A Web Platform for Globally Interconnected 6LoWPANs

Zengxu Yang, Xiaofei Guo, XiaoZheng Guo, David J. Janowsky, C. Hwa Chang
The Tufts Wireless Lab
Department of Electrical and Computer Engineering
Tufts University
zengxu.yang@tufts.edu, xiaofei.guo@tufts.edu, willguo@mathworks.com,
david.janowsky@tufts.edu, chorng.chang@tufts.edu

Abstract

The Internet of Things (IoT) enables a variety of ap-
plication scenarios with daily life objects, some of them
equipped with sensors or actuators, connected to the Inter-
net. The standardization of the Constrained Application Pro-
tocol (CoAP) on the resource-constrained devices by Internet
Engineering Task Force (IETF) facilitates the integration of
low-power wireless networks into the Internet. A full-stack
Web application is designed to communicate with the low-
power constrained nodes over globally deployed IPv6 over
Low Power Wireless Personal Area Networks (6LoWPANSs)
through CoAP. This Web application is based on Java Spring
MVC framework and can be divided into three parts: com-
municating with the sensors, deploying the database and vi-
sualizing the data.

1 Introduction

As more and more smart devices such as wireless personal
devices, smart objects, embedded systems and remote sen-
sors become prevalent, the integration of such devices into
the Web is more and more important so that end users can
easily access their devices over the Internet. The network
address space of IPv4 is running out and thus has to be ex-
panded to support the Internet services of massive numbers
of pervasive devices for various uses[5, 3]. Internet Protocol
version 6 (IPv6) was hence formed. 6LoWPAN makes IP us-
able in many low-power and lossy wireless networks[7]. An
overview of 6LoWPAN and its implementations is describe
in literatures[11]. These networks are enabling a completely
new and never imagined generation of devices, applications
and services where IoT resources can be conceived as ser-
vice end-points, i.e. Things or Resources as a Service (TaaS
or RaaS)[2]. For example, manufacturing using Wi-Fi, Mes-
sage Queuing Telemetry Transport(MQTT) and 6LoWPAN
has been implemented[12].

International Conference on Embedded Wireless

Systems and Networks (EWSN) 2019

25-27 February, Beijing, China

© 2019 Copyright is held by the authors.

Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-3-8

In this aspect, the new protocol to support the commu-
nication between Web clients and the constrained devices
through the server is becoming important. For these net-
works, User Datagram Protocol (UDP) rather than Transmis-
sion Control Protocol (TCP) is more commonly used due to
its short real-time delay. Based on UDP, CoAP is proposed
by IETF to be used on IoT[6]. CoAP is a specialized Web
transfer protocol for use with constrained nodes and con-
strained (e.g., low-power, lossy) networks. The nodes of-
ten have 8-bit microcontrollers with small amounts of ROM
and RAM, while constrained networks such as 6LoWPANs
often have high packet error rates and a typical throughput
of 10s of kbit/s. The protocol is designed for machine-to-
machine (M2M) applications such as smart energy and build-
ing automation. CoAP provides a request/response interac-
tion model between application endpoints, supports built-in
discovery of services and resources, and includes key con-
cepts of the Web such as URIs and Internet media types.
CoAP is designed to easily interface with HTTP for integra-
tion with the Web while meeting specialized requirements
such as multicast support, very low overhead, and simplicity
for constrained environments[8]. Much research has been
conducted on the architectures of the networks and the per-
formance of the CoAP [5]. We deployed an IoT system
consists of two platforms: an 6LoWPAN platform[10] and
a Web platform to connects Web clients over HTTP and
6LoWPAN IoT devices over CoAP. The IoT system can be
modeled as shown in Figure 1. In our IoT system, the module
(a) represents the 6LoWPANSs with four constrained sensor
nodes in the 6LoWPAN platform. As mentioned earlier, this
platform uses CoAP. The module (b) is a translating mod-
ule, this module is the communication block that translates
between CoAP and HTTP.. The module (c) is the main back-
end block. Inside this block, some user requests that inter-
act with the constrained devices and database will be pro-
cessed. Also, some back-end services that are not directly
involved with user interactions, such as collecting and pro-
cessing the data, locking the database, etc., will be provided
through this block. The module (d) represents the database,
where the platform stores the data the constrained devices
produced. The module (e) is the internet server that handles
users’ requests, provides the request information, like ac-
cessing the database, configuring the platform, and control-
ing the constrained nodes, for the back-end platform. This
article focuses on the design and implementation of mod-

