
Intermittent Computing with
Dynamic Voltage and Frequency Scaling

Saad Ahmed
SBA School of Science and

Engineering, LUMS University
Pakistan

saad.ahmed@lums.edu.pk

Qurat ul Ain
SBA School of Science and

Engineering, LUMS University
Pakistan

18030035@lums.edu.pk

Junaid Haroon Siddiqui
SBA School of Science and

Engineering, LUMS University
Pakistan

junaid.siddiqui@lums.edu.pk

Luca Mottola
Politecnico di Milano, Italy and
RI.SE Sweden and Uppsala

University, Sweden

luca.mottola@polimi.it

Muhammad Hamad Alizai
SBA School of Science and

Engineering, LUMS University
Pakistan

hamad.alizai@lums.edu.pk

Abstract
We present D2VFS, a run-time technique to intelligently

regulate supply voltage and accordingly reconfigure clock
frequency of intermittently-computing devices. These de-
vices rely on energy harvesting to power their operation and
on small capacitors as energy buffer. Statically setting their
clock frequency fails to achieve energy efficiency, as the set-
ting remains oblivious of fluctuations in capacitor voltage
and of their impact on a microcontroller operating range. In
contrast, D2VFS captures these dynamics and places the mi-
crocontroller in the most efficient configuration by regulat-
ing the microcontroller supply voltage and changing its clock
frequency. Our evaluation shows that D2VFS markedly in-
creases energy efficiency; for example, ultimately enabling a
30-300% reduction of workload completion times.
Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems
General Terms

Design, Measurement, Experimentation
Keywords

Transiently Powered Computers, Intermittent Computing,
Dynamic Voltage and Frequency Scaling
1 Introduction

Intermittently-computing devices operate using energy
harvested from their environment. This form of energy
provisioning is generally highly variable across space and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

time [11]. To ameliorate the resulting fluctuations in energy
supply, devices collect energy into ephemeral storage, typi-
cally a capacitor. As long as the capacitor voltage is below a
predetermined power-up threshold, the device rests dormant
until the buffered energy is sufficient to boot.

An active epoch then starts when the device operates un-
til power fails and the device shuts down. A phase of solely
charging then resumes until the device can boot again. These
charge-discharge cycles are frequent, as miniaturization re-
quired to realize medical implants or visions of “smart dust”
prompts energy storage facilities to be minimized [11]. Spe-
cialized software support is required to sustain computa-
tions in such intermittent settings, for example, using check-
points [40, 6, 12] or programming abstractions with transac-
tional semantics [31, 15, 33].

Opportunity. Energy efficiency of intermittently-computing
devices depends on both the current capacitor voltage and
processor speed [1]. Compared to battery-powered devices,
capacitor voltage drops way more rapidly as the device ex-
tracts energy from it. Microcontroller units (MCUs) config-
ured with static clock frequency fail to react to these changes,
compromising energy efficiency.

As shown in Fig. 1, higher frequencies are more energy
efficient, but limit the MCU operation in a narrow interval
of the microcontroller’s supply voltage values. Differently,
lower frequencies consume more energy due to a longer du-
ration of clock cycles, but enable a larger range of supply
voltage values. For instance, the popular MSP430-series
MCUs run with supply voltages as low as 1.8 V at 1 MHz,
but are unable to run any lower than 3.3 V at 16 MHz.

Nonetheless, MCUs using higher clock frequencies tend
to operate in short bursts, inducing higher overhead needed
to sustain computations across power cycles, for example,
when checkpointing the application state on non-volatile
memory [40]. Configuring MCUs with lower clock frequen-
cies does not solve the problem either, as fewer cycles are ex-
ecuted per unit of energy, besides reducing processing speed.

97

International Conference on Embedded Wireless Systems and Networks (EWSN) 2020
17–19 February, Lyon, France © 2020 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-4-5

Figure 1: Variations in energy consumption per clock cycle
with varying supply voltages. The graph plots the energy
consumption for the most commonly used and factory cal-
ibrated frequencies of MSP430G2553 MCUs. Higher fre-
quencies are energy efficient but only operate in a limited
range of supply voltage. Lower frequencies consumer more
energy but enjoy a larger supply voltage range. The high-
lighted region indicates the best performing clock setting in
a certain voltage range.

D2VFS1 is a voltage and frequency scaling technique that
seeks to take advantage from these dynamics, as we further
discuss in Sec. 2. In Fig. 1, D2VFS dynamically reconfigures
the system to make it proceed through the highlighted route
of clock frequencies, harnessing the maximum range of sup-
ply voltage values, and yet selecting the highest possible fre-
quency in a given range. This effectively makes the system
operate in the most efficient configuration given a certain ca-
pacitor voltage. Our approach gradually de-accelerates the
MCU to maximize the number of available clock cycles, and
hence the computations performed in an active epoch.

We implement D2VFS through a hardware-software co-
design, as described in Sec. 3. The hardware part includes
voltage detectors to capture the current capacitor voltage and
a voltage regulator to undervolt the device. The software
part reacts to the voltage detectors providing different signals
to reconfigure the clock frequency as soon as the capacitor
voltage crosses marked boundaries.
Benefits and road-map. The dynamic selection of clock
speed and undervolting of MCU in D2VFS increases the
number of clock cycles available in an active epoch by 40-
900% compared to different static frequency configurations.
This bears beneficial cascading effects on other key perfor-
mance metrics.

D2VFS reduces the peak energy demand, enabling a re-
duction of up to one-sixth in the size of the energy buffers
necessary for completing a given workload, cutting charging
times and enabling smaller device footprints. This is cru-
cial in applications such as wearables [16] and biomedical
implants [5]. Furthermore, D2VFS consumes fewer check-
points to complete a workload due to increasing availability
clock cycles. Sparing checkpoints lets the system progress

1Discrete Dynamic Voltage and Frequency Scaling

16MHz 12MHz 8MHz 1MHz Dynamic
 Scaling

Frequencies

0

2

4

6

8

10

12

C
lo

ck
 C

yc
le

s

104

Figure 2: First order approximation of clock cycles for static
configurations (1 MHz, 8 MHz, 12 MHz, and 16 MHz) and
dynamic frequency scaling within a single charge of the ca-
pacitor (10 µF). Dynamic scaling offers a substantial margin
for improvement. The plot does not account for the overhead
to enable dynamic scaling.

farther on a single charge, cutting down the time to complete
a workload up to 300%.

Our quantitative assessment in this respect is two-
pronged. Sec. 4 reports on the performance of D2VFS based
on three benchmarks across two existing system support (i.e.,
Hibernus [6] and MementOS [40]) and synthetic power pro-
files that allow fine-grained control on executions and accu-
rate interpretation of results. Sec. 5 investigates the impact of
D2VFS using power traces obtained from highly diverse har-
vesting sources. We show that the results hold across these
different power traces, demonstrating the general applicabil-
ity of D2VFS and its performance impact.

