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Abstract
Heart rate is a critical index of well-being. However, es-

timating it accurately in a non-invasive way is a challenge.
Photoplethysmography(PPG)-based estimation enables the
non-invasive tracking of heart rate, but it is vulnerable to
motion-induced noise, which consequently degrades the ac-
curacy of heart rate estimation. In this poster, we present
FitHR - a robust method for accurate heart rate estimation
on wrist-type wearables. Experimental results show that the
average error of FitHR is around 1.65 beats per minute.

1 Introduction
The proliferation of wrist-type wearables enables the non-

invasive PPG-based heart rate tracking. Specifically, a PPG
sensor consists of a LED and a phtoto detector. The light
emitted from LED is absorbed by blood flow when travel-
ing through the tissue. Then the intensity of reflected light is
measured by phto detector to sense periodic blood flow vari-
ation caused by cardiac cycle, which can be used to estimate
heart rate[1].

However, the PPG signal is extremely vulnerable to
motion-induced noise. To improve the accuracy, many re-
searches have been proposed to achieve a noise-free result.
One direction is to utilize adaptive filters by referring accel-
eration signals. However, when the motion is too severe or
irregular, the result might be not very accurate. Another is
based on frequency analysis by using parametric model like
AR model. The problem is that the choice of these parame-
ters is not very easy in a specific situation, since the data is
quite different crossing devices and users.

In this poster, we propose FitHR, a method for accurate
heart rate measurement on wrist-type wearables. The frame-
work is based on some previous works and our observation

that, motion artifact can be suppressed by utilizing some
other sensors like acceleration sensor. Besides, the infor-
mation about heart rate is all hidden in the spectrum of PPG
signals, and we can locate them by some mechanisms. Based
on these considerations, we designed this framework and got
a good solution in test.

2 Design and Implementation
As show in Figure 1, the sensor signals are firstly pre-

processed, which involves the removal of the base line drift
and signal standardization. Then FitHR denoises the com-
taminated PPG signals using the decomposition algorithm
called singular spectrum analysis(SSA). Finally, we use a ro-
bust verification algorithm to check each frame of spectrum
of PPG signals to make sure that the result won’t vary too
much.

Preprocessing: To facilitate the motion artifact reduc-
tion, the pulsatility of sensor signals is extracted and stan-
dardized during the preprocessing. The raw PPG signals
always contain a large direct current(DC) and low fre-
quency(LF) trend components which distort PPG signals
both in time and frequency domain intensely, and thus
needed to be removed. Here we choose wavelet decompo-
sition for it’s low distortion after processing. Specifically,
FitHR exploits wavelet decomposition to break down the sig-
nals into approximation components and detail components,
which represent low- and high-frequency parts in signals re-
spectively. The approximation components are then removed
to eliminate the baseline drift.

Signal Decomposition: To remove the motion artifact
out of the PPG signal, we have to make an assumption that
the noise is additive to the signal. Specifically, the comtam-
inated PPG signals can be decomposed into several compo-
nents as a form of cumulation:

y =
n

∑
i=1

xi +
m

∑
j=1

n j (1)

where y, x and n denote raw signals, PPG signals and noise,
respectively. Notice that the signal parts and noise parts are
separable. FitHR adopts singular spectrum analysis(SSA) to
decompose the original signal into multiple components[2].
For each component we calculate its power spectral den-
sity(PSD) and compare it to the acceleration signals. TheInternational Conference on Embedded Wireless 
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Figure 1. The flowchart of the method.
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Figure 2. Three types of spectra.

component with a spectral pattern, i.e locations of peaks,
similar to acceleration should be removed. Finally, the sum
of remaining components, which could be deemed to be
clean, depicts the PPG signals induced by heart rate.

Spectrum Verification: Spectrum verification is neces-
sary since the noise can not be removed completely and the
signal is not reliably. The final target of this stage and the
whole framework is to output a series of time-related heart
rate values, so we cut the signal frame by frame and thus one
frame is an estimation of a time point. Then we can analyze
the spectrum of each frame and identify whether a peak cor-
responds to a heart rate. Basically, we can distinguish spec-
trum into three types according to their features as shown
in figure 2. Type (1) has a very clear and sparse spectrum,
so it could be regarded as a benchmark. Type (2) has much
more peaks than (1) but the peak corresponding to the heart
rate is still distinguishable. Type (3) offers a totally contam-
inated spectrum which has no information about heart rate.
For type (1), the highest peak can be corresponded to a heart
rate, and for (2), we need some extra information to verify
those peaks. There is an important assumption that the heart
rate won’t make a huge change within two adjacent frames.
So if the benchmark is nearby and meanwhile the current
peak location is in a small range around previous one, then
accept the current frequency point as a result. For (3), we
simply discard them. Finally, we use linear interpolation to
fill the missing data.

3 Experimental Results
We use the real dataset from [3] to verify our methods. In

this dataset, there are signals collected simultaneously from
a wrist type device and a chest type ECG sensing device,
where the wrist type device contains a two channel PPG sen-
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Figure 3. The average absolute error (AAE) of heart rate
for different subjects.

sor and a three axis acceleration sensor. All signals are sam-
pled at a sample rate fs of 125 Hz, and from subjects with age
from 18 to 35 who are asked to do exercise according to a
certain rule. The highly accurate ECG signals were recorded
as ground truth.

With the signals, we set a frame length of 1000 which
means a 8 seconds duration, and a sliding interval of 250.
Thus two successive frames has a 2 seconds time span. To
estimate the spectrum, we use the Welch’s PSD method with
Balckman window function. The n f f t is set to be 4096, so
we can get a granularity of 1.83bpm(60*125/4096) in heart
rate. We compare FitHR with TROIKA[3] in absolute aver-
age error(AAE). The experimental result is shown in figure
3, where we have an AAE of 1.65 in bpm compared to 2.34
of TROIKA.
4 Conclusions

In this poster, we present a new method FitHR for heart
rate estimation. Since the PPG signals are contaminated by
motion artifact, in FitHR, we process PPG signals and ac-
celeration signals together for accurately counting the heart
rate. The framework consists of three steps which are prepro-
cessing, signal decomposition and spectrum verification of
FitHR. The first two steps offer a best-effort cleansed signal
and the last step makes the whole algorithm more robust and
reliable. From experimental results, we can see that FitHR
has a high accuracy and it is robust to interference.
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