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Abstract

Observing the (social) behavior of animals and especially
bats contributes to improved epidemic forecasts and im-
proved protection of rare or endangered species. For this
task, animal-borne sensor nodes are powerful tools since
they allow collecting more information at less influence to
the species compared to traditional radio telemetry. How-
ever, as bats are inherently small vertebrates, a strict weight
limit of 2 g is dictated for attached sensor nodes. To acquire
enough data, the sensor nodes must achieve a runtime of at
least two weeks, which demands a rigorous energy manage-
ment. As the data transmission is the most energy hungry
task, minimizing the energy demand in this segment is a key
to achieve the desired runtimes.

In this paper we present a novel technique that enables
bursts of erasure coded data without sacrificing reliability (in
a wildlife setting). To keep data losses at a minimum, our
approach exploits the characteristics of the erasure channel
and combines encoded packets in smart way. We evaluated
this approach extensively with experiments, field tests and
a theoretical analysis. The results show a decreased energy
demand by 30.177 % to 36.951 % while the data rate is in-
creased up to a factor of 4 at the same time.
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1 Introduction

Observing the behavior of animals is key to understand
their social relations and enables epidemic forecasts [11].
While acquiring the behavioral data, the investigated ani-
mals should be exposed to disturbances as little as possible,
to ensure an unbiased behavior. In our interdisciplinary re-
search unit BATS [8], we focus on bats. Bats are in gen-
eral a species that is hard to observe since they are highly
mobile, active during night time and can often be found in
difficult areas such as rain forests or caves. To minimize
the impact on the individual animal and enable continuous
observation, Wireless Sensor Networks (WSNs) have been
utilized [22, 25, 12, 5]. By using miniaturized nodes, later
called Mobile Nodes (MNs), encounters between individu-
als can be logged and automatically downloaded to a Base
Station (BS) enabling an easy access to the data for the biol-
ogist.

Attaching a MN to small vertebrates such as bats comes
along with tight and strict weight limits of only 2 g for a MN
(including battery) [8]. Furthermore, a runtime of at least 1-
2 weeks is a desired goal to collect enough data for in-depth
insights of the behavior of an observed individual. In order
to achieve the desired runtime replacing batteries (high im-
pact on the individual) or installing larger batteries (not pos-
sible due to weight limit) is not an option, instead a rigorous
power management is necessary. A fair share of the energy
in such scenarios is required for communication between the
MNs but communication becomes even more critical when
the data is downloaded to the BS [23, 1]. We found out, that
communication to a BS can consume a significant part of the
overall energy budget, depending on the behavior of the bat
and group dynamics. In our project, new hardware is de-
veloped which acquires more sensor data like acceleration,
magnet field and air-pressure at a high rate. Additionally, 60
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bats should be supported to study big groups of bats, which
also increases the amount of data. Together, this puts a high
pressure on reliable, fast and energy aware data transmission
since an increase of data of up to 150 times is expected. With
this expected increase of data, more than 20 % of stored en-
ergy is spend for data transmission to a BS, which in turn
decreases the runtime by two days. Therefore, optimizing
the data transmission is attractive to prolong the runtime.

Data download to a BS is particular challenging, as a
bat can reach high median velocities of up to 14.3m/s
[13] whereas the BS is stationary.  Relying on an
acknowledgment-based protocol would incur a high number
of retransmissions due to missed acknowledgment packets.
Therefore, a unidirectional protocol has been proposed by
Mutschlechner et al. [7], which saves energy and sends data
in an opportunistic way. As packet loss rates are high, an
Erasure Code (EC) is used, to keep data reception rates high
at moderate overhead in terms of energy. This is achieved
by sending original data and redundant packets, where only
a subset of send data must be received to recover all data.
However, an EC is only effective if packet loss does not oc-
cur in bursts and failures are distributed uniformly.

In order to increase energy efficiency batching of data is
a common technique [10, 6, 4] and can decrease the energy
demand significantly. However, increasing payload size of a
(wirelessly) transmitted packet also increases the likelihood
of a corrupted packet. Also sending multiple packets at once
renders the EC useless as errors inside the header also cause
the loss of other packets inside the containing frame and as
a consequence higher data losses. This behavior is dictated
by the manufacturer of the transceiver. Using software de-
fined radios are able to handle bit errors inside frame headers
which incurs a dramatically increased energy demand result-
ing in short run times.

In this paper, we combine both techniques, batching and
EC to gain higher energy efficiency compared to the ap-
proach presented by Mutschlechner et al. while not sacrifice
data reception rates. We apply a novel technique, we call
bursting in which multiple packets are scrambled in a smart
way to achieve independence of multiple erasure-coded data.
Besides an in-depth explanation on how our approach works,
we answer the following questions in this paper:

1. How to model packet and data losses in an efficient and
realistic way for our scenario?

2. How does batching affect reliability and data reception
rate when used in combination with EC?

3. How much energy can be saved with both approaches
and compared to the method, proposed by Mutschlech-
ner et al.?

To answer the first question, we modeled packet losses
and data losses with the aid of Markov models. We used
a simulator which bases on those and compared the results
against real world deployments. In order to answer the
second question, we conducted multiple simulations which
shows that batching in a naive way receives only 20 % of
send packets. The state of the art and the improved ap-
proach, however, receives 55 % of send packets at the same
bit error rate of 0.45 %. This is amplified due to the ECs as

we discovered that the data reception rate is only 20 % for
the naive and 68 % for our approach. We modeled the en-
ergy demand energy demand for sending data to a BS, thus
answering the third question. Our energy model is, again,
compared to measurements with a high precision source me-
ter and shows only negligible errors of up to 4.57 %. With
this model, we analyzed potential energy savings up to 37 %
for our approach compared to the state of the art.

The paper is organized as following, in Section 2 the
background and normal operation of our system is presented.
Furthermore, the energy demands for our application is dis-
cussed in Section 3. Section 4 related systems and protocols
are discussed. As we focus on data transmissions to a BS,
the communication scheme, frame layout and erasure cod-
ing is explained in detail in Section 5. For batching data, the
naive and our approach is presented and compared in Sec-
tion 6. As packet losses are not necessarily translate directly
to data losses due to the erasure code, used models and the
results of our simulation is discussed in Section 7. In Sec-
tion 8, the energy demand and energy savings are analyzed
in detail. A realistic estimate of bit errors is performed in
Section 9. Based on the bit error rate, the naive batching and
bursting are compared in Section 10. A practical evaluation
of our approach is presented in Section 11. In order to get
a realistic estimate on energy savings, a real deployment has
been performed and is explained in Section 12 and Section
13 concludes our paper.

