TVV: Real-Time Visual Identity and Tracking with Edge Computing

Xinpeng Zhang!, Junchen Guo!, Chunya Liu', Jie Zhou', Yao Luo!, Long Liu!,
Meng Jin!, Zigiang Zhou?, Zhoubin Liu?
I'School of Software and BNRist, Tsinghua University
2State Grid Zhejiang Electric Power Research Institute, Hangzhou, Zhejiang, 310000, China
{zhangxp16, gjc16, liuchuny17, zhouj15, luo-y17, liulong16 } @mails.tsinghua.edu.cn,
mengj@mail.tsinghua.edu.cn, jx_zzq@sina.com, jxliuzb@qqg.com

Abstract

Video surveillance today has become pervasive, making
visual identification and tracking technology attractive to a
broad class of applications like traffic counting, crime track-
ing, and Blockchain. However, visual tracking is also a vic-
tim of the ubiquity of surveillance camera: a huge amount
of data that generated by the cameras leads to severe con-
gestion problem, which decreases the frame rate and in turn
affects the tracking accuracy. In this paper, we present TVYV,
a real-time visual tracking system that leverages edge com-
puting to support accurate and continuous tracking in large
scale areas. The design of TVV is based on a insight that
almost 80% of frames in a video stream exhibit high quality,
and such frames can be processed on the edge nodes using
a lightweight filtering method named KCF. Based on this in-
sight, TVV adaptively load the visual tacking task on the
edge or the server, based on the quality of the currently gen-
erated frame. In this way, the traffic load is largely decreased,
without sacrificing the tracking accuracy. Our experimen-
tal result show that the average frame rate of TVV achieves
45.75 fps, outperforming most state-of-the-art visual track-
ing approaches.

1 Introduction

We have entered a world where internet-enabled surveil-
lance cameras pervade our daily life, providing security for
the stores, airports, factories, campuses, roadways, etc. Vi-
sual tracking is a fundamental task in video surveillance sys-
tem. Accurate and continuous tracking of the objects is pre-
requisite for many important functions such as traffic count-
ing, crime tracking, and Blockchain.

However, achieving the requirement of both accuracy and
continuity tracking is still a conundrum today, especially in
large scale scenarios. Specifically, to cover a large scale area,

International Conference on Embedded Wireless

Systems and Networks (EWSN) 2019

25-27 February, Beijing, China

© 2019 Copyright is held by the authors.

Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-3-8

-
/ Edge Node &
&)
Edge Node&

b Y

!9

Figure 1. The cooperative processing of edge devices and
server in the system.

such as a store, hundreds of cameras should be deployed at
every corner of the store. Consider that the camera usually
generate video frames with a 20-30 fps frame rate, the result-
ing huge amount of data will inevitably incurs severe con-
gestion problem and further increases the network delay and
packet loss rate. This finally decreases the frame rate and in
turn affects the tracking accuracy.

So a key issue is how to reduce the high traffic load that
generated by the ubiquitous cameras. Obviously, cutting
down the number of camera brings too many blind areas;
reducing the sampling rate at the camera or sacrificing the
quality of the transmitted video frame reduces the tracking
accuracy. In this circumstance, we ask why not leverage
edge computing to preprocess the data on the edge nodes,
and transmit only the analytic result (which is much smaller
than the raw data) to the network.

However, a problem in realizing this vision is the lim-
ited computing capacity of the edge nodes. Specifically, to
achieve high accuracy and robustness, today’s visual track-
ing methods typically exploit deep convolutional neural net-
work (CNN) to extract the target in the frame. The advan-
tage of using CNN for target extracting is that it is able to
handle many problems in real world videos such as occlu-
sion, pose variations, illumination changes, fast motion, and
background clutter. We terms such video frame as polluted
frame, and others as clear frame. However, consider the lim-
ited computing capacity of the edge nodes, we cannot imple-
ment the resource-intensive CNN algorithm on them.