We end the paper with a brief survey of related approaches
in Sec. 6 and with concluding remarks in Sec. 7.
2 Overview

We first present relevant background on dynamic voltage
and frequency scaling (DVFS). We then scrutinize the poten-
tial benefits of employing DVFS in intermittently-computing
devices, before highlighting the key challenges in preserving
those benefits in a practical implementation.
Background. DVFS is a combination of two power saving
techniques, i.e., voltage scaling and frequency scaling, orig-
inally meant to conserve battery in mobile devices. It con-
figures the processor to work in different operational zones
that are defined by a tuple consisting of a frequency f and
a voltage V ({ f ,V}). This type of power saving is differ-
ent from standby or hibernate power states, as it allows de-
vices to continue performing tasks with a reduced amount
of power. The technology is used in almost all modern com-
puter hardware to improve battery life while still maintaining
ready-to-compute performance.

The power dissipated per unit of time by a processor chip
is P�C �V 2 �A � f , where C is the capacitance being switched
per clock cycle, V is voltage, A is the activity factor indi-
cating the average number of switching events undergone
by transistors in the chip, and f is the switching frequency.
Voltage therefore dominates power. The voltage required for

98

stable operation is, however, determined by the frequency at
which the processor is clocked and can be reduced if the fre-
quency is also reduced. Modern computers allow software
control of supply voltages and frequency, but embedded pro-
cessors may require hardware modifications, such as voltage
regulators, to do so.
Scrutinizing DVFS. The benefits of DVFS are well under-
stood in mainstream computing. Intuitively, it also appears
to be an attractive proposition for intermittently-computing
devices, where capacitor voltage uncontrollably straddles
across a microcontroller’s operational range.

As a first order approximation of the benefits of DVFS
in this domain, using existing models [1] we calculate the
number of clock cycles accumulated in a single active epoch
for the dynamic frequency route highlighted in Fig. 1, but
without accounting for additional overhead required to en-
able this functionality. Fig. 2 depicts the results, which are
encouraging compared to the most common static frequency
configurations for the MSP430 platform. Ideally, the in-
crease in the number of available MCU cycles ranges from
60% to one order of magnitude, as we stretch our compari-
son from the lowest (1 MHz) to the highest (16 MHz) con-
figurable frequency. These approximate results support our
hypothesis that DVFS for intermittently-computing devices
is indeed worth a try.
Challenges. Employing DVFS in intermittently-computing
devices is, though, not straightforward. MCUs employed for
intermittently-computing platforms often lack hardware sup-
port for monitoring and controlling supply voltage.

Energy constraints are hard, imposing firm restrictions
on the power dissipated by any additional hardware to be
deployed to that end, such as voltage detectors and regu-
lators. The former are needed to detect when the voltage
crosses marked boundaries that could trigger frequency scal-
ing, whereas the latter are necessary for undervolting the
MCU at the minimum required voltage given the operating
frequency. Nonetheless, the narrower the distance between
these voltage boundaries, the more fine-grained frequency
scaling can become, but the higher is the overhead of voltage
detection and regulation.

Thus, we are to identify a sweet spot in this cost-benefit
spectrum. In addition, frequency scaling incurs processing
overhead, as the software must read the frequency configu-
rations provided by MCU manufacturers from some form of
flash memory and update appropriate clock registers. This
overhead needs to be minimized as well.

3 D2VFS
The principle operation of D2VFS is similar to traditional

DVFS techniques, i.e., to place the MCU in different opera-
tional zones, yet D2VFS stands apart for three reasons:
1) unlike mainstream platforms, embedded MCUs typi-

cally lack on-chip DVFS engines to scale voltage and
frequency on the fly;

2) energy in intermittently-computing devices is extremely
scarce, imposing tight constraints on any additional
hardware support;

Harvester
Voltage

Regulators
MCUCapacitor

Voltage
Detectors

D2VFS
Driver

Figure 3: D2VFS architecture. Voltage detectors intercept
the capacitor voltage to detect changepoints. The D2VFS
driver scales the frequency at these changepoints and re-
configures the voltage regulators to deliver the minimum re-
quired voltage for reducing energy consumption.

3) switching between different operational zones is much
more frequent and triggered by the varying capacitor
voltage as it travels through the MCU operational range.

We begin with describing the high level architecture of
D2VFS, followed by platform-specific implementation de-
tails. To make the discussion concrete, we target MSP430-
class MCUs as arguably representative of intermittently-
computing platforms for both academic [43, 18] and com-
mercial purposes [8]. Nonetheless, our techniques apply
more generally and have a foundational nature.
3.1 Architecture

Voltage and frequency scaling in D2VFS is achieved
through a hardware-software co-design.
Components. The hardware part is responsible for detecting
discrete changepoints in capacitor voltage as well as for reg-
ulating the supply voltage to the MCU. The software part is
responsible for reconfiguring the MCU clock frequency, the
voltage detectors, and the voltage regulators.

The block diagram in Fig. 3 shows the main hardware
and software components that enable D2VFS for embedded
MCUs. The capacitor voltage is intercepted by voltage de-
tectors. When these detect a changepoint, an interrupt is fired
whose service routine triggers the D2VFS driver. This as-
certains the current changepoint by scanning the state of all
detectors and decides whether or not to scale the voltage and
frequency at the current changepoint. If scaling is required,
the D2VFS driver reconfigures both the frequency and the
output of the voltage regulators to place the MCU into a dif-
ferent operational zone.
Tradeoffs. The granularity of voltage detection and regula-
tion is key to the efficiency of D2VFS, as both of the corre-
sponding hardware components incur energy overhead.

Components enabling fine-grained control over scaling
also consume more energy. The operational voltage range of
most MSP430-series MCUs, for example, is between 3.6 V
and 1.8 V. In the absence of on-chip DVFS support, detect-
ing and regulating even at every 100 mV drop in this range
is impractical, as it would require a large number of accurate
voltage detectors and narrow regulators.

Worse still, MSP430 clock registers can be configured
to generate 4096 discrete clock frequencies in the range 1-
16 MHz, each having its own specific operational voltage
range. Since all such frequencies are not factory calibrated,

99

0.0

1.0

2.0

3.0

4.0

5.0

1.5 2.0 2.5 3.0 3.5 4.0

VCC − Supply Voltage − V

A
c
ti
v
e
 M

o
d
e
 C

u
rr

e
n
t

−
m

A

fDCO = 1 MHz

fDCO = 8 MHz

fDCO = 12 MHz

fDCO = 16 MHz

0.0

1.0

2.0

3.0

4.0

0.0 4.0 8.0 12.0 16.0

fDCO − DCO Frequency − MHz

A
c
ti
v
e
 M

o
d
e
 C

u
rr

e
n
t

−
m

A

TA = 25 °C

TA = 85 °C

VCC = 2.2 V

VCC = 3 V

TA = 25 °C

TA = 85 °C

MSP430G2x53
MSP430G2x13

SLAS735J –APRIL 2011–REVISED MAY 2013 www.ti.com

Electrical Characteristics

Active Mode Supply Current Into VCC Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)

PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX UNIT
fDCO = fMCLK = fSMCLK = 1 MHz, 2.2 V 230
fACLK = 0 Hz,
Program executes in flash,Active mode (AM)IAM,1MHz BCSCTL1 = CALBC1_1MHZ, µAcurrent at 1 MHz 3 V 330 420DCOCTL = CALDCO_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 0

(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external

load capacitance is chosen to closely match the required 9 pF.