2 Background on Bats Tracking

The goal of our work is to track bats as they form the
second largest group of mammals with more than 1000
species.  Additionally, the majority is living in groups
whereas the group sizes and social systems vary depending
on the species. Even though detailed knowledge on forag-
ing strategies is scarce and evidence is increasing that so-
cial interactions contribute to foraging success. This alone
makes (social) behavior studies attractive but also last inci-
dents showed bats, which were involved in spillovers to hu-
mans and livestock [9]. Developing conservation strategies
requires knowledge on the interdependencies and dynam-
ics in bat populations. Also deriving models for infectious
diseases from this data is key to prevent future outbreaks.
Therefore, bats are one of the best animals for testing next
generation wildlife tracking systems.

Tracking bats rises new challenges, as the MN is not al-
lowed to exceed 10 % of the body weight of the observed
animal [2]. In Germany, the largest bat species exhibit an
average body weight of 20 g, resulting in a weight limit of
2 g for our MN. The used hardware, weights in sum 1.3 g in-
cluding battery, housing and circuitry. 0.3 g is spend for the
battery which provides an energy budget of 22 mAh which
translates to 0.08 Wh. The minimum runtime of our nodes is
10-14 days, which leaves us approximately 0.01 Wh per day
at maximum and requires sophisticated energy saving mech-
anisms.

The system or in particular the software needs to be able
to log (social) behavioral information automatically. As the
MN is attached to the bat itself, logging encounters be-
tween individuals becomes feasible. The required data which



Table 1. Configurations and settings for the field test
in Berlin. Additionally, average number of parallel en-
counter and data transmissions per hour and node.

Description Formular Value
Period beaconing Tuns 2/10s
Day night ratio Rpay 0.33
Period base station lookup  Tpsp 2s
Average parallel encounter  NygerinG 2.05
Data transmission per hour  Npackgrs 234
Standby Estppy 13.173 u J
Beaconing (TX) EyMNB TX 271.663 uJ
Beaconing (RX) EymnB Rx 51.282 ul
Base station lookup Epsp Rx 51282 ulJ
Data transmission EMEETING.TX 47.624 uJ

is necessary for interpretations includes, besides who met
whom also the time and duration of the encounter. This data
is derived automatically by our software and stored locally
on the system memory. Afterwards, data is forwarded to a
BS automatically. This keeps disturbances to the observed
animals as low as possible, as data can be collected on day
time when the bats are resting in their roosts. Doing this way
also ensures an eased use for the biologist, as finding and
collecting fallen off nodes becomes unnecessary. Therefore,
data is available early after deployment and fast reactions to
changes or anomalies during a field test is possible.

In previous deployments with small group sizes of up to
15 individuals a runtime of two weeks have been achieved
[5]. These field tests showed that available memory was al-
ready exhausted by meetings, leading to data losses. Due
to an increased number of bats, also more data must be
stored and downloaded to a BS. In addition, the next gen-
eration of nodes collects more accessory data contributing to
a higher amount of data to be downloaded. Therefore, in-
side roosts a high communication effort must be considered
for downloading data, as more encounters between individu-
als will occur. This is in particular interesting, as decreasing
communication effort also decreases likelihood of collisions
and might lead to increased successful data reception. This
makes an increased data rate even more interesting, to keep
the memory usage as low as possible. However, an increased
data rate should not lower communication reliability or in-
crease energy demand significantly.

3 Application Energy Demand

Determining the runtime of our application is done by us-
ing a model, which is based on the results of previous field
tests. Our model uses data like the average number of paral-
lel encounter or average data transmission to a BS to calcu-
late an average current draw. As the battery capacity is given
in mAh, the current draw directly translates to the expected
runtime. The core parameters of our model are depicted in
Table 1 and are explained next. In order to save energy, we
acquire data on day time with lower granularity as we expect
low frequent changes when the bats are resting. Therefore,
our model differentiates between day and night times. In or-
der to initiate a data download, a BS look up is performed

Table 2. Average current consumption per task/action.
With these values, the average runtime can be estimated.

Description Average current draw  Percentage
Standby 1.528 uA 1.804 %
Beaconing (TX) 31.513 uA 37.203 %
Beaconing (RX) 38.687 uA 45.674 %
Base station lookup 12.820 uA 15.136 %
Data transmission 0.155 uA 0.183 %
Sum 84.703 uA 100 %

to detect the presence of a BS. For the encounter detection,
the average number of parallel encounters mainly drives the
energy demand for this task. This is because, the receiver
must be turned on more frequently, if more encounters are
happening. As the calculation of the energy demand is done
the same way for all values, we only show the computation
of the energy demand for sending a beacon in detail. In our
equation the operating voltage of 2.1 V is used and computes
the average current draw of sending a beacon over the whole
day:

I _ Eunp_rx ,Rpar | 1 —Rpay
Beaconing — U . TMNB TMNB
271.663uJ ,0.33 0.67
= . =31.513
v 2 oy HA

The results of our model are depicted in Table 2 and is ex-
plained in the following. With the average current draw
of 84.703 uA and a battery capacity of 22 mAh, a runtime
of 259.73 h can be expected. The most energy is spent for
transmitting and receiving beacons as the results show. Data
transmission consumes only 0.185 % of the overall energy
but becomes significant once more sensory data is collected
about the bats. In order to optimize the energy demand, our
applied optimizations of the most energy demanding actions
should be explained in the following. The beaconing uses a
wake-up receiver to operate the on-board receiver only for
short periods and on-demand. Therefore, the on-board re-
ceiver, is active only for short periods. As the pattern for the
wake-up receiver cannot be changed due to a dictated frame
format, no further optimizations are possible. The same ap-
plies to the base station look up, which is already nearby
physical limits. This is, because the base station beacons
are sent in a high rate (each millisecond) and transmitting a
beacon requires 900 us. Sending at such high rates allows
the mobile node to activate the on-board receiver only for a
short time (1.2 ms), which in turn saves energy.