Fortunately, we find that: i) in 80% of the time, the gen-
erated video frames are clear frames; ii) in the clear frames,

419

420

the location of the target can be identified by a lightweight
filtering method named KCF. That is to say, we can indeed
process the majority frames (the clear frames) on the edge
nodes, and transmit only the polluted frames to the server
for more robust processing. In this way, the network load is
reduced, without sacrificing the tracking accuracy.

Based on the above insights, we present TVV, a real-time
visual tracking system that leverages edge computing to en-
able accurate and continuous visual tracking to scale to hun-
dreds of cameras. The design principle of TVV is to adap-
tively load the visual tacking task on the edge or server, based
on the quality of the currently generated frame (i.e., a clear
frame or a polluted frame). A practical challenge we meet
here is we can hardly distinguish between the polluted frame
and the clear frame before the frame is processed. In this sit-
uation, how to ensure correct adapting between edge based
tracking and server based tracking? In the design of TVYV, all
the generated frames are first processed by the edge node. To
avoid incorrect adapting (i.e., processing the polluted frame
on the edge node) which will incur large tracking error, the
edge node will periodically verify whether the tracking on
the edge has been successful. Once an unsuccessful tracking
is detected, TVV will trigger a validating process, where the
raw data will be send to the server for more robust tracking.

The contribution of this paper is summarized as follows:

e We propose a novel edge computing based architec-
ture for accurate and continuous visual tracking in large
scale areas. In the architecture edge based tracking and
server based tracking are alternated to achieve both high
tracking accuracy and large monitoring area with lim-
ited bandwidth.

e We design a validation method to estimate the confi-
dence of the edge based processing and judge whether
the tracking has been successful based on a classifica-
tion algorithm. This ensures correct adapting between
edge based tracking and server based tracking.

e We evaluate the performance of TVV in DUKE Dataset,
the experimental results show that the average frame
rate of TVV achieves 45.75 fps, which satisfies the re-
quirement of most real-time tracking applications and
outperforms most state-of-the-art visual tracking ap-
proaches like KCF and DET.

The rest of this paper is organized as follows. Section

2 discusses the related work. In Section 3 we elaborate on
the design of Hubble. We present the evaluation results in
Sections 4. Section 5 concludes this work.

2 Related Work
2.1 Edge Computing

Real-time video processing is widely used in the areas of
transportation, surveillance and security. The requirement
of low latency and high computing power poses challenges
to existing computing frameworks such as cloud computing,
while the transaction of raw video blocks will cause band-
width shortage. Edge computing can optimize both process-
ing capability as well as latency for applications requiring
real-time communication between the cameras and a cloud
server. Many works[4][14][3] perform different video anal-

ysis algorithms on the edge server, but the edge server can
not meet the computing capacity requirements of the deep
learning algorithm or the exact algorithm can not meet the
real-time requirements of tracking. Some works[1][16] pro-
pose an edge computing framework for video analysis. How-
ever, these architectures can not meet both the real-time and
precise requirements. Therefore, the collaboration between
the edge server and the central server has become a challenge
that must be considered.

2.2 Visual Tracking

Compared with RF-based tracking[10] visual based track-
ing exhibit higher accuracy and reliability and thus attracts
much attentions these year. Recent visual tracking works
mainly focus on deep-learning based or correlation-filters
based methods. Wang et at. proposed the Deep Learn-
ing Tracker algorithm[17] in 2013, appling the deep learn-
ing method in the field of visual tracking for the first time.
MDNet[12] and siamese-fc[2] focus more on the distinction
between the foreground and background of the object level.
In 2014, the original author of CSK[8] improved on the ba-
sis of this algorithm and proposed the KCF [9] tracking al-
gorithm. KCF takes the advantage of the ability of HOG de-
scribing characteristics while maintains the speed advantage
of CSK, making the algorithm more robust.

In general, the correlation filtering method is much faster,
but the accuracy is not as high as the deep learning method.
We run KCF on the edge node to achieve real-time tracking
performance and do validation with deep learning method on
the server node to refine the tracking result.

