
Poster: Towards WebAssembly
for Wireless Sensor Networks

Joshua Ellul
Department of Computer Science

University of Malta

joshua.ellul@um.edu.mt

Abstract
WebAssembly has been proposed as a binary encoding for

the web which aims to be compact, platform and language in-
dependent and provide an efficient means of execution. The
encoding requirements perfectly match the requirements of
wireless sensor network applications. However, the encod-
ing was not designed with typical resource constrained mi-
crocontroller applications in mind. In this paper, we propose
a variant of WebAssembly, wasm16, targeted for resource
constrained systems.

1 Introduction
Over the past two decades JavaScript has emerged as the

de facto standard for webpage client-side scripting (whether
you love it, or hate it). Although it is popular, ubiquitous and
has been around for so long, it is still not the ideal encoding
to send over-the-wire for webpage client-side scripting due
to its large footprint and execution overheads. WebAssembly
[7] is a new platform- and language-independent binary en-
coding aimed at decreasing the footprint of client-side script
sent over-the-wire and also execution overheads inherent in
JavaScript.

It would be ideal for such a web based platform- and
language-independent, compact and execution efficient en-
coding to also be used for wireless sensor network (WSN)
applications. However, many WSN devices are limited in
resources, and WebAssembly’s encoding was not optimised
for 8 and 16-bit applications. WebAssembly requires more
processing, stack space, and program space for run-time
compiled applications, than what is required for typical re-
source constrained WSN applications. In this paper we pro-
pose additional instructions that are more suited for typical
WSN applications.

2 WebAssembly
WebAssembly is an open source development effort by

major browser vendors and other developers of previous at-
tempts at a platform independent encoding for the web (in-
cluding asm.js and PNaCl [5]). WebAssembly [7] supports
four basic data types: 32 and 64 bit integers and 32 and 64 bit
IEEE floating point numbers. Memory is exposed to the in-
termediate representation as a linear array of bytes. In addi-
tion to the four basic data types, memory can be accessed as 8
and 16 bit integers. Any byte within the linear memory array
is accessible (whether or not the byte forms part of a larger
data type). The binary format is encoded as a stack machine
(at least at the time of writing this paper as WebAssembly
is still in a state of flux). Constants are represented within
the encoding as variable-length integers. Due to the lowest
bit-width operations being of a 32-bit nature, excessive over-
head will be incurred for applications that tend to use a ma-
jority of 16-bit operations. In terms of footprint, whilst the
encoding allows for optimisation of constant and in-memory
values, program space requirements for run-time compiled
16-bit targeted applications will incur a heavy penalty due to
the 32-bit operations.

3 wasm16 and Compiler Toolchain
Whilst the mapping of operations closely matches modern

CPUs, the 32 and 64-bit operations do not closely map op-
erations typically required in resource constrained systems.
In this work a 16-bit WebAssembly operation set, wasm16,
is proposed. WebAssembly (at the time of writing) uses 171
opcodes from 256 possible (first level) opcodes. Adding sup-
port for 16-bit operations requires use of 35 opcodes. This
leaves a further 49 unused opcodes. It would be ideal to
have the opcodes included as part of the WebAssembly spec-
ification so that a single format can be used irrespective of
whether it is intended for resource constrained or traditional
32/64 bit architectures. Other alternatives are to define a dif-
ferent version of WebAssembly which supports 16-bit op-
erations (the WebAssembly binary encoding contains a We-
bAssembly version identifier).