The next generation nodes, however, are producing data
in a high rate. For instance the magnet field sensor and the
acceleration sensor are producing 16 Bit values for each di-
mension. Additionally, an air-pressure sensor is used to de-
termine the altitude of the bat, which is encoded in a 32 Bit
value. This, in sum will generate a packet per second, which
increases the packet rate per hour to 3623.4. In this scenario
an average current draw of 108.515 uA results and shows
a significantly increased energy demand for data transmis-
sion. The increased data transmission decreases the runtime
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to 202.736 hours. Our model shows that sending data to a
BS consumes 22.076 % of available energy on the next gen-
eration nodes. As the bat to bat communication and sending
base station beacons are already optimized to the maximum,
only optimizing the data transmission remains.

4 Related Work

In the field of wildlife tracking various implementation
and systems are available, which are presented in Subsection
4.1. Next, energy efficient protocols, especially in combina-
tion with erasure-coded data are discussed (Subsection 4.2).

4.1 Wildlife Tracking Systems

Ossi et al. [18] gives an overview of proximity sensor and
Global Positioning System (GPS)-based telemetry systems.
As stated out before, weight is besides runtime one of the
most important properties for our system.

The Camazotz platform [22] contains several sensors to
collect accessory data on-board. It utilizes GPS in order to
get localization and movement data of the animal. The more
of hardware also comes along with increased weight and en-
ergy demand. For instance, a Camazotz node weights 30 g
which exceeds our requirement of 2 g. In order to prolong
the runtime of the node, as GPS is an high energy demand-
ing device, solar panels and duty cycle adaptions are used.
Using solar panels, however, is not an option for our system,
as our aim is to track night active animals which are hiding
in a roost on day time.

The closest work to our system is EncounterNet [12],
which belongs to the class of proximity sensors and also col-
lects encounters between individuals and does not rely on
GPS or solar panels. The nodes weights the same (1.3 g)
as our nodes and come with dramatically decreased runtime
of less than one day and conflicts with our runtime require-
ment. This is important as longer observation times gives
deeper insights into the plasticity of individual behavior and
creates more representative data sets.

4.2 Protocols and Optimizations

In order to ensure a reliable communication while keep-
ing energy demand low, several works have been published
and are introduced in the following. Mutschlechner et al.
[7, 14, 15] worked inside the BATS project on a commu-
nication scheme for transmitting data to BSs in an energy
efficient way. As a basis, simulations were used, which
also contain a movement model of bats to test their ap-
proach. They found out, that an acknowledgement-based
protocol wastes energy as unnecessary retransmissions were
performed. Therefore, they proposed a protocol, which
sends data in an opportunistic way without back-channel. In
order to keep data reception rates high, they propose the use
of EC. Our presented approach builds on-top this approach
and is compared to the work of Mutschlechner et al. There-
fore, the protocol is discussed in detail in Subsection 5.1.

ECs causing high computational effort as we focus on op-
timal ECs based on a cauchy matrix. Blomer et al. [3] in-
troduces an approach to transform such cauchy matrix into
a Galois field which allows encoding and decoding with
XOR’s. Therefore, such algorithms becomes more efficient
even for less powerful devices like microcontrollers. We use

the ZFec algorithm, which shows good overall performance,
presented in the work by Plank et al. [19].

Minimizing overheads by using batching in WSNs have
been discussed before in the work by Xu Ning et al. [16].
They discuss the problem of adding delays to the data trans-
mission and also how batching can improve energy effi-
ciency. Albeit, no estimates were given on how much energy
could be saved or how to use the approach in combination
with EC. As our system inherently has latency due to the
behavior of the animals, a delayed message does not affect
our system at all. Due to the communication scheme, energy
awareness and reliability is more important to us and no or
less information about these two parameters are given in the
related work.

5 Basics on Data Transmission

Keeping disturbances to animals as low as possible is one
of our goals. Therefore, BS are placed in promising areas to
download data from MNs automatically. Thus, data can be
retrieved on day time while the bats are resting.

In order to indicate presence of a BS to a MN each BS
sends out a so-called Base Station Beacon (BSB). The BSBs
are sent in a high rate (each ms) and allow to activate the ra-
dio on the MN for short times. A BSB contains information
of the current configuration, cycle-timer for synchronization
purposes and an area information. Latter is used to identify
where a BS is placed and to alter the communication scheme
to the requirements of the area. In sum, two different kind
of communication schemes have been identified and are de-
scribed in the following.

The first one is the roost, in which we have to assume a
high communication effort. Therefore, collisions might oc-
cur, resulting in data losses. In order to prevent these col-
lisions, we implemented a Time Division Multiplex Access
(TDMA) alike communication scheme. Therefore, a syn-
chronization is necessary, which synchronizes the MN to the
BS. The BS sends out a BSB which indicates when a cycle
of 2s ends in a granularity of 1 ms. This data is used to syn-
chronize the MN to a BS and to determine when the time slot
for sending starts. Afterwards, when the time slot is reached,
the data transmission of one packet is initiated.

Additionally, a second communication scheme is required
if a bat is flying by a BS. This is the case if a BS is placed
in promising foraging sites. Using a TDMA would incur a
delay to transmit data which leads to a higher packet loss as a
bat might have left the communication range already. There-
fore, using a TDMA alike communication scheme becomes
infeasible. In such areas, we can expect only small group
sizes which allows us to send data directly after a BSB is
received. Therefore, we achieve the smallest possible delay
and an increased likelihood of a bat inside the communica-
tion range.

Both schemes are implemented in our application and
a switch to the appropriate scheme is performed automat-
ically. However, both schemes have in common that they
are time critical. Therefore, low delays for sending data are
desired to minimize possible conflicts with both communi-
cation schemes.
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Figure 1. Schematic principle of the erasure codes with
data losses, which can be sustained due to the error cor-
rection capability of an erasure-code

5.1 Erasure Coding

Our approach builds on top of the communication scheme
proposed by Mutschlechner et al. [7, 14, 15] as the scenarios
and assumptions also apply to our system. The work from
Mutschlechner et al. shows that using acknowledgments
would cause a high rate message retransmissions [15]. They
found out, that most of time data is received successfully at
the BS, but acknowledgements in return are not received by
the MN. Therefore, energy is wasted due to unnecessary re-
transmission of data. To circumvent this problem, data is
sent without any acknowledgments as kind of a data shower
and losses of data cannot be detected on the MN. Therefore,
an EC is used to increase the reliability of the data transmis-
sion.

