data analysis taking into
account changes over time and noise (artificial and natural).

Machine Learning (ML) on features derived from wave-
forms can distinguish conditions directly[2] or the models

Visualise and Curate

Pre-process

Train

Test

Custom Algorithm

Examine

Model

Evaluate Results

Params

Data Feeds

Context

Figure 1. Typical steps in RF machine learning.

can be evaluated to design new algorithms. The large data
sets for training must be collected and pre-processed (Fig. 1).

Good application-centric pre-processing is crucial given
that overall performance depends on quality inputs at every
stage. The data needs visual curation to group data and re-
move bad data (i.e. due to interference). Filtering must refine
quality and reduce volume. Features need locating, extract-
ing and processing. High data volumes make this hard.

Algorithms tend to be less optimal in the early stages of
development, which compounds the problem by requiring
overnight or distributed processing. RAM limitations, re-
boot risk, and iterative code debugging motivate persistent
caching of outputs to avoid redundant reprocessing.

A review of this workflow indicated opportunities for a
generic framework providing visual RF examination, cura-
tion, output caching, data feed (ground truth) rendering and
distributed processing. This would free researchers to focus
on DSP or data science, plus help data and algorithm sharing.
2 Architecture

PhyForm can run on a single machine, remote system, or
a cloud. It comprises of a controller, file server and workers
(Figure 2). Most user interaction is via a web browser.

International Conference on Embedded Wireless Systems and Networks (EWSN) 2020 
17–19 February, Lyon, France © 2020 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library 
ISBN: 978-0-9949886-4-5

181



API

Client

Controller

JSON APIDatabase

NFS
Server

HTTP
Server

GUI
Web

Browsers

Function

Module

Executing Task

Workers

System Libraries

Python,
GNU Radio,
Hardware

...

Figure 2. Structure of the system

Figure 3. Interactive ISM band interference assessment

Waveform IQ data is captured from hardware or loaded
from files. Signal processing and data analysis is bundled
into modules, which are zip files containing code plus XML
to extend the GUI. From a data science perspective, PhyForm
is object-oriented. Algorithms create and manipulate typed
objects, which are linked to files like IQ or graphic output.

Users can use Python or HTTP JSON APIs to develop
modules. The APIs assist object and IQ handling, and pro-
vide features like distributed processing. The architecture
allows for local development using remote data before mod-
ules are uploaded. GNU Radio blocks and interfaces allow
for the use or adaptation of conventional flow graphs.

3 Test Case and Example Results
The initial objective was to differentiate - without demod-

ulation - LoRa devices deployed across 1 km2 of our campus.
RF recorders remotely triggered node transmission and

captured complex IQ waveforms from USRP X310 hard-
ware. Hundreds of recordings per experiment, node and con-
figuration (power, spreading, etc.) led to thousands of ”rough
cut” objects that encapsulated transmissions.

Algorithms extracted preamble features from the rough
cuts. These were curated visually in the GUI (Figures 3 and
4) to form data sets. Further processing produced measure-
ments, which were aggregated into ML inputs for processing
on platform (using TensorFlow) or export to MATLAB.

Figure 5 shows a typical confusion matrix using the ex-
ported data with MATLAB to produce a KNN trained using

Figure 4. Curation of LoRa preamble features (chirps)

Figure 5. Example k-nearest neighbour classification

one dataset and tested with another. It compares the actual
and predicted classification for a 5 node experiment and is
useful to determine the impact of changes to pre-processing
algorithms. As the intention of this demo is to demonstrate
PhyForm, further evaluation of the data is omitted.
4 Conclusions and Future Work

PhyForm simplified the handling and processing of bulky
IQ data sets for waveforms research. It helped with repeti-
tive activities such as pre-processing of rough cuts to extract
features. Data retention and movement requirements were
reduced, and iterative workflows optimised, due to the cloud
architecture and object persistence. This generic framework
can enable collaboration with data sets and algorithms.
5 References
[1] C. K. Dubendorfer, B. W. Ramsey, and M. A. Temple. An rf-dna ver-

ification process for zigbee networks. In MILCOM 2012 - 2012 IEEE
Military Communications Conference, pages 1–6, Oct 2012.

[2] S. Gopalakrishnan, M. Cekic, and U. Madhow. Robust wireless finger-
printing via complex-valued neural networks. In IEEE Global Commu-
nications Conference (Globecom) 2019, 2019.

182



Demo Information
The presenter will demonstrate how to capture a LoRa

transmission, upload it into the system, check the quality of
the recording, filter it, and then pre-process individually or
as part of a group to obtain features. This will demonstrate a
variety of capabilities, principally using a remote system.

For more interested attendees, the presenter can discuss
the API and walk through a number of Python examples.

The demonstration requires a table, four power sockets
and Internet access. The presenter will bring up to two lap-
tops and other equipment. It would be preferable for there
to be a TV screen and/or an elevated table to ease interaction
with larger audiences over extended periods, but these need
to be provided by the conference venue as it will be imprac-
tical to bring these.

183