2.3 Re-identification

Re-identification is a important problem of how to estab-
lish the correspondence between target identities in different
video sequences. Simonnet et al.[15] transformed the prob-
lem of re-identification into the distance measurement be-
tween two sequences. They use dynamic time warping to
measure the distance of video sequences. McLaughlin[11]
combined CNN and recurrent neural network (RNN) to pro-
cess video sequences. It uses neural network to extract in-
formation of motion from video frames. Zhou et al.[18]
proposed using deep neural network to unity appearance
feature learning and measurement learning. We utilize re-
identification as a method to refine the loss and drift in track-
ing.

3 Architecture

In this section, we first introduce the system overview
both in hardware and software in subsection 3.1, and show
more detail of edge tracker, verifier and server validator sep-
arately in subsection 3.2, 3.3 and 3.4.

3.1 System Overview

Nowadays, edge devices are abundant in computing and
communication capabilities, which makes it possible to per-
form light-weight video processing algorithm. When the
processing algorithm meets the situation that fail to be han-
dled on the edge nodes, raw video frames will be sent to the
remote server. Under actual situation, only a small amount
of raw video frames need to be processed on the server
node. The cooperation between edge nodes and server avoids

data
message

Edge node Server node

Camera node
Tracking
Video module
Capturing -
Video Verifier
frames module

Results
Display
module

Validator
module

Validating request

Video results

module Video frames

Capturing video chunks low resource consuming tracker resource-consuming validator
Figure 2. Architecture of System.

1

match 0

Inverse

Tracking Fourier

window Transform > Fourier
Transform
Correlation i
N not match
Filter

@
Figure 3. Correlation-filters based tracker.

the problem of insufficient and cloud computing resources
caused by full video transmission.

As shown in Figure 2, our system consists of three parts
at the hardware level: cameras, edge nodes and server node.

The camera nodes are responsible for capturing video im-
ages and sending video blocks to edge nodes.

The edge nodes are the devices with low computing re-
sources and storage capacity and the edge tracker runs on
them. A high-speed tracker runs on the edge node which
meets the real-time requirement. However, this light-weight
edge tracker cannot guarantee the accuracy of tracking re-
sult, so the edge node also runs a light-weight verifier, which
will verify the accuracy of the result after every tracking op-
eration. If the verification result shows that tracking is inac-
curate, the edge node will transmit the current frame to the
server node.

The server node is a video workstation with a huge
amount of computing resources and powerful computing ca-
pacities. A resource-consuming validator runs on the server
node. When the validator finishes processing, it will send the
accurate tracking result back to the edge node.

3.2 Edge Tracker

It is necessary for the tracker to meet the requirements of
light weight and fast processing speed considering the lim-
ited resource and real-time requirements on the edge node.
We choose KCF (Kernelized Correlation Filters)[4] as the
tracker running on the edge node which is a discriminative
correlation-filters based tracker.

Originating from the idea of template matching, the main
goal of correlation-filters based method is training a good
correlation filter. With the use of this filter, a good response
map can be obtained after calculating the correlation: a sharp
peak can be obtained on the tracking target and the value
rapidly decays in the surrounding area.

The speed of correlation-filters based method can reaches
hundreds of frames per second because of the using of FFT

Response

map feature threshold

Tracking Feature

data Extraction Result

Classification

Motion Vector
Feature

Figure 4. Verifier

for calculating the correlation, which can be expressed as:
G=FOH")

where F is the two-dimensional Fourier transform of the im-
age and H* is the complex conjugate of the filter. The result
G can be converted to the spatial domain, which is known as
response map. The overall process is shown in Figure 3.

However, there are some situations where the tracking ef-
fect of KCF is poor. KCF cannot handle the situation where
the object moves fast, considering that the object may run
out of the candidate boxes, causing the match to fail. At the
same time, KCF cannot handle the collision and overlap sit-
uations. When two people move facing each other, KCF has
a certain probability of losing the target and tracking another.