The EC adds redundancy to the transmitted data to in-
crease the reliability. In our scenario, we use k = 2 origi-
nal data which are encoded to n = 4 packets (later on called
chunks), as depicted in Figure 1. Due to data losses, some
packets may not be received by a BS. However, if at least k
packets from a chunk are received, all data can be restored.
Therefore, EC gains less data losses compared to sending
data twice, as it does no matter which packet has been re-
ceived. Furthermore, the first k packets contain the original
data without any encoding. Thus, using those packets can be
done if only one packet is received and becomes important
in our protocol, as we make use of this property later on.

5.2 Frame Layout

In the concept, an erasure-channel is assumed which
means a packet is received without any errors or no packet at
all. As a consequence, each packet is sent in its own frame,
which is depicted in Figure 2. In our implementation of the
communication scheme, each frame consists of in sum six
different data fields. The first are the preamble and the sync
word, which are used to synchronize the receiver to the trans-
mitter. Additionally, a packet length field is used to support
different frame / packet lengths. These three data fields are
later on called frame header and are evaluated by the radio
hardware itself. Despite the frame header, a packet follows
and consists of three data fields. In order to reassemble pack-
ets in the right order, as data might be transmitted among
different BSs, a packet counter is used. This data field is fol-
lowed by the payload itself, which contains the EC encoded
data to be sent. Besides the payload, a CRC is computed
over the packet counter and the payload to ensure an erasure
channel.

Frame-Header Packet
Preamble[Sync-Word[ Length [Packet-Cnt[Payload] CRC
32Bit | 16Bit | 8Bt | 16 Bit | 64 Bit |16 Bit

Figure 2. Packet scheme for data transmission according
to Mutschlechner et al. Due to the Cyclic Redundancy
Check (CRC) an erasure channel is ensured if a bit error
occur.

6 Theoretical Evaluation on Packet Losses

Frame Layout with batching before coding took place

Frame Packet
Header [Packet-Cnt[Payload] CRC
56 Bit 16 Bit |n*64 Bit|l6 Bit
Frame Layout with batching after coding took place
Frame Packet #1 Packet #n
Header [Packet-Cnt[Payload] CRC |, , a [Packet-Cnt[Payload] CRC
56 Bit 16 Bit__| 64 Bit |16 BiY 16 Bit__| 64 Bit |16 Bit

Figure 3. Packet layout, on naive batching Vs. improved
batching.

As stated out before, decreasing energy demand while
also keeping data losses low is the main goal of our pro-
tocol. In order to rate our solution, we assume a constant,
independent Bit Error Rate (BER) p,yror pir. With this BER,
we can compute the conditional probability to all bits trans-
ferred successfully. This results in the following equation:

Pgood(n) = (1 _perror_bit)n (1)

where 7 refers to the number of bits to be transmitted. Fur-
thermore, we define the variable r for the burst rate, which
indicates how many payloads or packets are batched inside
a frame. The burst rate » = 1 generates in both approaches
(naive and improved) the same packet layout as proposed by
Mutschlechner et. al. and is, therefore, used as ground truth.
At the beginning, we can consider to batch data before and
after the EC took place. Both variants will alter the error
probability and also energy efficiency as a different amount
of data must be transferred and is discussed in the following.

6.1 Naive Approach

The naive way batches all data before the EC took place.
Therefore, the payload is increased and a CRC is computed
over the whole payload and packet counter. Doing this way,
keeps overheads caused by CRC and packet counter at a min-
imum, which is depicted in Figure 3. To compute the packet
error rate, we need to calculate the conditional probability
for sending the frame header successfully and also for the
payload including packet counter and CRC. In our imple-
mentation, we use a 16 bit CRC and a 16 bit packet counter
which must be added to the payload of 64 bit.

Pgood_packet_naive (P) = Pgood(56) : Pgood(32 +r- 64) 2)

6.2 Bursting: Improved Approach

Our bursting approach, performs batching after the EC
took place. This opens the opportunity, to compute multiple
CRCs over each payload and packet counter. Therefore, bit
errors of one packet does not affect other packet inside the
frame. As the length for each computed CRC is independent

63



64

Chunk 1

Chunk 2
Packet 5

Packet 1

Packet 4 Packet 8

Burst 1 Burst 4

Packet 4 Packet 5 Packet 1 Packet 8

Figure 4. Packet layout, for batching after the EC and
requires for each packet its own packet counter and CRC

of the bust length, the error probability for one undamaged
payload stays the same, as the following equation shows:

Pgood_packez_improved (P) = Pgood(56) : Pgood (96) (3)

This would result into a higher reliability which comes at a
price of more data to be sent, which decreases energy effi-
ciency.

Since the EC produces four packets, sending those pack-
ets in one frame would render the EC useless, refer to Figure
1. This is because the frame header is a single point of fail-
ure to lose all packets, resulting in data loss. Distributing
packets over multiple frames would gain higher probability
to receive a packet of a chunk. Therefore, a scrambling must
be done to ensure that each packet is independent from each
other in one frame, which is later on called burst. In our ap-
proach, a packet from multiple chunks are used to be trans-
mitted in one burst. Depending on the available chunks c,
we build bursts with a rate of r = ¢ packets. As our approach
is applicable on other erasure code rate we assume a con-
figuration described in Subsection 5.1 later on. The scheme
for r =2, is depicted in Figure 4 and takes into account that
the first two packets contain original data which does not re-
quire any decoding phase. Therefore, packet 1, 2, 5 and 6 are
distributed among all available bursts and placed at the be-
ginning of a frame header as synchronization errors are less
likely directly after the frame header. The remaining packets
are also distributed in a way, that each burst contains pack-
ets from different chunks. However, due to the fixed number
of bursts, not all original data packets can be sent in an in-
dividual burst. Therefore, at higher burst rates (r >= 3) a
burst can contain more than one original packet. Besides
this scheme, we also adapt the burst rates accordingly to the
amount of available data when a BS comes into receiving
range. This causes minimal latency, as the data is (naturally)
accumulated while the animals are foraging or absent from
the roosts. Additionally, computing chunks in advance is
possible. Therefore, delays are kept minimal, which lowers
influences to our TDMA alike communication scheme and
effectively increases data rate up to a factor of four.