Typical Characteristics, Active Mode Supply Current (Into VCC)

Figure 2. Active Mode Current vs VCC, TA = 25°C Figure 3. Active Mode Current vs DCO Frequency

22 Submit Documentation Feedback Copyright © 2011–2013, Texas Instruments Incorporated

Figure 4: Voltage supply range and current consumption of
factory calibrated frequencies.

3.6

3.3

2.7

2.2

1.8

V
o

lt
ag

e(
V

)

Time

Supply Voltage

Regulated Voltage

Operational
Zone

Changepoint

{12,2.7}

{16,3.3}

{8,2.2}

{1,1.8}

No change of
operational zone

Figure 5: Working of D2VFS. At each changepoint, the
D2VFS driver determines whether or not place the MCU in
a new operational zone {f (MHz), V}.

one must empirically calibrate them for each MCU, which is
a daunting task, and precisely derive their relationship with
an MCU supply voltage to safely scale at run-time.

We therefore restrict frequency scaling in D2VFS to the
four factory calibrated frequencies, i.e., 1 MHz, 8 MHz,
12 MHz and 16 MHz. This still gives us enough leverage to
scale the MCU clock speed for energy efficiency, while keep-
ing the associated overhead low. For example, we demon-
strate that four voltage changepoint detectors and regulation
levels (at 3.6 V, 3.3 V, 2.7 V, and 2.2 V) suffice to effectively
achieve DVFS on intermittently-computing devices.

The factory calibrated configurations for these frequen-
cies are permanently burnt into the on-chip flash, thus, en-
abling direct reconfiguration of the MCU speed at run-time
by merely writing these configurations into the clock regis-
ters. Their operational voltage range and power consumption
are also well understood, as shown in Fig. 4, and illustrated
in the data sheet [45]. This also spares the developers from
tedious calibration efforts.

Operation. Fig. 5 explains the working of D2VFS. Say the
active epoch begins at a capacitor voltage of 3.6 V. The MCU

Changepoint Operational Zone {f (MHz), V}
3.6 {16, 3.3}
3.3 {12, 2.7}
2.7 {8, 2.2}
2.2 {1, 1.8}

Table 1: D2VFS changepoint decisions.

is thus configured to run at 16 MHz and the supply voltage
is regulated at 3.3 V, which is the minimum voltage required
to operate with this frequency.

In the absence of energy harvested from the ambient, the
capacitor voltage continuously drops until 3.3 V, i.e., the first
changepoint, where an interrupt fires. The D2VFS driver
scans and compares the current state of voltage detectors
with the previous one to determine if the current changepoint
is reached due to dropping or rising capacitor voltage. In the
former case, we place the MCU into a new operational zone
by scaling down the MCU speed to 12 MHz and reconfig-
uring the voltage regulators to deliver 2.7 V to the MCU.
A similar scale-down process applies at subsequent change-
points if they are triggered by a dropping voltage due to a
capacitor discharge.

If a changepoint is reached from the opposite direction,
namely, due to a capacitor charge, we hold back scaling up
of the operational zone until the immediately higher change-
point is reached, as shown in Fig. 5. This effectively im-
plements an hysteresis that prevents dangerous oscillations
around a changepoint.

Suppose, for example, a changepoint is reached due to
capacitor recharge, as in the case of the changepoint at 2.2
V on the right of Fig. 5. If the D2VFS driver immediately
places the MCU in the new operational zone, that is, it tran-
sitions from {1 MHz, 1.8 V} to {8 MHz, 2.2 V}), a sudden
discharge of the capacitor is likely to happen due to an in-
crease in power consumption. This may result in the same
changepoint to be hit from the opposite direction, triggering
a scale down of the MCU to the previous operational zone.
In the worst case, this may result in oscillating behaviors.

This technique may result in the MCU operating in differ-
ent operational zones for the same capacitor voltage range,
depending on whether it is being entered due to voltage drop
or voltage rise. As shown in Fig. 5, the MCU operates at {8
MHz, 2.2 V} when the capacitor voltage in the range 2.2 V-
2.7 V in the case it is entered via the higher changepoint at
2.7 V, but it operates at {1 MHz, 1.8 V} in the opposite case.
Tab. 1 summarizes the scaling decisions.

The D2VFS driver is also in charge of sequencing of
transitions across changepoints. When scaling up, the volt-
age regulator is reconfigured first to deliver a higher voltage
before increasing the frequency. When scaling down, fre-
quency is reduced first, then voltage is decreased.

D2VFS derives its name—discrete dynamic voltage and
frequency scaling—from its voltage regulation behavior that
mimics a discrete step function, as shown in Fig. 5. A con-
ventional frequency scaling approach may allow the voltage
to traverse the entire supply range of a given frequency.

100

Figure 6: D2VFS schematic implementation in EasyEDA.

3.2 Implementation
We design hardware support for D2VFS in EasyEDA.

Fig. 6 shows the schematics of our implementation. The ca-
pacitor voltage is intercepted by BU49xx-series voltage de-
tectors [41]. Every detector generates a 1 if the capacitor
voltage is above their detection level, 0 otherwise. The out-
put from the detectors is used as an input to a trigger circuit,
which fires an interrupt whenever it detects a change in the
input, namely, a changepoint is reached.

The interrupt triggers the execution of D2VFS driver,
which scans the state of voltage detectors at GPIOs. This is
needed to determine the direction the changepoint is reached
and to take corresponding scaling decisions. We change the
MCU operational zone by reconfiguring the clock registers
and voltage regulators, which are available at GPIOs.

Implementation of D2VFS is enabled by highly efficient
voltage detection and regulation ICs. Below we provide im-
portant details regarding these amid justifying our choices.

Voltage detectors and regulators. We use BU49xx series
ROHM semiconductor low-voltage standard CMOS voltage
detectors [41]. These are known for high-accuracy (�1%)
and ultra-low current consumption. Their detection range is
0.9-4.8 V at 0.1 V steps, and they can operate in the tempera-
ture range -40 �C to 125 �C. Tab. 2 shows the salient features
of detector ICs we use in our schematic.

We use TI’s TPS62740x step down converters for low
power applications [47]. Their input voltage range is 2.2-
5.5 V and they can regulate up to 16 output voltages between
1.8-3.3 V with a step size of 100 mV. If the input voltage falls
below 2.2 V, the converter enters no ripple (or bypass) mode
where it stops regulation and the output is directly connected
to the input voltage. Because of that, the MCU obtains un-

Detector Detection Voltage Circuit Current
Min Typ. Max µA

BU4922 2.19 2.2 2.22 0.26
BU4927 2.67 2.7 2.73 0.29
BU4933 3.27 3.3 3.33 0.34
BU4936 3.56 3.6 3.64 0.35

Table 2: Salient features of D2VFS voltage detectors.

regulated supply voltage for the range 2.2 to 1.8 V, i.e., the
lowest operational zone of D2VFS. The component offers
90% efficiency for up to 300 mA output current, which is
way beyond the maximum current consumption of MSP430
MCUs, and draws 360 nA quiescent current.