3.3 Verifier

As is mentioned before, the KCF is robust for the light-
ing changes, motion blur and background clutter, however, it
can perform poorly because of the targets rapid movement,
multi-scale variation, rigid deformation or occluding. So it
is hard for KCF to handle drift caused by continuous track-
ing. In order to ensure the tracking performance, the veri-
fier needs to verify the tracking quality of the edge tracker.
When the accuracy of the tracker has decreased significantly,
the verifier should immediately initiate a validation request
to the validator. Therefore, the validation time can be defined
as the time when the tracker accuracy has a large deviation.

Periodic Validation: The implementation of periodic
validation is simple because the validation period is fixed.
The disadvantage is that it can be difficult to select the proper
interval: if the period is too large, the performance may de-
crease significantly due to the effect of drift effect and if the
period is too small, frequent call for validator will increase
the burden on the server and increase the overall computa-
tional overhead.

Dynamic Validation: It is necessary to design a dynamic
validation strategy to optimize the tracking performance.As
shown in the Figure 4, the verifier consists of two compo-
nents: feature extraction and classification. Feature extrac-
tion is to extract features from current frame which can eval-
uate the tracker’s performance. We take motion vector and
KCF’s response map into consideration. The motion vec-
tor is extracted from video coding which describes the target
motion and the response map represents the confidence of
the tracker. Classification utilizes these features to evaluate
the tracking performance. We regress the precision of the
tracker and then set a threshold to judge whether we need
validate the tracker with Server Validator.

421

422

(b) Response map when KCF tracking failed.

Figure 5. The response map of KCF.

3.3.1 Feature Extraction

We extract features from motion vector which represents
the motion of object and features from response map of KCF
which represents the confidence of tracker performance.

Motion vectors are proposed in video coding to optimize
video compression size. It is designed to exploit the mo-
tion information of corresponding image macroblock to re-
duce the bit rate of the video. For a data set, the cluster is
surrounded by some data points with low local density and
these low density points are far away from points with high
density. Therefore we use density peak clustering to process
the motion vectors, the number of clusters and other statisti-
cal features, such as the maximum, average amplitude in the
cluster will be used.

According to the theory of KCF, when the algorithm
tracks correctly, the response map should be a Gaussian dis-
tribution with obvious peak. When the algorithm fails, es-
pecially when the fail is caused by lost or obstructing of the
target, there will not be obvious peak in the response map,
as shown in Figure 5. So we evaluate the current tracking
performance by calculating the difference between the corre-
sponding peak value and the surrounding area value as con-
fidence. It is obvious that confidence shows the difference
between the maximum value and average value in response
map. Greater difference leads to higher confidence, while
less difference leads to smaller confidence.

3.3.2 Classification

The classification algorithm aims to compute the charac-
teristics and decide whether the current tracking result needs
to be validated according to the tracker’s output accuracy.
The algorithm used in our work is a combination of regres-
sion method and threshold judgment. The regression method
is responsible for predicting the accuracy of the tracker algo-
rithm. Samples below the threshold are judged to need val-
idation. We use two kinds of regression algorithms: Linear
Regression algorithm (LR) and RNN regression method.

In LR, we input the features extracted before as
X =x1,x2,..,X6, and build the linear model between
IoU(Intersection of Union, predicted bounding box and the
ground truth) and the features,

hiow=Y Wi xi+b)

area(GroundtTruth) Narea(Predicted)
area(GroundtTruth) U area(Predicted)

Yiou = 3)

The model predicts IoU between predicted boundingbox
and the groundtruth.

In RNN, we use LSTM (Long-Short Term Memory) to
predict the IoU. The features we use are number of clus-
ters, maximum value, average value from motion vectors and
average fluction, peak value from response map. And the
LSTM model output the IoU between predicted bounding
box with the groundtruth.

Finally, we carefully select the threshold to control the
union performance of edge tracker and server validator.

3.4 Server Validator

In this section, we will introduce the server validator in-
cluding the base validator and cross-camera validator. In pre-
vious section, the frames need to be validated will be sent to
server and the server should return the best matching result
for the edge tracker.