6.3 Comparison of Packet Losses

We solved both equations for different BERs and is de-
picted in Figure 5. For a burst rate r = 1 the naive and the
bursting approach shows the same packet error rate, as the
same frame layout is send to a BS. However, at higher burst
rates r > 1 the packet losses are almost similar for low and
high BER values. In the range of 0.2% up to 2% BER, the
naive approach shows significantly higher packet losses. At

0.45% BER the naive approach at a burst length of r = 4 re-
ceives only 21.2% of all packets, whereas the improved ap-
proach receives 50.38% of all packets. This is caused by the
higher amount of data per CRC which increases likelihood
of a damaged frame. Therefore almost the double amount of
packets can be received with our approach and stays compa-
rable to the state of the art » = 1. However, due to the EC, the
packet losses might be compensated and should be discussed
in the next section to rate both approaches on data losses.

7 Theoretical Evaluation on Data Losses

Due to the use of batching, we expect higher data losses
as the frame header poses a single point of failure for multi-
ple packets. We analyzed the packet losses so far, however,
due to the EC a lower data loss might occur, which makes
modeling of the error correcting capabilities necessary. In
our application we used k = 2,n = 4 to keep the overhead in
terms of memory and communication effort low. Therefore,
out of four packets (chunk) at least two have to be received
in order decode data successfully, i.e., no data loss occurs.
However, our approach is not limited to those values in gen-
eral and can be used with other code rates which may require
an adapted distribution of data among bursts.

We chose Hidden Markov Models (HMMs) as they have
been proven to be very accurate to model packet losses in
networks [24]. With these models, we model the packet
losses depending on a BER which is discussed in Subsec-
tion 7.1. In Subsection 7.2 we compare both, the naive and
our approach in terms of data losses.

7.1 Packet Error Model and Simulation

In the following, we will showcase the error model by us-
ing Markov models and derive a formula to estimate the er-
ror rate for each packet. We model a data transmission to be
received successfully with conditional probabilities without
any erroneous bits as defined in Equation 1. Furthermore, we
define the probability for a non successful transmission to:

Prail (n)=1 _Pgood(”) €]

As the number of bits for the frame header and payload dif-
fer, we calculate the probability of a wrong header to P, =
Ptait(Iheader) and of a wrong payload to P, = Praii(Ipayicad)-
By using this values, we can model the probability of an er-
roneous and non-erroneous packet with a HMM. Figure 6
shows the HMM to receive a packet consisting of a header
and a payload. The circles are indicating the state, whereas
boxes indicates the emission. (T) is the state to send a header
which can fail with the probability P, which in turn is indi-
cated by the emission as no packet is received. Further-
more, with the probability 1 — P, we can reach the state for
sending payload @p. Also in this state, a corrupted bit with
the probability P, would cause a loss of the whole packet
and the emission is triggered. However, if the payload
contains no bit failures the emission is triggered. From
this model, we can derive the equations for a failed packet
Py, and a successfully received packet Pyooq.

Pfail_packet :Ph+(1_Ph)'PP o)
Pgood_packet = (1 _Ph) . (1 _PP) (6)
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Figure 6. HMM to model a packet-loss with a conditional
probability for sending payloads

With our given lengths, of 56 and 96 Bits respectively and a
BER P, o_pir We can compute the values for P, = Py,;1(96)
and Ph = Pfai1(56).

For our naive approach, the length of the payload must
be simply increased. Thus the equations for P, = Pr,i;(32 +
64 - r) for r = 1...4 must be used. However, in case of the
bursting (improved) approach, the models are getting more
complicated and should be discussed exemplarily for r = 2.
The corresponding HMM is depicted in Figure 6 on the right
side. As multiple packets can be received or lost in sum
three states are possible. occurs if no payloads have
been received successfully or if the frame header was cor-
rupted. Furthermore, if the frame header has been received
successfully, is raised, if no bit failure occurs during
the transmission of the first payload. Independently to the
first payload, is reached if no failure inside the sec-
ond payload occurs. The models for higher burst lengths, are
modeled the same way but are not depicted as they require
up to 17 states.

Our simulation uses those models, which are walked
through similar to a Monte-Carlo simulation. Therefore, in
each state of the HMM we generate a random number which
is mapped to the the probability to determine which state
should be entered next. If an emission is available, the emis-
sion is triggered, in our case for each chunk in a burst a
counter is increased by one. With this counter values, we can

determine how many packets per chunk have been received,
which is necessary to determine whether a data loss occurred
or not. If at least two packets have per chunk has been re-
ceived, no packet loss occurs and a global data counter is
increased by 2 (as two data points could be restored). As in
sum four bursts are send, we re-execute the model four times
until the chunk counters are evicted. In order to get statis-
tically significant data, this procedure is repeated 100,000
times to keep variations low.

7.2 Comparison on Data Losses

In order to ensure that our modeling and assumptions
are correct, we compared our simulation against the results
from Mutschlechner et al. [15]. In the paper we found a
packet loss rate of 57 % which can be translated to a BER
of 0.38 % and a data reception rate of 79 %. However, our
models show a slightly lower packet loss rate of 56.26 % (er-
ror: 1.31 %) and a slightly lower data reception rate of 77 %
(error: 2.53 %). The differences between both models are
most likely due to the frame header, as no information can
be obtained in the work by Mutschlechner et al. Addition-
ally, simulations inherently have noises in form of numerical
noise which also explain the differences. However, as the
error is less than 3 % we ignore the error as our simulation
produces comparable results.

In order to rate the naive and improved approach, we
swept through multiple BERs. For the improved approach,
the data losses are almost the same for every burst rate, as
the diagram in Figure 5 already supposes. The reason is, that
one bit failure does not affect the other packet inside a burst.
Compared to the state of the art (burst rate » = 1) an increased
data loss of up to 2% for the burst rate r = 4 at 0.67 % BER
can be observed. The naive approach, however, shows a very
different behavior. With increasing burst rate, the data losses
are also increasing. This results into much higher data losses
at a burst rate r = 4 with data receptions of only 20 %. Com-
pared to the state of the art, which receives 68 % at a BER of
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0.45 % a 3.4 times higher data loss occurs.

Comparing the improved and the naive approach with the
highest burst rate r = 4 the improved one outperforms the
naive approach by a factor of 3.3 in maximum. For very low
and very high BERs values, both approaches show almost
the same data losses. Therefore, it is necessary to determine
realistic BER for our application, which is discussed in Sec-
tion 9. As more data must be transmitted for the bursting
approach, also the energy demand must be evaluated which
is presented in Section 8.