367

368

CoAP

Border
Router

IPv6

@ B6LoWPAN/RPL links
“=---] Border

Router IPv6

HTTP

IPv6

1

Database
Mpdule (d)

y

LG

Message iTranslator
Module (b)

Border
Router

7

G

6LOWPAN

Constrained Module (a)

nodes

BLOoWPAN platform

Web platform

du

Back-end
Module (c)

IPv6
IPv6

Front-end
Module (e)

O
O—->0->0
O

IPv6

browser

browser ,-* browser /

L B o

Figure 1. IoT system block diagram

ule(b), (c), (d) and (e). The implementation is mainly based
on Java, with limited usage of other front-end languages.
Java became the predominant platform for mission-critical
enterprise applications after its initial launch in 1997. Sev-
eral common services for enterprise application became stan-
dardized as J2EE (Java 2 Enterprise Edition) later called Java
EE. The Spring Framework provides a comprehensive pro-
gramming and configuration model for modern Java-based
enterprise applications. It is a proven, stable, high-quality
platform ubiquitous in today’s Enterprise Java world and can
be integrated into a Java EE environment. With benefits like
Dependency Injection, Aspect Oriented Programming, and
Enterprise Service Abstraction, numerous large companies
have deployed Spring in mission-critical applications with
very good results[9].

2 Design and Implementation

2.1 Overview

The main idea in this article is to build the Web platform
as a set of stateless reusable REST services. The Represen-
tational State Transfer (REST) style is an abstraction of the
architectural elements within a distributed hypermedia sys-
tem. REST ignores the details of component implementa-
tion and protocol syntax in order to focus on the roles of
components, the constraints upon their interaction with other
components, and their interpretation of significant data el-
ements. It encompasses the fundamental constraints upon
components, connectors, and data that define the basis of
the Web architecture, and thus the essence of its behavior
as a network-based application.The fundamental concept of
REST is that anything is a resource that can be accessed or
manipulated[4]. These states need to be represented using a
common format such as XML or JSON. In the case of Web
applications, HTTP is commonly used to support a RESTful
architecture. In other words, REST is used to create a Web

application that can be accessed by an HTTP API. Standard
HTTP methods such as GET, POST, PUT, and DELETE are
used to access and manipulate REST Web resources. The
CRUD operations have four basic persistent functions: cre-
ate, read, update, and delete. The Web platform consists
of the front-end (HTML, CSS, JavaScript/jQuery), the back-
end (Spring MVC, logical layer, translating module), and the
database (Hibernate, MySQL). The communication between
the client side and the server side happens through a REST-
ful API. The front-end pages involve everything that the user
sees, including interaction with the users, as well as display-
ing data in a well-defined style. The technological stack
of the front-end part for the Web platform is HTML, CSS,
JavaScript, BootStrap, and Java Server Page (JSP). Boot-
Strap is a JavaScript library and JSP is used for generating
dynamic contents. The back-end is built with Java which
connects with the database and the 6LoWPANSs to save or
update data or settings of constrained nodes and return the
result to the end user in the form of front-end code such as
HTML elements or contents. The back-end is implemented
with Spring Framework, which is popular for building the
back-end features in enterprise applications. It has a configu-
ration module where Spring handles many common concerns
such as handling HTTP requests, connecting to databases,
and it allows the developer to focus on business services. The
developer develops business services and annotates classes
with Spring-provided annotations, which lets Spring know
about those services. It also provides infrastructure to access
the database, such as Hibernate, and map the Java class into
the databases entries. The database is built with MySQL,
which is the leading open-source database solution for many
well-known application such as Facebook, Twitter, YouTube,
etc.[1].

e ! [config package
v | (Contains configurations for
H - ! ! |the application context,
i index.jsp ' 1 |serviet context, hibernate
H H and taskScheduler)
' |
' set_data_type.jsp H i |dao package
H H 1 |(Persistence layer,
' " '
' set_border_routerjsp ' 1 [access database)
' '
' |
' '
H set_sensor_name.jsp . JSON implementations of the
H H application)
'
: - Goma packase
H H (Data model classes)
' general_errorjsp '
' '
' ' 1 [controller package
H errorjsp H (HTTP requests handlers)
' |
' '
------------------------ 1 | CustomTaskscheduler
1 [(Customized
ThreadPool TaskScheduler
Front-End ¢ | class, requied by peridicaly
repeated tasks)