We adopt a two-stage validator which is re-identification-
by-detection to promote the tracking performance in this pa-
per. The adaptor contains four sub-module: detection mod-
ule, re-identification module, template update module and
cross-camera tracking module. Detection module proposes
candidate bounding box and filters the reduntancy with the
metric of disatance. Re-identification module extracts the
appearance feature of the candidate bounding box, and se-
lect the nearest one with the tamplate as the validator’s re-
sult. Template update module updates the template with the
selected bounding box.

Detection Module: The detection module adopts
RPN(Region Proposal Network) which is widely used in ob-
ject detection task. The RPN outputs a serious of candidate
bounding boxes and their probability of containing object.

For every point in the feature map, RPN will produce
9 bounding box according to the 9 anchors(three resolu-
tions together with three ratios). The RPN is trained end-
to-end by back-propagation(BP) and stochastic gradient de-
scent(SGD).

Re-Identificaiton Module: The re-identification algo-
rithm uses triplet hard loss method. We set a threshold €
to determine whether there is the target in the image. If the
minimum value of the distance between the object and the
target in the set of candidate bounding boxes is greater than
€, the target is not in the frame, otherwise the target exists.

We obtain the threshold using logistic regression. After
the experiment, we choose € = 0.7245 and the classification
accuracy is 85%.

Template Update Module: We update template feature
together with the current frame and previous frame by linear
interpolation.

template = (1 — o) X template + o X new_template (4)

where o is the hyper-parameter for updating, new_template
is the feature of the object in current frame.

Cross-camera Tracking Module: If the target object’s
trace crosses multi-camera, the task of single camera track-

ing will fail and the continuous tracking of the target need
the coordination of multiple cameras.

From video data, we can recover the position relationship
matrix between cameras. After getting transition matrix, we
need to re-identify the target person from target camera got
from the transition matrix. Each time the verifier fails, the
server will execute the validator who will generate a feature
description of the target. After a series of verifications, a
series of feature descriptions from different perspectives will
be obtained. Then we integrate the features and find the most
similar object.

4 Experiment
4.1 Experimental Setup

Hardware: Our TVV system contains three components,
edge tracker, verifier, and server validator. Edge tracker and
verifier run in Raspberry Pi 2 Model B with ARM Cortex-
A7 900MHz CPU, 1GB RAM. Server validator runs on de-
vice with NVIDIA GeForce GTX 1080 Ti GPU, Intel(R)
Core(TM) 17-6800K CPU, 16GB RAM.

Dataset and Metrics: The dataset we use in this paper
is DukeMTMCJ[13] which is a large-scale tracking dataset
recorded on the Duke University campus with 2.8k identities.
The dataset was recorded by 8 cameras and the duration of
each is 1 hour and 25 minutes. We evaluate our experiment
on this dataset and evaluate the tracking results in one-pass
evaluation (OPE) using distance precision rate (DPR) and
overlap success rate (OSR) as shown Figure 8 compared with
other methods.

4.2 System Configure

Verifier: Verifier evaluates KCF’s performance of the
current frame and determine whether it needs the validator
to validate. We propose two mechanisms for dynamic veri-
fication and compare them with periodic validation(period is
5,10,15 frames respectively). The result is shown in Table 1.

Count (frame_validate N frame_need)

&)

recision =
p Count(frame_validate)

Count (frame_validate N frame_need)

(6)

recall =

Count(frame_need)

2« precision x recall
Fscore = — @)
precision + recall

In Figure 6, as the interval period continues to increase,
the accuracy of recognition increases but the recall rate de-
creases significantly. The periodically corrected F-value
fluctuates and stabilizes around 0.73. The periodic correction
ignores the spatio-temporal information of the target motion
and cannot dynamically adjust the time interval, so the av-
erage efficiency is low. From the Table 1, we can find the
dynamic mechanisms both LR and RNN, perform better than
the periodic mechanisms with higher precision. LR performs
a bit worse than RNN, but the computational complexity of
LR is much lower than that of RNN that LR can consume
much fewer resources and perform faster operations on edge
devices than RNN.

Validator: We obtain the threshold using logistic regres-
sion. The rule for preparing the training samples is: If the

1.0, Periodic verify performance

o —

SS~—

0.6

0.4

m— precision
m— recall
— fscore

0.2

0.0

5 20

10 15
Verify Interval
Figure 6. Periodically verify performance evaluation.