Interrupts. D2VFS needs to generate an interrupt when-
ever a changepoint is detected. The interrupt logic com-
pares the previous state of detectors with the current one
and fires an interrupt when they differ. We use TI’s
SN54LV175A Quadruple D-TYPE flipflops [36] to store the
previous detector state and Nexperia’s 74HC85 4-bit magni-
tude comparators [37]. Both satisfy our supply voltage and
ultra-low power requirements. Additionally, we employ a
SN74AUP1G08 2-input positive-AND gate [46], with MCU
clock and comparator output at its input to clock flipflops.
This is to ensure that we do not miss any change in detec-
tors’ state if they occur at the same time as the clock pulse.

Altogether, these components increase the energy con-
sumption of the MCU between 0.56% to 11.5% depending
on the capacitor size and operational zone, while offering
substantial scaling benefits.

101

We thoroughly validate our schematic by generating all
possible voltage inputs to measure the outputs of both volt-
age detectors and regulators as well as the power dissipation
of the corresponding ICs. We use these measurements to
emulate and benchmark the performance of D2VFS.
4 Benchmark Evaluation

We evaluate the performance of D2VFS using a combina-
tion of three benchmarks across two system supports. Our
results indicate that using D2VFS turns into:
• up to 9� increase in clock cycles per active epoch, in-

creasing the amount of computation performed within a
single capacitor charge;

• up to one-sixth smaller energy buffer to complete the
same workload, cutting the time to reach the operating
threshold voltage and enabling smaller device footprints;

• a two-fold improvement in the number of required check-
points, as we allow the system to complete a larger por-
tion of the workload before a checkpoint is required;

• up to 300% shorter completion times for a given work-
load, increasing system’s responsiveness and despite the
additional overhead of D2VFS.

In the following, Sec. 4.1 describes the settings, whereas
Sec. 4.2 to Sec. 4.4 discuss the results.
4.1 Settings

We describe the benchmark applications, the hardware
and software we use for experiments, the metrics we com-
pute, and the power profiles we test.
Benchmarks. We consider three benchmarks widely em-
ployed in intermittent computing [22, 40, 7, 48]: i) a Fast
Fourier Transform (FFT) implementation, ii) RSA cryptog-
raphy, and iii) Dijkstra spanning tree algorithm. FFT is rep-
resentative of signal processing functionality in embedded
sensing. RSA is an example of security support on modern
embedded systems. Dijkstra’s spanning tree algorithm is of-
ten found in embedded network stacks [21].

These benchmarks offer a variety of memory access
patterns and processing load. The FFT implementation
has moderate processing requirements; RSA demands great
MCU resources; Dijkstra’s algorithm only handles integer
data and has the lightest processing demands. This diversity
allows us to generalize our conclusions. The implementa-
tions are from public code repositories [34].
Systems and platforms. We measure D2VFS performance
using established system support for intermittent computing.

In Hibernus [7], an interrupt is fired whenever the capac-
itor voltage falls below a statically-defined threshold, which
prompts the system to take a checkpoint exactly at that mo-
ment. Using MementOS [40], the code is instrumented by
inserting checkpoint calls at determined locations, for ex-
ample, after loops or function calls. Upon reaching any of
these calls, a checkpoint takes place if the capacitor voltage
is found below a threshold obtained using repeated emula-
tion experiments and user-provided energy traces. Check-
point operations in MementOS are more energy efficient, as
it only copies the allocated regions of main memory on non-
volatile storage, compared to Hibernus that dumps the entire
main memory regardless of content.

We consider as baselines the execution of the aforemen-
tioned benchmarks along with these support systems on
a statically configured MSP430G2553 running at 1 MHz,
8 MHz, 12 MHz, and 16 MHz [45]. To make our analy-
sis of MementOS independent of specific energy traces, we
manually sweep the possible parameter settings at steps of
0.2 V and use the best performing one [40].

We must note, however, that the choice of underlying sys-
tem support for evaluating D2VFS is not critical. We choose
these systems because of their widespread use for bench-
marking intermittently-computing systems [2, 12, 15, 31].
The ability of D2VFS to place the MCU in the most effi-
cient operational zone should, in principle, equally benefit
any system support, whether based on checkpointing [12] or
abstractions with transactional semantics [31, 15, 33].
Metrics. We compute four key metrics to study the various
trade-offs involved:

• The cycles per active epoch is the number of clock cycles
achieved in a single active epoch, whose duration is deter-
mined by power consumption, capacitor size, and shut-
down voltage threshold. This figure represents a measure
of the amount of computation enabled in an active epoch.

• The size of the smallest energy buffer is the minimum
energy to complete a workload. If too small, a system
may be unable to make progress and complete check-
points, causing non-termination. Using capacitors, how-
ever, smaller sizes reach the operating voltage sooner and
enable smaller device footprints.

• The number of checkpoints is the total number of check-
points to complete a workload. The more are necessary,
the more the system subtracts energy from useful compu-
tations. Increasing clock cycles in an active epoch allows
the application to progress further on the same charge.

• The completion time is the time to complete a work-
load, excluding deployment-dependent recharge times.
D2VFS gradually de-accelerates the MCU and introduces
a run-time overhead. On the other hand, due to availabil-
ity of more compute cycles, a larger portion of workload
can be completed within a single active epoch.

Power profile and measurements. We use a foundational
power profile found in existing literature [22, 10, 48, 40] that
provides fine-grained control over executions and facilitates
interpreting results. The device boots with the full capacitor
and computes until the capacitor is empty again. In the mean
time, the environment provides no additional energy. Once
the capacitor is empty, the environment provides new energy
until the capacitor is full again and computation resumes.

This profile is also representative of a staple class of
intermittently-powered applications, namely, those based
on wireless energy transfer [11, 14]. With this technol-
ogy, devices are quickly charged with a burst of wirelessly-
transmitted energy until they boot. Next, the application runs
until the capacitor is empty again. The device rests dormant
until another burst of wireless energy comes in.

We trace the executions on a MSP430G2553 Launchpad
interfaced with an FRAM chip for persistent storage. For
this purpose, the Launchpad offers a range of hooks, en-

102

1 10 50 100

Capacitor(uF)

0

2

4

6

8

10
C

lo
ck

 C
yc

le
s

105

16MHz
12MHz
8MHz
1MHz
D2VFS

Figure 7: Cycles per active epoch. D2VFS retains its bene-
fits over static frequency settings despite the implementation
overhead due to additional hardware and the D2VFS driver.

abling fine-grained measurements. For example, it allows
us to practically implement frequency scaling and ascertain
the time taken and power consumed by every operation at
different frequencies amid accounting for the D2VFS over-
head. We instrument our benchmarks to collect these mea-
surements and simulate energy draw from the capacitor dur-
ing execution. Due to their extensive usage in electronics,
the accuracy of capacitor models for their charge-discharge
behavior and voltage drop between the plates is well estab-
lished and undisputed [19]. The results are obtained from
100 application iterations.
4.2 Computation per Active Epoch

We compare the number of clock cycles enabled by
D2VFS, which represents the amount of computation avail-
able in an active epoch, with the statically configured
factory-calibrated frequency settings. We use variable capac-
itor sizes, thus different energy storage capacities, and record
the clock cycles achieved in a single charge of the capacitor.

Fig. 7 shows the results. These are similar to the first
order approximation shown in Sec. 2 to scrutinize D2VFS.
Nonetheless, we observe that the margin of improvement is
only slightly reduced compared to Fig. 2, validating the en-
ergy efficiency of the concrete D2VFS implementation. An
appropriate selection of scaling granularity and our choice
of hardware components ensures that the energy overhead of
D2VFS components is kept low, and that the advantages of
dynamic voltage and frequency scaling are retained.