;
1
H
H
1
H
1
H
H
H
H
1
H
1
H
1
H
H
H
1
H
H
H
H
H
1
H
1
H
H
data_monitorjsp . :
H
1
H
H
H
1
H
1
H
H
H
1
H
1
H
H
H
1
H
1
H
H
H
H
1
H
1
H
H

impl package
Service package
! |(Contains core functions mock_impl package

Class Diagram

AppConfig
Servietinitializer
HibernateConfig

TaskSchedulerConfig

SensorRepository

SensorDataRepository

'
'

'

'

'

'

'

'

'

BorderRouterRepository '
'

'

'

'

'

'

AbstractAccessBorderRouterService) '
'

'

‘AbstractAccessSensorService

DataFetchingAndMappingService

BorderRouterEntity

BorderRouter Wrapper

SensorEntity BorderRouterEntity borderRouter;
— / List<SensorWrapper> sensorWrapperList; :
'
BorderRouterWrapper SensorWiaEeT :
L [SensorEntiy senser :
List<SensorData> sensorDataList; '
DatoPackage :
\ DataPackage | H
int size; '
SettingController List<BorderRouterWrapper> !
(Provide Restful AP for V
setlings) '

troller
Restful API for data
ns)

‘GlobalControllerExceptionHandier
(Handle exceptions within the
server, display error messages)

Back-End

Figure 2. Class diagram of the application

2.2 Design

The functionalities of the Web platform are highly driven
by the user experience, and below are some user cases we
start with:

1.

The communication between the application and the
sensor network using a variety of protocols.

Users can access our application through a GUI inter-
face in their browser.

Users can add border routers by entering border router
IP addresses and border router names in the GUI inter-
face.

The server can automatically explore the sensor net-
work to add sensor nodes connected to each border
router.

. Users can set data types that sensors will report to the

SErver.

Users can monitor data from each sensor through the
GUI interface.

Users can toggle auto data fetching feature and see the
trend of data over time.

Users have two options when they open our application.
They can either start a fresh application or start from
what they saved from last time.

The application can be divided into three parts, front-end,
back-end and database.

Front-end: The front-end module is the interface for the
end-users with graphic options in the browser. For
technology stack, this part contains all .jsp pages,
which is developed with BootStrap, JavaScript and
JSP. The front-end part provides a visual interface
for users to configure the system and monitor data
from sensors. These .jsp files are not directly vis-
ible to public, therefore they need jspViewResolver
and PageController to map specific URL patterns to
them.

Back-end: The back-end module contains all the core logic
of the project. It gives front-end working functional-
ity including the communication with the sensor net-
work, storing and fetching data from the database and
the management of front-end page flow. In this project,
we chose Java back-end tech stack (Java, Spring MVC,
Hibernate) to build the back-end part.

Database: The database is built with MySQL and can be in-
tegrated with the back-end Spring Framework through

Hibernate.
Figure 2 shows the overall class structure of the application.

2.3 Implementation

The application has been implemented according to the
latest Web 2.0 standards. The main welcome page is under
webapp/resources with the name index. jsp. In this page,
users can be navigated to the information page or the service
page. Once the service page is activated, the user is required

369

370

B Project -
¥ I3 smart-home-sensor-network-system [smarthomeserver] ~/Di
» B .idea
» Bmdocs
¥ Bmsrc
¥ B main
¥ [ujava
¥ Emcom.twlxg
» Em config
» Em controller
» Emdao
» Em domain
» EE service
» Em taskScheduler
¥ I resources
iﬂ| app_custom.properties
i) logdj.properties
ifl| persistence-mysaql.properties
¥ B webapp
¥ B resources
» I index
» Bm themel
,5‘3. README.md
v Bm WEB-INF
» Bmjsp
A README.md
,5‘3. README.md
¥ [u test
¥ EB com.twl.xg.test
» Emcoap
» Emdao
» Emdb
» Em service
» [target
& .gitignore
if)| Californium.properties
& LICENSE
m pom.xmi
,5‘3. README.md

Figure 3. File structure of the application

to set up the environment parameters like border router ad-
dress, sensor address, data type, etc. The setting page is com-
prised of technologies including Bootstrap, HTML, CSS and
JavaScript. Once the setting has been done, the session be-
gins, and the user is redirected to the monitor_data page
where they can view the charts of data from their queries.
In the back-end, the application queries the data according
to the parameters the HTTP message has passed in from the
service setting page. If the data is already in the database,
all of it will be passed to the front-end templates powered by
JSP. The display of data in the browser will be then powered
by AJAX.