8 Energy Savings

In order to determine the energy savings capability of both
solutions, we firstly calculate the energy demand for sending
packets including overheads for starting and initializing the
radio. We used values given from the data sheet [21]. In or-
der to determine the energy demand for sending a packet, we
have to express the energy demand for starting the micro-
controller Ey,,;, copying data to the radio E,,), and send-
ing the data itself. The start itself requires a startup time of
Tem2—active = 10.7us. As no current consumption is given
for starting up the microcontroller (Iga2—acrive), We used the
average from the current consumption in EM2 Ig» = 3.3uA
and I,crive = 6.288mA. However, measuring the energy de-
mand is almost impossible due to too small currents and no
possibility to toggle a pin during this phase. As our design
runs at a voltage of 2.1V, the energy demand for starting the
microcontroller can be computed to:

Estare = IEM2 s active * TEM2 s active - V = 70.68nJ @)

Copying data and starting the radio is assumed to last
Teopy(r) = Tradio_start + Tradio_copy(r). We measured the times
for starting the radio T;44ip_starr = 0.8 ms and also for copying
data depending on the burst rate r to the radio Tyugio_copy(r) =
0.4 ms - r via toggling a bit on the microcontroller. With these
values, the energy demand can be expressed to:

Ecopy(r) = lgctive * Tcopy(r) -V )

Sending r packets, the time for sending is computed with a
given length of Np4y04a Tor the payload length and Ny for
the length of the frame header. Furthermore, our radio trans-
mits data with a fixed data rate of f;. In the case of the naive
approach, the time for sending a packet can be expressed to:

Npayload -r+32+Npy
s

_ 64Bit-r+32+56Bit

~ 300,0008Bit/s

Please note, that the naive approach only copies the payload
plus additional 32 Bits for CRC and packet counter. The
equation for the improved approach, is slightly different as
only the size of the packet Npucker = Npayloaa + 32 changes
and can be expressed to:

Esend_naive(r ) = Lsend

V- Isend (9)

Npacker - ¥+ Nru
Esend?impmved(r) = phoet TR 7 -V Liona
s
~ 96Bit - r-+56Bit

VI 10
300,0008Bit /s sena (10)

Table 3. Energy demand for sending data with the naive
and improved approach. From this table, it can be ob-
served that the naive approach can save up to 20 % more
energy.

r Energy Energy Difference
Epaive(r) Eimpmved (N)

1 47.62u) 47.62 ) 0%

2 66.25u) 72.93 uJ 10.075 %

3 84.89 uJ 98.24 uJ 15.73 %

4 103.52u] 123.55u) 19.34 %

Additionally, the current draw for sending a packet cannot
be derived from the data sheet. Therefore, we measured the
current draw to I, = 29.5mA with our parameters and the
overall energy demand for both approaches can be computed
to:

Y
(12)

Enaive(r) = Ecopy(r) + Estare + Esend_naive(r)
Eimproved(r) = Ecopy(r) + Estarr + E.fel1d7impraved(’")

Computing the energy demand for the state of the art is easy,
as both approaches are falling back to the state of the art
at r = 1. Therefore, for sending one packet the following
equation can be used to compute the energy demand:

Ereference = Enaive ( 1 ) = Eimproved ( 1 ) = Estatefoffthe?art
13)

8.1 Comparison of Energy Demands

For both approaches, the energy demand for different
burst length are computed and depicted in Table 3. As stated
out before, the naive approach consumes less energy com-
pared to the improved one. The surprising result, however,
at a burst rate of » = 4 the bursting approach sends 384 bits
whereas the naive approach only 288 bits as payload. Even
with an overhead of 96 Bits or 33 % the higher energy de-
mand is at most 19.34 %. The smaller increase of energy can
be explained due to the overhead for sending frame header,
copying data and starting the microcontroller. In order to rate
the energy saving capabilities compared the state of the art,
we compute the energy per packet and is depicted in Table
4. For higher burst rates, more energy can be saved as over-
heads like frame header or starting the microcontroller are
constant and distributed among multiple payloads/packets.
With the naive approach up to 45.65 % of energy can be
saved compared to the state of the art. In contrary the burst-
ing approach saves up to 35.14 % per packet. This shows,
that both approaches can save a significant amount of energy
compared to the state of the art.

8.2 Theory Versus Measurements

In order to keep uncertainties as low as possible, the over-
all energy demand have been measured with a source me-
ter from Agilent (DC Power Analyzer N6705A). The results
are depicted in Table 5 and shows the measurement of the
improved approach. As explained before, measuring cor-
rect energy demand is time consuming, as multiple measure-
ments must be made to keep noise caused by the internal
analog-digital converters as low as possible.
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Table 4. Energy demand for sending one packet/payload
and the relative energy demand compared to the base line
(r=1).

r Energy Percentage Energy Percentage
Enaive(N) /N Einprovea(N) /N

1 47.62u 100 % 47.62u) 100 %

2 331254 69.57 % 36.5ul 76.65 %

3 2834 59.43 % 32.75u) 68.77 %

4  2588ul 54.35% 30.89 uJ 64.86 %

Table 5. Overview of the measured energy demand for
sending packets and the relative energy demand com-
pared to the theoretical estimate and to the base line
(r=1).

r Energy Energy Percentage Difference to

Eqena(N) Eqend(N)/N Estimate
1 49.799 uJ  49.799 uJ 100 % 4.57 %
2 75172y 37.586u] 75.476 % 3.07 %
3 100.231u)  33.410pd 67.091 % 2.029 %
4 125.590u) 31.398u] 63.049 % 1.66 %

Furthermore, the sourcemeter also might add an absolute
errors due to component variations.

Table 5 shows that our estimates are slightly too small
compared to the measurements. The error ranges up to
4.57 % and is most likely caused by measurement errors like
determining start/end of sending, component variations and
round-off errors. Therefore, for burst rates up to r = 4 our
equations approximates the energy demand correctly and the
previous discussion can be used for further analysis.
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Figure 8. Path loss model for a mid dense forest com-
pared to the free space path loss and a ITU channel
model.