Worth noticing is also that the margin of improvement in-
creases with the size of capacitor. This is due to constant
power dissipation of D2VFS components and static number
of changepoints in an active epoch irrespective of capacitor
sizes. Thus, the percentage energy overhead of D2VFS de-
creases when the capacitor size increases.
4.3 Checkpoints and Energy Buffers

The results in the number of checkpoints and in the size
of the smallest energy buffer are intimately intertwined.

Fig. 8 depicts the reduction in the number of checkpoints
against variable capacitor sizes. A portion of these charts

only shows the performance of the D2VFS-based execution,
as the ones with static frequency settings are unable to com-
plete the workload with too small capacitors. When a com-
parison is possible, the improvements for D2VFS are sub-
stantial and apply across benchmarks and capacitor sizes.

The number of checkpoints is maximum at 16 MHz.
There, the MCU only operates in a narrow interval of supply
voltage, resulting in fewer clock cycles in an active epoch
compared to other static frequency settings. Therefore, the
execution occurs in small bursts separated by checkpoints.

Fig. 9 reports the minimum size of the capacitor required
to complete the given workloads. A D2VFS-equipped sys-
tem constantly succeeds with smaller capacitors. With Hi-
bernus, D2VFS allows one to use a capacitor up to one-sixth
of the one required with a static frequency setting. Since
checkpoints in MementOS are more energy efficient, it gen-
erally achieves smaller capacitor sizes compared to Hiber-
nus. However, the heuristics employed by MementOS2 for
inserting checkpoint calls are not always productive and may
lead to an increase in peak energy demand despite energy ef-
ficient checkpoint operations. For example, in one particular
instance of RSA, the calls to checkpoint fell so far apart that
the energy needed to guarantee successful execution exceeds
that of Hibernus, requiring an even bigger capacitor size, as
shown in Fig. 9b.

These results are directly enabled by the ability of D2VFS
to increase the number of clock cycles, thus allowing sys-
tems to perform more computation in a single active epoch.
Applications thus progress farther on a single charge, while
reducing the number of checkpoints en route to completion.
Similarly, the smallest amount of energy the system needs
to have available at once to move from one checkpoint to
the next without any power failure in between, reduces as
well. Smaller capacitors mean reaching operating voltage
faster and smaller device footprints.

These results demonstrate that D2VFS allows
intermittently-computing systems to reduce the total
time invested in checkpoint operations because of a reduc-
tion in their number. This leads to shorter completion times
for given workloads, as we investigate next.
4.4 Completion Time

D2VFS gradually de-accelerates the processor to exploit
the maximum range of the MCU supply voltage. On the
one hand, this increases the instruction execution time com-
pared to higher frequencies (e.g., 16 MHz). On the other
hand, checkpointing operations are delayed and more useful
progress is made before a checkpoint is eventually required.
We explore the relative contribution of either aspect to the
total completion time for a given workload.

Fig. 10 reports the results. We execute these experiments
using the smallest common capacitor needed to guarantee
completion with a given static frequency setting and D2VFS,
as these are the preferred settings for an intermittently-
computing device. We can see that the reduction in speed
is not only compensated, but actually overturned by the abil-
ity of D2VFS to complete larger portions of the workload

2MementOS suggests two strategies for inserting checkpoint calls: (1)
after every loop, or (2) after return from every function call [40].

103

0 20 40 60 80 100

Capacitor (uF)

101

102

103

of

 c
he

ck
po

in
ts

16MHz
12MHz
8MHz
1MHz
D2VFS

(a) Hibernus (FFT)

0 20 40 60 80 100

Capacitor (uF)

103

104

105

of

 c
he

ck
po

in
ts

16MHz
12MHz
8MHz
1MHz
D2VFS

(b) Hibernus (RSA)

0 20 40 60 80 100

Capacitor (uF)

100

101

102

of

 c
he

ck
po

in
ts

16MHz
12MHz
8MHz
1MHz
D2VFS

(c) Hibernus (Dijkstra)

0 20 40 60 80 100

Capacitor (uF)

101

102

103

of

 c
he

ck
po

in
ts

16MHz
12MHz
8MHz
1MHz
D2VFS

(d) MementOS (FFT)

0 20 40 60 80 100

Capacitor (uF)

102

103

104

of
 c

he
ck

po
in

ts
16MHz
12MHz
8MHz
1MHz
D2VFS

(e) MementOS (RSA)

0 20 40 60 80 100

Capacitor (uF)

100

101

102

of

 c
he

ck
po

in
ts

16MHz
12MHz
8MHz
1MHz
D2VFS

(f) MementOS (Dijkstra)

Figure 8: Number of checkpoints necessary against varying capacitor sizes. D2VFS allows the system to progress farther on a
single charge, reducing the number of checkpoints needed to complete a workload.

D2VFS 1MHz 8MHz 12MHz 16MHz
0

20

40

60

80

C
ap

ac
ito

r (
uF

)

FFT
Dijkstra
RSA

(a) Hibernus
D2VFS 1MHz 8MHz 12MHz 16MHz

0

20

40

60

80

C
ap

ac
ito

r (
uF

)

FFT
RSA
Dijkstra

(b) MementOS

Figure 9: Smallest capacitor. A D2VFS-equipped system
completes the workload with smaller capacitors. This is due
an increase in available clock cycles in a single active epoch.

in each setting before initiating checkpoints. This allows
D2VFS to complete the workload much earlier, increasing
the system’s responsiveness.

Comparing across static frequency settings is not possible
in these experiments because the respective smallest capaci-
tor sizes ensuring completion of their workload are different,
as shown in Fig. 9. With the change in capacitor size, the
factors that impact completion time such as the amount of
energy storage, the number of available clock cycles in a sin-
gle active epoch and, more importantly, the location and the
number of checkpoints change drastically. Similarly, the re-
duced energy overhead in MementOS due to smaller size of

checkpoints causes it to produce a different outcome using
static frequency settings compared to Hibernus.

Regardless, D2VFS consistently and substantially outper-
forms all static frequency settings across all benchmarks, and
its benefits are not affected by these factors.

5 Real World Evaluation
The benchmark evaluation of D2VFS uses a synthetic

power profile that does not take into account the recharge
times of the capacitor. In real world settings, the recharge
times may differ depending upon the frequency settings. A
capacitor retains large amounts of residual energy at higher
frequencies, since these only operate in a narrow interval of
supply voltage, but drains off considerably at lower frequen-
cies. Conversely, the charging rate of capacitor is faster at the
start but then tapers off as the capacitor acquires additional
charge at a slower rate.

We thus investigate the impact of these conflicting factors
using real-world power traces and confirm whether the re-
sults of Sec. 4 carry over to real world settings. We build
the same activity recognition (AR) application often seen
in the literature [13, 40, 31, 15, 33], using the same source
code [17]. The rest of the setup is as for Hibernus in Sec. 4.

We focus on completion time using the smallest capacitor
that ensures completion of the AR application across D2VFS
and the baselines we consider. Based on the results of Sec. 4,
completion time is indeed the one metric where all the in-
volved trade-offs manifest.