Figure 3 shows the file structure.
e src: Contains all the source code and resources of the
project
— src/main: Contains all the source code and re-
sources except for test code

i borderRouter

borderRouterlp :: string (p-key)
borderRouterName:: string

I

' oy
sensor

sensorlp :: string (p-key)
sensorName :: string

borderRouterlp :: string (f-key)

sensorData
id :: int (p-key)
timeStamp :: DATETIME
sensorlp :: string (f-key)
dataJson :: string

Figure 4. ER diagram of our database schema

— src/main/resources: Contains resources
needed by the back-end part, in this case
this folder stores all the Spring .properties
configuration files;

— src/main/webapp: This is the Web application
resource folder and it contains static resources and
.jsp files of the front-end part;

* /src/main/webapp/resources: Contains
all the static resources including .js, .css
files and images;

* /src/main/webapp/WEB-INF: Contains all
things that aren’t in the document root of the
application. These files cannot be served di-
rectly to a client by the container, but they are
visible to servlet code;

- /src/main/webapp/WEN-INF/jsp:
Contains all . jsp files which implement
all of the front-end interfaces;

— src/test: Contains all the unit test code

e pom.xml: This POM file contains information about the
project and configuration details used by Maven to build
the project;

MySQL database is used to store border router and sensor
information and data sets. Figure 4 is the ER diagram of our
design.

Three tables are contained in the database:
borderRouter, sensor and sensorData. The
borderRouter and sensor tables are applied a one-
to-many relationship. sensor and sensorData tables also
have a one-to-many relationship.

Index Page:

This page is the entrance of the whole system. To start,
you need to click the "GET STARTED" or the "CON-
TINUE" button. If it is your first time using our system, you
have to click "GET STARTED". Figure 5 shows our index

page.

TWL SENSOR NETWORK START ABOUT CONTACT

TWL SENSOR NETWORK
SYSTEM
"House Maonitor .

-
* — s

It is easy to use!

will find all sensors connected
explained, just click your
usel

GET STARTED CONTINUE

House Monitor Sensor Network System

VIEW SOURCE CODE

Let's Get In Touch!

proj i aofei University. If you

Figure 5. Index page

Data Type Setting Page:

After clicking "GET STARTED", you will be redirected
to this page. In this page you need to enter the types of data
that you want from sensors. Follow the instructions on the
page, then click "Submit" or "Skip" after you finish. The
Figure 6 shows the sample setting page. Other setting pages
are alike.

Border Router Setting Page:

The next step is to enter the IP addresses of the border
routers in your sensor network. It is required for you to set a
name for each border router. Follow the instructions on the

Set Data Type

Enter data types you want to monitor. The data type you entered must be supported
by sensors you are using. For example, if you want to monitor temperature, you
might need to enter temp for it.

If you want to use the default dataTypeList that can be configured in
'app_custom.properties” file, click Skip button. Currently, the default dataTypelist is:
[d1, d2, d3, d4] .

Data type n
Press + to add another data type

BTN T

Figure 6. Data type setting page

page and click "Submit" after you finish.

Sensor Name Setting Page:

After you entered border router IP addresses, our server
will automatically find all sensors that are connected to each
border router. The next step is to set a name for each sensor.
This step is optional, follow the instructions on the page and
click "Submit" or "Skip" after you finish.

Data Monitor Page:

On this page, two forms of data are displayed. One is
the current data displayed in bar charts, the other one is the
history data that is displayed in line charts. Click "Show Cur-
rent Data" and "Show History Data" in the top bar to switch
between these two modes. The left side bar contains a list
of border router names, and clicking one of them selects the
sensor data you want to see. The button "Auto Data Fetch-
ing Disabled/Enabled" toggles the auto data fetching func-
tion. Before checking history data, you should enable auto
data fetching to store data into the database. The last button
is "Clear History Data", click this button to clear all sensor
data entries in database.