To demonstrate the overheads, consider the addition of
two 16-bit local variable integers. Figure 2 below depicts the
WebAssembly (wasm) that would be generated and associ-
ated unoptimised run-time compiled code that would be gen-
erated for the MSP430 architecture (a 16-bit architecture).
Note that even though the source program specifies the addi-

208

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2017
20–22 February, Uppsala, Sweden
© 2017 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-1-4



Figure 1. wasm16 compiler and execution toolchain.

wasm wasm32-MSP430-AOT
get_local 0 PUSH.W 0x0000(R4)

PUSH.W 0x0002(R4)
get_local 1 PUSH.W 0x0004(R4)

PUSH.W 0x0006(R4)
i32.add POP.W R15

POP.W R14
POP.W R13
POP.W R12
ADD.W R14,R12
ADDC.W R15,R13
PUSH.W R12
PUSH.W R13

Figure 2. WebAssembly and run-time compiled MSP430
code generated for an addition of two 16-bit local vari-
ables.

wasm16 wasm16-MSP430-AOT
get_local 0 PUSH.W 0x0000(R4)
get_local 1 PUSH.W 0x0002(R4)
i16.add POP.W R13

POP.W R12
ADD.W R13,R12
PUSH.W R12

Figure 3. Corresponding wasm16 and run-time compiled
MSP430 code generated for an addition of two 16-bit lo-
cal variables.

tion of two 16-bit integers, the variables are promoted to 32-
bits since operations in WebAssembly operate on the small-
est granularity of 32-bits.

Figure 3 depicts the wasm16 and associated unoptimised
run-time compiled code that would be generated for the
MSP430 architecture. Note that the 16-bit variables and op-
erations do not require the extra overhead inherent from a
minimal specification of 32-bit operations. A 50% decrease
in execution overhead and program footprint is gained for
code that is inherently 16 or 8-bits. Optimised versions of
run-time compiled native code would result in similar sav-
ings for a 16-bit implementation over a 32-bit implementa-
tion.

The compiler and execution toolchain proposed is de-

picted in Figure 1. WebAssembly’s LLVM back-end com-
piler was altered to output wasm16. By providing a wasm16
LLVM back-end, any input source language can be compiled
to LLVM Intermediate Representation (LLVM IR), such that
an LLVM front-end exists. Thereafter the generated LLVM
IR can be compiled to wasm16. wasm16 can then be inter-
preted or compiled and executed at run-time (be it Ahead-of-
Time or Just-in-Time).
4 Related Work

Darjeeling [2] and TakaTuka [1] are two virtual machines
proposed for resource constrained systems that allowed for
the interpretation of a specific high-level language, Java.
Darjeeling proposed an altered Java Bytecode encoding that
was more tailored for 16-bit architectures that allowed for a
smaller footprint. TakaTuka further attempted to minimise
code footprint by optimising the interpreter with superin-
structions [4]. The two virtual machines were tailored for
Java. In contrast, MoteRunner [3] proposed a virtual ma-
chine interpreter that supported multiple languages. Due to
the overheads inherent in interpretation, run-time compila-
tion techniques were thereafter presented that demonstrated
a substantial decrease in execution overhead [6].
5 References
[1] F. Aslam, L. Fennell, C. Schindelhauer, P. Thiemann, G. Ernst,

E. Haussmann, S. Rührup, and Z. A. Uzmi. Optimized java binary and
virtual machine for tiny motes. In International Conference on Dis-
tributed Computing in Sensor Systems, pages 15–30. Springer, 2010.

[2] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich
vm for the resource poor. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, pages 169–182. ACM, 2009.

[3] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and
I. Romanov. Mote runner: A multi-language virtual machine for small
embedded devices. In Sensor Technologies and Applications, 2009.
SENSORCOMM’09. Third International Conference on, pages 117–
125. IEEE, 2009.

[4] K. Casey, D. Gregg, M. A. Ertl, and A. Nisbet. Towards superinstruc-
tions for java interpreters. In International Workshop on Software and
Compilers for Embedded Systems, pages 329–343. Springer, 2003.

[5] A. Donovan, R. Muth, B. Chen, and D. Sehr. Pnacl: Portable native
client executables. Google White Paper, 2010.

[6] J. Ellul. Run-time compilation techniques for wireless sensor networks.
PhD thesis, University of Southampton, 2012.

[7] A. Rossberg. Webassembly: high speed at low cost for everyone. In
ML16: Proceedings of the 2016 ACM SIGPLAN Workshop on ML,
2016.

209