Table 1. Performance of different verifier

10-Periodic 0.6218 0.8882 0.7315
LR-Dynamic 0.8523 0.8014 0.8261
RNN-Dynamic 0.8499 0.9039 0.8761

re-identification algorithm identifies correctly, we generate
two sets of samples: the minimum distance is 1 and the the
second-smallest distance is 0. If the re-identification algo-
rithm fails, we generate two sets of samples: the minimum
distance is 0, and the second-smallest distance is 1.

After the experiment, we choose € = 0.7245 and the clas-
sification accuracy is 85%. As is shown in Figure 7, validator
refines the tracking performance, when KCF begin to miss
the target.

4.3 Evaluation

Overall performance: Following the protocol in [5], we
report the result in one-pass evaluation(OPE) using distance
rate(DPR) and overlap success rate(OSR) as shown in Fig-
ure 8. We compare our TVV with simple KCF mode and
detection mode(Det). The simple KCF mode means track-
ing object only with KCF, while detection mode means that
every frame need to be detected and search the closest can-
didate bounding box in the detected result. Overall, It shows
that TVV outperforms Det and KCF in both rates. In addi-
tion, we present quantitative comparison of DPR at 20 pixels,
OSR at 0.5. TVV performs can our tracker achieves a DPR
of 73% and an OSR of 81% the better performance with Det,
while the TVV runs at real-time while Det can’t. Compared
with KCF, TVV refine the tracking result, when KCF be-
gins to miss the goal, which is a restart step for KCF. TVV
even has a better performance than Det, as Det just rely on
re-identify by detection.

Runtime Analysis: We compare the speed of TVV with
Det and KCF. In TVYV, about 80% frames run on the edge
with KCF, and the others run on the server. As the speed of
KCF and Det are 243 fps and 6.1 fps, the speed of TVV is
45.75 fps which enables the real-time tracking.

Cross-Camera Performance: The main task of cross-
camera object tracking is re-identify the target object in tar-
get cameras selected by transition matrix of Markov model.
The top-1 precision of mean-based feature integration to re-
identify target are 52.2% for mean value and 54.0% for me-
dian value, and top-5 are 72.6% and 73.5% respectively.
The top-1 and top-5 for hierarchical-based feature integra-
tion are 32.6% and 54.5% respectively. Then, we can use

423

424

Table 2. Comparisons of the tracking methods on
DukeMTMC in distance precision rate (DPR) at a thresh-
old of 20 pixels and overlap success rate (OSR) at an over-

lap threshold of 0.5.
TVV Det KCF
DPR(%) 0.802 0.762 0.49
OSR 0.853 0.827 0.601

s R
Figure 7. The frames verifier. Bounding boxes in red
and green mark the results of KCF and validator, respec-
tively.

10 Precision plots of OPE 10
—[0.802]TVV —__

Success plots of OPE

= [0.762]Detection mm = === *
=« [0.726]KCF
4

0.8

- =~
-
-

precision
°
>

o
s
Success rate

°
o

6 10 20 30 40 50 %80
Location error threshold

(a) Precision plots of OPE

1.0

02 04 06 08
Overlap threshold

(b) Success plots of OPE

Figure 8. Comparison on DukeMTMC distance precision
rate (DPR) and overlap success rate (OSR).

the re-identification to achieve cross-camera tracking. Fur-
ther more, we can use more sophisticated re-identification
algorithms to do cross-camera person re-identify.

S Conclusion and Future work

This paper proposes a real-time, high-precision video
tracking system solution. The main contributions are sum-
marized as follows.

An edge computing framework is proposed. By assign-
ing different tasks to edge and server, the bandwidth starva-
tion caused by transmitting a large number of original video
blocks can be avoided.