104

1M
H

z
D

2 V
FS

8M
H

z
D

2 V
FS

12
M

H
z

D
2 V

FS

16
M

H
z

D
2 V

FS

C
om

pl
et

io
n

Ti
m

e
(s

)

0

20

40

410

420

430

(a) Hibernus(FFT)
1M

H
z

D
2 V

FS

8M
H

z
D

2 V
FS

12
M

H
z

D
2 V

FS

16
M

H
z

D
2 V

FS

C
om

pl
et

io
n

Ti
m

e
(s

)

0

500
7000

7500

(b) Hibernus (RSA)

1M
H

z
D

2 V
FS

8M
H

z
D

2 V
FS

12
M

H
z

D
2 V

FS

16
M

H
z

D
2 V

FS

C
om

pl
et

io
n

Ti
m

e
(s

)

0

5

10
55

60

65

(c) Hibernus (DIJ)

1M
H

z
D

2 V
FS

8M
H

z
D

2 V
FS

12
M

H
z

D
2 V

FS

16
M

H
z

D
2 V

FS

0

5

10

15

20

C
om

pl
et

io
n

Ti
m

e
(s

)

(d) MementOS (FFT)

1M
H

z
D

2 V
FS

8M
H

z
D

2 V
FS

12
M

H
z

D
2 V

FS

16
M

H
z

D
2 V

FS

0

100

200

300

C
om

pl
et

io
n

Ti
m

e
(s

)

(e) MementOS (RSA)
1M

H
z

D
2 V

FS

8M
H

z
D

2 V
FS

12
M

H
z

D
2 V

FS

16
M

H
z

D
2 V

FS

0

1

2

3

4

5

C
om

pl
et

io
n

Ti
m

e
(s

)

(f) MementOS (DIJ)

Figure 10: Completion time. The run-time overhead due to
D2VFS is overturn by increasing the number of clock cycles
available, and therefore the amount of computation possible
in a single active epoch, and thus reducing the number of
checkpoints. The combined effect shortens completion times.

Time (ms) #104

0 1 2

V
ol

ta
ge

 (
V

)

0

2

4

6

RF
Solar Indoor Rest (SIR)

Solar Outdoor Moving (SOM)

Solar Outdoor Rest (SOR)

Solar Indoor Moving (SIM)

Figure 11: Voltage traces used for evaluation.

Power traces. We consider five power traces, obtained from
diverse energy sources and in different settings. One of the
traces is the RF trace from MementOS [40, 26]. The black
curve in Fig. 11 shows an excerpt, plotting the instantaneous
voltage reading at the energy harvester over time.

We collect four additional traces using a mono-crystalline
solar panel [44] and an Arduino Nano [4] to measure the
voltage output across a 30 kΩ load, roughly equivalent to the
resistance of the MSP430G2553 in active mode [45]. Using
this setup, we experiment with different scenarios. We at-
tach the device to the wrist of a student to simulate a fitness
tracker. The student roams in the university campus for out-
door measurements (SOM), and in research lab for indoor
measurements (SIM). Alternatively, we keep the device on
the ground right outside the lab for outdoor measurements
(SOR), and at desk level in our research lab for the indoor
measurements (SIR).

Fig. 11 demonstrates the extreme variability and consid-
erable differences among the power traces we consider.
Results. Fig. 12 shows the completion times across all
traces. D2VFS consistently performs better, regardless of
the power trace and static frequency setting it is compared
with. Another notable observation is the failure of MCU to

complete the workload when running at 1 MHz with the RF
trace and at 16 MHz with both the RF and SIR traces. Both
the lowest and highest frequencies get penalized. The for-
mer happens because of the highest energy per clock cycle
ratio as well as by a considerably drained off capacitor at the
end of each active epoch; whereas the latter is to endure the
largest number of costly checkpoints.

The intermediate frequencies, that are, 8 MHz and 12
MHz, perform better comparatively, but D2VFS reaps the
highest benefit from all possible frequency settings; it makes
the system operate in the most efficient configuration given
a certain capacitor voltage, while also reducing the check-
pointing overhead. Based on these results, the performance
and trade-offs we discuss in Sec. 4 are thus confirmed with a
concrete application and diverse power traces.

6 Related Work
A large body of work investigates DVFS in mainstream

computing. However, to scale down our discussion on re-
lated works, here we focus on DVFS in embedded systems.
We broadly divide related literature in three categories: gen-
eral purpose embedded systems, wireless sensor networks,
and intermittently-computing devices.
Embedded systems. Salehi et al. [42] present an adaptive
voltage and frequency scaling technique that rapidly tracks
the workload changes to meet soft real-time deadlines. Their
work demonstrates considerable power savings and fewer
frequency updates compared to DVFS systems based on
fixed update intervals. HyPowMan [9] considers the problem
of power consumption minimization for periodic real-time
tasks that are scheduled over multiprocessor platforms with
dynamic power management (DPM) and DVFS capabilities.
This technique takes a set of well-known existing DPM and
DVFS policies, each performing well for a given set of con-
ditions, and adapts at runtime to the best-performing policy
for any given workload.

Huang et al. [20] apply DVFS to mixed-criticality sys-
tems, and show that DVFS can be used to help critical tasks
meet deadlines by speeding up the processor when they are
bound to miss the deadline. Liu et al. [30] employ DVFS to
optimize system thermal profile, to prevent run-time thermal
emergencies, and to minimize cooling costs. They present
a framework for system designers to determine a proper
thermal solution and provide a lower bound on the mini-
mum temperature achievable by their DVFS technique. RT-
DVFS [38] targets embedded operating systems, such as in
mobile phones and camcorders. It modifies the OS’s real-
time scheduler and task management service to provide sig-
nificant energy savings while maintaining real-time deadline
guarantees. Generalized Shared Recovery (GSHR) [49] ef-
ficiently uses DVFS techniques to achieve a given reliability
goal for real-time embedded applications.

These works provide foundational knowledge on apply-
ing DVFS in embedded systems, yet their design goals are
very different, and their techniques are not directly applica-
ble to intermittently-computing devices.
Wireless sensor networks. Kulau et al. [23, 24, 25] thor-
oughly analyze the effects of undervolting for a typical wire-
less sensor node both in theory and practice. They show

105

F
ai

ls

F
ai

ls

1M
H

z

D
2 V

F
S

8M
H

z

D
2 V

F
S

12
M

H
z

D
2 V

F
S

16
M

H
z

D
2 V

F
S0

0.5

1

1.5

2

C
om

pl
et

io
n

T
im

e
(m

s)

104

(a) RF

F
ai

ls

1M
H

z
D

2 V
F

S

8M
H

z
D

2 V
F

S

12
M

H
z

D
2 V

F
S

16
M

H
z

D
2 V

F
S0

1

2

3

4

5
104

(b) SIR

1M
H

z

D
2 V

F
S

8M
H

z

D
2 V

F
S

12
M

H
z

D
2 V

F
S

16
M

H
z

D
2 V

F
S0

2000

4000

6000

(c) SOM

1M
H

z

D
2 V

F
S

8M
H

z

D
2 V

F
S

12
M

H
z

D
2 V

F
S

16
M

H
z

D
2 V

F
S0

2000

4000

6000

(d) SOR

1M
H

z
D

2 V
F

S

8M
H

z
D

2 V
F

S

12
M

H
z

D
2 V

F
S

16
M

H
z

D
2 V

F
S0

1

2

3
105

(e) SIM

Figure 12: Performance of the AR app running on Hibernus. Performance gains with D2VFS are observed across diverse
power traces obtained from different energy sources. The average improvement compared to static frequency settings ranges
from 30% to 300% across all traces.

that a wireless sensor network can still work reliably, even
if the voltage recommendations are violated, because there
is a correlation between temperature and error-proneness at
the same voltage level, and that ideal voltage levels depend
on environmental conditions. Powell et al. [39] design DVFS
hardware to meet battery life and form factor expectations of
body area sensor networks. Similar to this are the works on
developing DVFS techniques in distributed microsensor net-
works [35] and in sensing applications with deadlines [3].