3 Results

This section displays the results after running the applica-
tion. Figure 7 shows the data monitor page with a bar chart
of current humidity, lightness data of the all the sensors be-
longing to the selected border routers. Figure 8 shows the
curve chart of the history data.

371

372

borderRouterName-1: humidity

borderRouterip-1--sensor-0
borderRouterp-1--sensor-1
borderRouterp-1--sensor-2
borderRouterp-1--sensor-3

borderRouterlp-1--sensor-4

0 5 10 15 20 2

borderRouterName-1: lightness

borderRouterip-1--sensor-0
borderRouterip-1--sensor-1
borderRouterlp-1--sensor-2

borderRouterlp-1

ensor-3

borderRouterlp-1--sensor-4

0 5 10 15 20 2

Figure 7. Current data bar chart page

borderRouterName-1: humidity

2

m 45109pm 45110pm 45L11pm 45U12pm 4STI3pm 4ST14pm ASIASPm 45116pm 4S1:17pm 451:18pm

1-sensor0 [

borderRouterlp-1-sensor-4

borderRouterName-1: lightness

Figure 8. History data line chart

Figure 7 lists the current humidity and lightness data of
five different border routers in the data bars. The value of
bars can be found on the x-coordinate. From this figure, the
comparisons between different border routers can be clearly
shown. Figure 8 shows the history data, the x-coordinate
shows the timestamp, and the y-coordinate shows the value
of data. Users can easily see the trends.

4 Conclusion

The Tufts Wireless Lab is developing a Web platform for
globally interconnected 6LoWPANSs, which is made up of
four modules: the back-end module, the front-end module,
the database module, the message translator module. This
Web platform can be connected to the 6LoWPAN platform
over CoAP[10]. The first three modules have been fully im-
plemented and well functioning. The implementation allows
the users to set up the environment according to their specific
constrained devices and also provides the interface for users
to query the data that they want to visualize. The front-end
module was built with BootStrap, JavaScript and JSP. The
back-end module was implemented with Java back-end tech
stack: Java, Spring MVC, Hibernate. The database module
used MySQL. The message translator module is under devel-
opment and will be integrated into the platform in the near
future.

5 References

[1] Top 10 Reasons to Choose MySQL for Next Generation Web Appli-
cations. Technical report, Oracle Coporation, 2016.

[2] M. Castro, A. J. Jara, and A. F. Skarmeta. Enabling end-to-end CoAP-
based communications for the Web of Things. Journal of Network and
Computer Applications, 59:230-236, Jan. 2016.

[3] M. Dooley and T. Rooney. IPv6 DEPLOYMENT AND MANAGE-
MENT. page 29.

[4] R.T.Fielding. in Information and Computer Science. page 180, 2000.

[5] C. Gomez,J. Paradells, C. Bormann, and J. Crowcroft. From 6lowpan
to 6lo: Expanding the Universe of IPv6-Supported Technologies for
the Internet of Things. IEEE Communications Magazine, 55(12):148—
155, Dec. 2017.

[6] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A.
Grieco, G. Boggia, and M. Dohler. Standardized Protocol Stack for
the Internet of (Important) Things. IEEE Communications Surveys &
Tutorials, 15(3):1389-1406, 2013.

[7]1 S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. Lithe:
Lightweight Secure CoAP for the Internet of Things. IEEE Sensors
Journal, 13(10):3711-3720, Oct. 2013.

[8] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). Technical Report RFC7252, RFC Editor, June 2014.

[9] E. Wolff. Spring - A Manager’s Overview. page 15, 2008.

[10] Z. Yang and C. H. Chang. A 6lowpan IoT Platform on the Global
Internet. 2019. To be published.

[11] Z. Yang and C. H. Chang. 6lowpan Overview and Implementations.
2019. To be published.

[12] T. Zeybek and C. H. Chang. An IoT Implementation for Manufactur-
ing using Wi-Fi, 6lowpan, and MQTT. 2019. To be published.

	Introduction
	Design and Implementation
	Overview
	Design
	Implementation

	Results
	Conclusion
	References
	References