9 Estimation of Realistic Bit Error Rates

The naive and improved approach generate similar data
losses at small BERs. Therefore, understanding errors in the
wireless data transmission from the MN to the BS, basic ef-
fects of the wireless radio propagation channel are manda-
tory and introduced in this section. The most basic prop-
erty of the wireless channel is the bulk path loss, cf, Figure
8. The path loss attenuates the signal power received at the
BS. This limits the Signal Noise Ratio (SNR) at the receiver.
Thus, path loss has an impact on the recovery of the emit-
ted data bits. Pass-loss L between transmitter and receiver is
depending on the distance d and is given by:

4
L=E-10-1g(d)+20-1g (nfc) +c,
C

where E denotes the path loss exponent, d the distance in
meters, f. denotes the carrier frequency in GHz, ¢ denotes
the speed of light and C denotes a constant offset. The pa-
rameter £ and C depend on the environment. In Nowak at
al. [17] these parameters are derived for a mid dense forest
in Germany with £ = 3.2 and C = 11. Furthermore, own
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investigations and measurements have shown similar results.
In a multipath-free environment an Additive White Gaussian
Noise (awgn), e.g. thermal noise at the receiving node, is
added to the captured signal. The BER for the considered
signal is expressed by [20]:
1 E,

P, = 2erfc No
where E}, is the energy per bit, Ny is the thermal noise power
spectral density and erfc is the complementary error func-
tion.

Unfortunately, this theoretical BER will represent a far to
low BER value in realistic scenarios. Besides thermal noise
arising in the receiver, other more dominant effects have to
be considered. A significant increase of the BER at the BS
is caused by in-band interference. The utilized frequency
bands, 868,/915MHz, are free to be used by anybody. Hence,
systems are occupying the band and causing in-band inter-
ference. Furthermore the TX and RX at the base station are
not synchronized and the BSB are sent with a high rate to
keep the receiving energy consumption at the MN at a de-
cent level. This full duplex transmission with a frequency
separation of 5.5MHz leads to further in-band interference
at the RX path caused by the out-of-band radiation of the
TX path. To keep the out-of-band emission at a minimum,
GMSK modulation is used with BT=1.0. However, still the
TX is transmitting in the vicinity of the receive antenna with
a power Pry = 13dBm. TX and RX antenna decoupling has
been measured to be 22dB. In conclusion, there is strong
interference from the BS TX path. This results in an BER
that is by orders of magnitude larger than for a AWGN chan-
nel. The adjacent channel power, i.e. out-of-band power
of the interfering transmitter, have been measured in the
laboratory. Average noise density in the adjacent band is
—126.4dBm/Hz. With decoupling of TX and RX this re-
sults in a Np = —148.4dBm/Hz, cf. Ny = —174.0dBm/Hz
for thermal noise.

Another significant increase of the BER at the BS is
caused by the arbitrary orientation of the MN linear polar-
ized antenna, due to the unknown flight orientation of the
bat. TX and RX antennas at the BS are cross-polarized for
better decoupling. However, both of them are linear polar-
ized. Hence, the wireless channel is not reciprocal. There-
fore, fading of the signal due to shadowing and multipath
will vary on the channel from the MN to the BS and in the
opposite direction. This effect will additionally lead to fad-
ing of the channel even when the transmission from the MN
to the BS are in the coherence time of the channel after the
BSB is received. Simulations have shown that this increases
the BER significantly. However, due to the unknown flight
behavior and orientation there is hardly no quantitative eval-
uation feasible. For the propagation channel simulations we
assumed that that all antennas are linear polarized. TX and
RX antenna are rotated by 90° towards each other. For the
polarization losses we assume that possible rotation angles
are uniformly distributed. Forward and backward link ex-
hibit independent log-normal fading with 6 =7dB [17]. The
bat node is triggered at a sensitivity of = Prx sens — 75 dBm.
We compute the distance-equivalent path loss for the posi-

100
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Figure 9. Statistical distribution of E,/Ny and bit-error
rate (BER) for the simulated radio propagation channel.

tion at which the bat is triggered to send data. The path loss
for the forward link is given by

" = Prx — Pax sens = Lp" = F/"

where L';,W is the forward link fading and Lf.fw denotes the
forward link polarization loss. As the mobile node is imme-
diately transmitting its data, i.e. there is no change in the dis-
tance for the backward path, the receiver Ej, /Ny is expressed
by

Ep/No=Prx — L' — L} — F™
—No — NF + T B,

where LII’JW denotes the backward link polarization loss. F?"
describes the uncorrelated fading of the backward channel.
NF is the receiver noise figure and T 4g is the symbol du-
ration in dB. In Figure 9 probability distributions for E}, /Ny
and BER are depicted for the simulated propagation channel.

For the our scenario this results in a mean packet received
rate of 56.14 % which corresponds to a mean BER of 0.38 %,
which is in line with the results from Mutschlechner et al.
The simulation parameters and models have been verified by
a previous field test in Essehof. In this scenario a received
packet rate and BER of 93.03% and 0.05 %, respectively,
have been computed. These values perfectly match the re-
sults of the Essehof field test.

10 Summary

For the field tests, it is necessary to pick one promising
approach, as a field test consumes a lot of time for the prepa-
rations and the test itself. In our evaluation, we ran two field
tests in sum, the first took place in Essehof nearby Brunswik
and in Konigsheide in Berlin. The first is used to check
whether our estimates are correct as the second one is a real
deployment of our system on the animals. Thus, the results
should be summarized and a trade off of both approaches
should be made in this section.

As stated out before, the naive and improved approach
behave the same, if the BER is low. However, as our values
from channel model indicates, the BER ranges from 0.05 %
up to 0.38 %. In this range, both approaches are performing
very differently in terms of data losses. The naive approach,
shows at minimum a data reception rate of 31 % whereas the
improved receives 76 % of all packets. In terms of energy,
the improved approach can save up to 35.14 % and the naive
approach up to 45.65 % of energy per data point. Therefore,
the improved approach is chosen, as we spend 10 % more



energy to receive 245 % more data. Thus, we expect better
overall performance and more data compared to the naive
approach, which is not discussed further.