Many of these works are similar to ours in spirit, as they
all aim to conserve energy, yet these approaches consider
battery-powered devices with finite energy supplies, and tend
to accept performance penalties to increase life time. On
the contrary, we deal with intermittent but unbounded energy
supplies where the goal is to increase the amount of work
done in an active epoch that, in turn, improves a number of
other key performance metrics. The techniques we use are
rather aggressive compared to the ones employed in wireless
sensor networks in scaling both voltage and frequency.

Intermittently-computing devices. EA-DVFS [29] is a
high-level simulation-based study that highlights the bene-
fits of DVFS in achieving real-time operation on battery-less
devices. As the corresponding hardware architecture and im-
plementation is not available, this approach cannot be used
as baseline in our work. Noise-aware DVFS sequence op-
timization techniques are proposed to reduce noise, i.e., ex-
tra current that accompanies the clock speed transition, in
energy-harvesting devices [32]. This work is complemen-
tary to our efforts and, if integrated with them, we expect a
further reduction in the energy overhead.

Lin et al. [28] model a framework for concurrent task
scheduling and dynamic voltage and frequency scaling in
real-time embedded systems with energy harvesting. They
develop a global controller that performs optimal operat-
ing point tracking for the PV panel, state-of-charge man-
agement for the supercapacitor, and energy-harvesting aware
real-time task scheduling with DVFS. Li et al. [27] also pro-
vide early insights into the benefits of jointly scaling work-
load, voltage, and frequency in multi-core sensor networks
powered by energy harvesting.

These works provide useful early-stage insights on em-
ploying DVFS in energy harvesting devices. However,
D2VFS is the first concrete implementation of any such tech-
nique, along with a detailed evaluation that precisely high-

lights the benefits of employing DVFS in intermittently-
computing devices.
7 Conclusion

The peculiar provisioning patterns of ambient energy har-
vesting, together with the features of modern low-power
MCUs, create an opportunity to improve the energy effi-
ciency of intermittently-computing devices by dynamically
adjusting supply voltage and frequency settings.

We seized to the opportunity and presented D2VFS, a
hardware and software co-design that seeks to reap maxi-
mum benefits from these patterns and features by reducing
the overhead imposed by additional hardware components
and software drivers. To make up for the lack of dedicated
hardware on low-power MCUs, we employ an external low-
power DVFS engine to identify voltage changepoints and
trigger the execution of a software driver that scales both
supply voltage and frequency settings. The performance im-
provements of D2VFS are notable. For example, the number
of available clock cycles in a single active epoch is increased
by 40-900% compared with static frequency settings. The
ultimate impact is on workload completion times, which are
reduced by up to 300%, as shown in real world settings with
diverse power traces.
8 References
[1] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and

L. Mottola. The betrayal of constant power x time: Finding the
missing joules of transiently-powered computers. In Proceedings of
the 20th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, LCTES, 2019.

[2] S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola.
Efficient intermittent computing with differential checkpointing. In
Proceedings of the 20th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, and Tools for Embedded Systems,
LCTES, 2019.

[3] R. Antonio, R. Costa, A. Ison, W. Lim, R. Pajado, D. Roque, R. Yutuc,
C. Densing, M. T. de Leon, M. Rosales, and L. Alarcon. Implementa-
tion of dynamic voltage frequency scaling on a processor for wireless
sensing applications. In TENCON, pages 2955–2960, 11 2017.

[4] ARDUINO. NANO, 2018. https://store.arduino.cc/usa/
arduino-nano (accessed 2019-09-25).

[5] S. Arra, J. Leskinen, J. Heikkila, and J. Vanhala. Ultrasonic power and
data link for wireless implantable applications. In 2nd International
Symposium on Wireless Pervasive Computing, 2007.

[6] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli,
B. M. Al-Hashimi, G. V. Merrett, and L. Benini. Hibernus++: a self-
calibrating and adaptive system for transiently-powered embedded de-
vices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2016.

106

https://store.arduino.cc/usa/arduino-nano
https://store.arduino.cc/usa/arduino-nano

[7] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini. Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems. IEEE Embedded
Systems Letters, 2015.

[8] M.-M. U. R. battery-free device. Farsens. http://www.farsens.
com/en/products/medusa-m2233/ ((accessed 2019-09-25)).

[9] M. K. Bhatti, C. Belleudy, and M. Auguin. Power management in real
time embedded systems through online and adaptive interplay of dpm
and dvfs policies. IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing, pages 184–191, 2010.

[10] N. Bhatti and L. Mottola. Efficient state retention for transiently-
powered embedded sensing. In Proceedings of the International Con-
ference on Embedded Wireless Systems and Networks, 2016.

[11] N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. Energy har-
vesting and wireless transfer in sensor network applications: Concepts
and experiences. ACM Transactions on Sensor Networks, 2016.

[12] N. A. Bhatti and L. Mottola. HarvOS: Efficient code instrumenta-
tion for transiently-powered embedded sensing. In Proceedings of the
16th ACM/IEEE International Conference on Information Processing
in Sensor Networks, 2017.

[13] A. Branco, L. Mottola, M. H. Alizai, and J. H. Siddiqui. Intermittent
asynchronous peripheral operations. 2019.

[14] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: An energy-
aware runtime for computational RFID. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementa-
tion, 2011.

[15] A. Colin and B. Lucia. Chain: tasks and channels for reliable inter-
mittent programs. In Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2016.

[16] C. Dagdeviren, P. Joe, O. L. Tuzman, K.-I. Park, K. J. Lee, Y. Shi,
Y. Huang, and J. A. Rogers. Recent progress in flexible and stretchable
piezoelectric devices for mechanical energy harvesting, sensing and
actuation. Extreme Mechanics Letters, 2016.

[17] A. R. Group. Benchmark Applications, 2018. www.github.com/
CMUAbstract/releases#benchmark-applications (accessed
2019-09-25).

[18] J. Hester and J. Sorber. Flicker: Rapid prototyping for the batteryless
internet-of-things. In Proceedings of the 15th ACM Conference on
Embedded Networked Sensor Systems, 2017.

[19] P. Horowitz and W. Hill. The art of electronics. Cambridge Univ.
Press, 1989.

[20] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. Energy effi-
cient dvfs scheduling for mixed-criticality systems. In Proceedings of
the 14th International Conference on Embedded Software, EMSOFT,
pages 11:1–11:10, New York, NY, USA, 2014. ACM.