A visual tracking algorithm framework is presented. The
framework consists of three main components, namely as
tracker, verifier, and validator. The tracker is responsible
for providing real-time tracking results, suitable for smooth,
slow motion, and performs well most of the time. The ver-
ifier aims to evaluate the tracker’s tracking results. If the
accuracy is lower than the system requirements, a validation
request is sent to the validator. The validator will return the
results of high precision to tracker. Through the collabora-
tion between the three components, the framework enjoys
both the high speed of the tracker and the accuracy of the
validator.

At the end, we have deployed TVV in a real-world digital
twin system Pavator[7][6] for real-time people tracking in an
ultra-high voltage converter station.

Although a real-time high-precision tracking algorithm
framework is proposed in this paper, we need to handle
multi-target tracking problem in real world whose envi-
ronment is much more complicated than the experimental
dataset. And the server is also a resource-restricted device.
Therefore, there is still huge space for improvement.

6 Acknowledgments

This work was supported by the State Grid of China Sci-
ence and Technology Fund No.52110417000G.

7 References

[1] G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha. Real-time video analytics: The
killer app for edge computing. computer, 50(10):58-67, 2017.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr.
Fully-convolutional siamese networks for object tracking. In Euro-
pean conference on computer vision, pages 850-865. Springer, 2016.

[3] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann.
Dynamic urban surveillance video stream processing using fog com-
puting. In 2016 IEEE second international conference on multimedia
big data (BigMM), pages 105-112. IEEE, 2016.

[4] J. Dick, C. Phillips, S. H. Mortazavi, and E. de Lara. High speed
object tracking using edge computing. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, page 26. ACM, 2017.

[5] H.Fan and H. Ling. Parallel tracking and verifying. 2018.

[6] J. Guo, Y. He, and X. Zheng. Pangu: Towards a software-defined ar-
chitecture for multi-function wireless sensor networks. In Parallel and
Distributed Systems (ICPADS), 2017 IEEE 23rd International Confer-
ence on, pages 730-737. IEEE, 2017.

[7]1 Y. He, J. Guo, and X. Zheng. From surveillance to digital twin: Chal-
lenges and recent advances of signal processing for industrial iot.

[8] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the
circulant structure of tracking-by-detection with kernels. In European
conference on computer vision, pages 702—715. Springer, 2012.

[9] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed
tracking with kernelized correlation filters. I[EEE Transactions on Pat-
tern Analysis and Machine Intelligence, 37(3):583-596, 2015.

[10] C.Jiang, Y. He, X. Zheng, and Y. Liu. Orientation-aware rfid tracking
with centimeter-level accuracy. In Proceedings of the 17th ACM/IEEE
International Conference on Information Processing in Sensor Net-
works, pages 290-301. IEEE Press, 2018.

[11] N. McLaughlin, J. Martinez del Rincon, and P. Miller. Recurrent
convolutional network for video-based person re-identification. In
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[12] H. Nam and B. Han. Learning multi-domain convolutional neural net-
works for visual tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4293-4302, 2016.

[13] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi. Perfor-
mance measures and a data set for multi-target, multi-camera tracking.
In European Conference on Computer Vision, pages 17-35, 2016.

[14] M. Schneider, J. Rambach, and D. Stricker. Augmented reality based
on edge computing using the example of remote live support. In In-
dustrial Technology (ICIT), 2017 IEEE International Conference on,
pages 1277-1282. IEEE, 2017.

[15] D. Simonnet, M. Lewandowski, S. A. Velastin, J. Orwell, and E. Turk-
beyler. Re-identification of pedestrians in crowds using dynamic time
warping. In European Conference on Computer Vision, pages 423—
432. Springer, 2012.

[16] H. Sun, X. Liang, and W. Shi. Vu: video usefulness and its application
in large-scale video surveillance systems: an early experience. In Pro-
ceedings of the Workshop on Smart Internet of Things, page 6. ACM,
2017.

[17] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung.
feature hierarchies for robust visual tracking.
arXiv:1501.04587, 2015.

[18] Z. Zhou, Y. Huang, W. Wang, L. Wang, and T. Tan. See the forest
for the trees: Joint spatial and temporal recurrent neural networks for
video-based person re-identification. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 67766785, 2017.

Transferring rich
arXiv preprint