11 Practical Evaluation on Data Losses

Fitting our system to a bat results in uncertainties as bats
are unpredictable. For instance, the movement of a bat will
alter the communication channel as the antenna follows the
movement of the bat. Furthermore, inside the roost, the an-
tennas might get bent while a bat is resting which also af-
fects the communication parameters. Therefore, a static field
test is used to evaluate data losses. In order to get realistic
values, we chose a setup inside a forest nearby Brunswick
(Essehof) instead of testing our system in an office building.
Each deployed node had a height of 1.3 m from the ground
and altered the burst lengths in a high rate to avoid biased
data due to weather conditions. The MNs were placed in dif-
ferent distances to a BS and we checked the values against
our theoretical model at a distance at 45 m which showed a
packet loss of 7.5 % which is in line with our model (6.97 %).
However, in order to get statistically significant data, the data
and packet losses over all mobile nodes is used. Therefore, a
lower packet loss rate is the result compared to a distance of
45 m. Additionally, we changed the antenna orientation dur-
ing the field test in order to prevent any biased data due to
antenna orientation. In sum, we transmitted 5,043,199 pack-
ets to a BS within 2 weeks and evaluated the packet and data
losses for each burst length individually.

In the first week of the field test we chose an antenna ori-
entation parallel to the receiving antenna of the BS. On the
following week we rotated the antennas by 90° to each other
to get the worst antenna orientation possible. The values are
shown in Table 6 are discussed individually in the following.

A parallel antenna orientation is the most reliable receiv-
ing orientation, thus, low packet losses are expected. In our
field test, the state-of-the-art, presented by Mutschlechner et
al., showed the highest packet losses with 1.44 % whereas
the highest burst length showed the smallest packet loss with
1.29 %. A systematic decreased packet loss with increasing
burst length is not observable as burst length 2 shows less
packet losses compared to burst length 3. In this case, we as-
sume that the different packet losses are caused by noise as
only a small subset of packets were lost. Therefore, we con-
clude that each burst length shows comparable packet losses
independently from its length and is in line with our first the-
oretical estimation. The data losses also shows this behav-
ior and lies in a range of 0.022%qup to 0.115%oand is neg-
ligible. In our second half of the field test we changed the
antenna orientation to be perpendicular to each other. There-
fore, we expected higher packet losses due to a non optimal
antenna orientation and checked whether higher burst rates
have any negative impact compared to the state-of-the-art.
The first expectation is fulfilled as the packet losses are in-
creased, ranging from 3.02 % up to 3.11 %. Also in this ex-
periment, the state of art showed higher packet losses com-
pared to higher burst lengths. However, with respect to data
losses all higher burst lengths show a slightly increased data
loss ranging from 0.443 %o to 0.650 %o. This leads to an in-
creased packet loss of 0.226 %o and is also negligible.

Table 6. Packet and data losses for different burst
lengths.
Burst Packets Data
Rate Sent Lost Sent Lost
Parallel RX and TX antenna orientation
1 225,840 3,246 (1.44 %) 112,923 13 (0.115%o0)
2 451,708 5,879 (1.30 %) 225,859 24 (0.106%0)
3 677,595 9,434 (1.39 %) 338,803 37 (0.109%o)
4 903,345  11,696(1.29 %) 451,672 10 (0.022%o0)
Perpendicular RX and TX antenna orientation
1 278,462 8,664 (3.11 %) 139,231 59 (0.424%o0)
2 556,958 16,797 (3.02 %) 278,495 181 (0.650%0)
3 835,435 25,641 (3.07 %) 417,722 185 (0.443%0)
4 1,113,856 34,075 (3.06 %) 556,935 265 (0.476%0)

Table 7. Send packets per burst rate. With our used im-
proved approach 1.181 J (19.995 %) can be saved in a real
deployment for sending data to a BS

Burst  Packets Energy Energy
Rate N r=1[] ImprovedJ]

1 44,876 2.235 2.235

2 6,799 0.338 0.255

3 4,743 0.236 0.158

4 62,192 3.097 2.077
Overall 118,610 5.906 4.725

12 Decreased Energy Demand Effectiveness

After analyzing our approach, theoretically and in a static
field test, we also tested our approach in the wild. Therefore,
we set up a field test in Konigsheide, Berlin in Germany. We
outfitted 34 individuals with our system of the same species
(Nyctalus noctula). Nyctalus noctula are known as a species,
which often changes the roosts. Therefore, multiple BSs are
placed among different roosts, albeit not every roost has its
own BS due to a limited number of BSs. Furthermore, a
biologist evaluated promising locations with a mobile BS to
place a BS in areas of high population to collect as much data
as possible and was repeated daily.

We used the observation times of the BSs to determine the
runtime of nodes as well as the received packets for further
analysis. After deployment, eight nodes were absent from
any BS within 48 hours. This can be caused by bats leaving
the observation area or failed nodes. As we cannot track this
events down in more detail, these nodes are not considered
for further analysis. The remaining nodes sent 118,610 pack-
ets in total and 4,942 packets in average per node. In order
to determine how many energy is spend for sending data, we
use the values determined in Section 8.

Esending = Epacket ‘N packets

With this equation, we can compute the energy for each
burst rate in order to determine the energy demand which is
depicted in Table 7.

Most packets are sent with a burst rate of r = 1,4. The
reason is, that, when the memory is empty (which is the case
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in the roost) only low burst rates are possible. Furthermore,
if a bat was absent from the roost, data is stored until a BS
comes into receiving range. Due to the accumulated number
of data inside the node, data is transmitted with the highest
burst rate. In order to compare the energy savings, we firstly
calculated the energy demand for all packets with the burst
rate 1. With this rate, 5.9067J is used. On the contrary with
bursting only 4.72517 is used. Thus 19.996 % of energy can
be saved in a real deployment.

13 Conclusion

In this paper, we presented our approach bursting. With
this technique, we achieved a decreased energy demand of
30.18 % for sending data to a base station. Our approach
has been extensively analyzed and tested in a theoretical and
practical manner. The results are in line and comparable to
each other and show a theoretical energy saving capability of
35.14 % compared to the state-of-the-art.

Due to concatenation of packets to a burst a higher packet
loss is possible. As data reception rates are important for our
application, we also analyzed packet and data losses exten-
sively. In our theoretical evaluation we identified the critical
single point of failure, which may lead to an increased packet
loss of up to 2 % at maximum. We modeled packet losses via
hidden Markov models and also computed the theoretical bit
error rates. In a two-week lasting field test, which is also
matched by the outcomes of our theoretical models, we ob-
served a negligible data loss rate as the bit error rates were
lower. Therefore, we conclude, that our approach can signif-
icantly decrease the energy demand for transmitting data to
base stations with negligible drawbacks.
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