[21] O. Iova, P. Picco, T. Istomin, and C. Kiraly. RPL: The routing stan-
dard for the Internet of Things... Or Is It? IEEE Communications
Magazine, 2016.

[22] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan. Quick recall:
A HW/SW Approach for Computing across Power Cycles in Tran-
siently Powered Computers. ACM Journal on Emerging Technologies
in Computing Systems, 2015.

[23] U. Kulau, F. Büsching, and L. Wolf. Undervolting in wsns: Theory
and practice. Internet of Things Journal, IEEE, 2:190–198, 06 2015.

[24] U. Kulau, F. Büsching, and L. Wolf. Idealvolting: Reliable undervolt-
ing on wireless sensor nodes. ACM Trans. Sen. Netw., 12(2):11:1–
11:38, Apr. 2016.

[25] U. Kulau, S. Rottmann, S. Schildt, J. Balen, and L. Wolf. Undervolting
in real world wsn applications: A long-term study. In DCOSS, pages
9–16, 05 2016.

[26] P. Lab. RF Trace, 2018. https://github.com/PERSISTLab/
BatterylessSim/tree/master/traces (accessed 2019-09-25).

[27] X. Li. Dynamic voltage-frequency and workload joint scaling power
management for energy harvesting multi-core wsn node soc. Sensors,
17:310, 02 2017.

[28] X. Lin, Y. Wang, S. Yue, N. Chang, and M. Pedram. A framework of
concurrent task scheduling and dynamic voltage and frequency scal-
ing in real-time embedded systems with energy harvesting. Proceed-
ings of the International Symposium on Low Power Electronics and
Design, 35:70–75, 09 2013.

[29] S. Liu, Q. Qiu, and Q. Wu. Energy aware dynamic voltage and fre-
quency selection for real-time systems with energy harvesting. In Pro-
ceedings of the conference on Design, automation and test in Europe,
pages 236–241. ACM, 2008.

[30] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal vs en-
ergy optimization for dvfs-enabled processors in embedded systems.
In Proceedings of the 8th International Symposium on Quality Elec-
tronic Design, ISQED, pages 204–209, Washington, DC, USA, 2007.
IEEE Computer Society.

[31] B. Lucia and B. Ransford. A simpler, safer programming and execu-
tion model for intermittent systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2015.

[32] S. Luo, C. Zhuo, and H. Gan. Noise-aware dvfs transition sequence
optimization for battery-powered iot devices. In Proceedings of the
55th Annual Design Automation Conference, DAC ’18, pages 27:1–
27:6, New York, NY, USA, 2018. ACM.

[33] K. Maeng, A. Colin, and B. Lucia. Alpaca: Intermittent execution
without checkpoints. Proceedings of the ACM on Programming Lan-
guages, 2017.

[34] mbed. IoT OS, 2017. goo.gl/u918jX.
[35] R. Min, T. Furrer, and A. Chandrakasan. Dynamic voltage scaling

techniques for distributed microsensor networks. In Proceedings of
the IEEE Computer Society Annual Workshop on VLSI (WVLSI’00),
WVLSI ’00, pages 43–, Washington, DC, USA, 2000. IEEE Computer
Society.

[36] Mouser. Data Sheet, 2018. http://www.ti.com/lit/ds/symlink/
sn74lv175a.pdf (accessed 2019-09-25).

[37] Mouser. Data Sheet, 2018. https://eu.mouser.com/datasheet/
2/916/74HC_HCT85-1597760.pdf (accessed 2019-09-25).

[38] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP, pages 89–
102, New York, NY, USA, 2001. ACM.

[39] H. C. Powell, A. T. Barth, and J. Lach. Dynamic voltage-frequency
scaling in body area sensor networks using cots components. In
Proceedings of the Fourth International Conference on Body Area
Networks, BodyNets ’09, pages 15:1–15:8, ICST, Brussels, Bel-
gium, Belgium, 2009. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[40] B. Ransford. Mementos: System Support for Long-running Compu-
tation on RFID-scale Devices. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2011.

[41] ROHM. Data Sheet, 2015. https://www.rohm.com/datasheet/
BU4910F/bu48xxg-e (accessed 2019-09-25).

[42] M. E. Salehi, M. Samadi, M. Najibi, A. Afzali-Kusha, M. Pedram,
and S. M. Fakhraie. Dynamic voltage and frequency scheduling for
embedded processors considering power/performance tradeoffs. IEEE
Trans. Very Large Scale Integr. Syst., 19(10):1931–1935, Oct. 2011.

[43] J. R. Smith, A. P. Sample, P. S. Powledge, S. Roy, and A. Mami-
shev. A wirelessly-powered platform for sensing and computation. In
Proceedings of the 8th International Conference on Ubiquitous Com-
puting, 2006.

[44] I. SolarMD. SLMD481H08L, 2018. http://ixapps.ixys.com/ (ac-
cessed 2019-09-25).

[45] TI. Data Sheet, 2013. http://www.ti.com/lit/ds/symlink/
msp430g2553.pdf (accessed 2019-09-25).

[46] TI. Data Sheet, 2016. http://www.ti.com/lit/ds/symlink/
sn74aup1g08.pdf (accessed 2019-09-25).

[47] TI. Voltage Regulator, 2016. http://www.ti.com/lit/ds/
slvsb02b/slvsb02b.pdf (accessed 2019-09-25).

[48] J. Van Der Woude and M. Hicks. Intermittent computation without
hardware support or programmer intervention. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Imple-
mentation, 2016.

[49] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented en-
ergy management for real-time embedded applications. In Proceed-
ings of the 48th Design Automation Conference, DAC, pages 381–386,
New York, NY, USA, 2011. ACM.

107

http://www.farsens.com/en/products/medusa-m2233/
http://www.farsens.com/en/products/medusa-m2233/
www.github.com/CMUAbstract/releases#benchmark-applications
www.github.com/CMUAbstract/releases#benchmark-applications
https://github.com/PERSISTLab/BatterylessSim/tree/master/traces
https://github.com/PERSISTLab/BatterylessSim/tree/master/traces
goo.gl/u918jX
http://www.ti.com/lit/ds/symlink/sn74lv175a.pdf
http://www.ti.com/lit/ds/symlink/sn74lv175a.pdf
https://eu.mouser.com/datasheet/2/916/74HC_HCT85-1597760.pdf
https://eu.mouser.com/datasheet/2/916/74HC_HCT85-1597760.pdf
https://www.rohm.com/datasheet/BU4910F/bu48xxg-e
https://www.rohm.com/datasheet/BU4910F/bu48xxg-e
http://ixapps.ixys.com/
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf
http://www.ti.com/lit/ds/symlink/sn74aup1g08.pdf
http://www.ti.com/lit/ds/symlink/sn74aup1g08.pdf
http://www.ti.com/lit/ds/slvsb02b/slvsb02b.pdf
http://www.ti.com/lit/ds/slvsb02b/slvsb02b.pdf

	Introduction
	Overview
	D2VFS
	Architecture
	Implementation

	Benchmark Evaluation
	Settings
	Computation per Active Epoch
	Checkpoints and Energy Buffers
	Completion Time

	Real World Evaluation
	Related Work
	Conclusion
	References

