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Abstract

Wearable devices have paved the way for several context-
aware applications in the field of health-care, sports and en-
tertainment to improve the well-being of users. During re-
habilitation patients need accurate feedback on their phys-
iotherapy and preferably in near real-time. This feedback
to users can empower and improve the speed of recovery.
We present here a system that analyzes activities of patients
to provide real-time feedback. Specifically, we analyze ex-
ercises performed during knee rehabilitation where patients
undergoing therapy often have to visit doctors for feedback.
Moreover, they receive little or no feedback when perform-
ing these exercises away from the clinic. To overcome this,
we propose a novel two-stage methodology that provides ac-
curate feedback on the exercises performed. We collected
data from six patients during their rehabilitation to evaluate
our models. Furthermore, the proposed technique can be ap-
plied in wide-variety of exercises and also in sports.

Categories and Subject Descriptors
.5 [Pattern Recognition]: Models, Applications

General Terms
Classification algorithms, Experimentation
Keywords Human augmentation, Wearables

1 Introduction

The ability to observe, measure and track how individuals
function in their daily living is easily possible now with the
help of Internet of Things (IoT) [1,2]. Specifically, recogni-
tion of human activities has enabled the development of sev-
eral context-aware applications to improve well-being of hu-
mans. For example, patients with heart diseases or diabetes
are often required to a follow particular routine of exercises,
therefore identifying activities such as walking, standing, or
sitting enables caregivers to provide feedback accordingly.
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Furthermore, patients who underwent surgery or suffering
from chronic impairments require physical therapy as part of
their rehabilitation. Identifying and providing accurate, real-
time feedback on the exercises performed can improve the
recovery process significantly.

Human activity recognition systems can be broadly clas-
sified into two viz., (i) external and (ii) wearable [2]. Exter-
nal system requires deployment of sensors in a pre-defined
location e.g., training room, laboratory, etc. Inference of ac-
tivities performed is based on the interaction between these
devices and users. In contrast, wearable systems include sen-
sors attached to the user to identify the activities performed.
Wireless/wearable inertial measurement units (WIMUSs) are
capable of measuring human biological data, e.g., physiolog-
ical and motion data.

We employ WIMUs to assist human augmentation for
enhancing human productivity and restoring capabilities of
the human body. Specifically, we address the problems in-
volved in physical therapy during knee rehabilitation. There
are around 10.4M patients visiting doctors for common knee
injuries such as fractures, dislocations, sprains and ligament
tears every year [3]. Most of the knee injuries can be success-
fully treated through rehabilitation exercises and some may
require surgeries. Patients attend regular sessions with their
therapist during the early rehabilitation stages. The thera-
pist monitors the progress of patients in the clinic; however
patients have no feedback when performing the exercises in
their homes. This might lead to longer recovery process or
in some cases it may cause further injury if sufficient care is
not taken. This process is labour intensive and has several
limitations viz., (i) the therapist is not aware of how accu-
rately the exercises were performed by the patients; (ii) pa-
tients have no feedback on the exercises performed and thus
require frequent visits to the therapist; (iii) patients may lose
motivation when performing exercises at home due to lack
of feedback; and (iv) therapists need to keep track of the ex-
ercises and specific details of each patient to guarantee the
individual attention for fine-tuning the rehabilitation.

Recent research efforts have used wearable devices on hu-
mans to monitor different exercises performed. These solu-
tions collect data from various WIMUs such as accelerome-
ter, gyroscope and magnetometer to determine the knee joint
angle, movement techniques, and other temporal aspects of
gait [5]. Feedback provided using these mechanisms can be
broadly classified into the following: (i) knee angle based—



this indicates the deviation of knee movements compared to
the correct positions; and (ii) activity label based— this clas-
sifies the exercise to one of the labels defined by the therapist
and appropriate feedback is provided based on the identifica-
tion. Even though the above approaches aim to provide in-
formation on the exercises performed, patients often cannot
relate directly to the exercises. For example, feedback on the
knee joint angle cannot be understood by the patients to take
corrective measures in their exercises. Similarly, labels ob-
tained by the therapist are generally a rough approximation.
Feedback based on the identified label may not be accurate
as there could be multiple labels associated with the same ex-
ercise performed [3]. The labels are defined by the therapist
using visual inspections and are generally not well-defined.

To address the above issues in this paper, we present
CoachMe that provides accurate feedback on the exercises
performed by the patients during knee rehabilitation. We de-
signed and developed a knee band, which is low-cost and
wearable comprising of WIMU s to collect data related to the
rehabilitation exercise. Furthermore, we propose a two-stage
methodologys; first, we identify the composite activities per-
formed and its corresponding micro-activities. Second, we
classify the micro-activities into a set of labels that repre-
sent the exercises performed. Since there are many exercises
during rehabilitation, in this work we focus on the lunge ex-
ercise. Lunges are one of the common knee rehabilitation
exercise performed to increase the knee strength and control.
Finally, based on the identified labels, appropriate feedback
is provided to the patients on the lunge exercise.

Current research on activity recognition considered an
exercise as a single macro-activity, while this may work
with simple activities such as walking, running and jump-
ing, it fails for complex/composite activities such as lunges,
which typically includes a set of micro-activities. For un-
derstanding and to provide feedback on such complex ac-
tivities, recognition of underlying micro-activities is impor-
tant. CoachMe is the first step towards developing a system
that can classify micro-activities accurately. The key idea
proposed in this paper is to segment activities into micro-
activities and determine the best feature set that can classify
these micro-activities. We first evaluate the performance of
standard machine learning algorithms (classifiers) to classify
the micro-activities. We then fine-tune these algorithms to
accurately detect micro-activities.

The main contributions of this paper are:

e We propose a two-stage methodology that provides ac-
curate feedback on the exercises performed by the pa-
tients during knee rehabilitation.

e We describe our system design and a low-cost knee
band used to collect activity information of patients.

e We present our experimental evaluation from six pa-
tients in rehabilitation and compare classification accu-
racy across classifiers.

2 Related Work

In this paper, the focus is to identify the lunge exercise and
provide feedback to patients on how well they performed the
exercise. The standard approach to measure the performance

of a patient involves the measurement of the knee angle with
a tool called Goniometer [6]. Most often, this is done by ob-
servation since electronic goniometers are capable of mea-
suring the knee angle only in motion. Other techniques em-
ploy expensive hardware like Kinect health [7] or video pro-
cessing to track patient activities and provide feedback [4].
To this end, recent works aim to determine the knee angle
using low-cost sensors. Dejnabadi et al. [8] and Tomaru et
al. [9] make use of IMUs like magnetometers, gyroscopes
and accelerometers to determine the knee angle. They em-
ploy Kalman filters to estimate the angle towards ground in
a 3D space. Another approach employs artificial neural net-
works along with IMUs for measuring the knee angle [5].
Most of the proposed techniques to classify lunges aim to
understand the knee angle using the IMUs. However pa-
tients have little knowledge on knee angle based feedback.
Hence, this paper takes an orthogonal approach that analyzes
the micro-activities in an exercise to determine the position
of the knee and use pre-defined labels to classify how accu-
rately an exercise was performed.

In the past decade numerous activity recognition algo-
rithms have been proposed by researchers [2]. Most activ-
ity recognition algorithms [2, 10, 11] are generally evaluated
on simple activities such as walking, running, and jumping
by using machine learning approaches. In scenarios such as
sports or rehabilitation, activities could be a complex routine,
for example, consider recognizing a user cycling, which in-
volves micro-activities such as accelerating, turning, stand-
ing still, bending, etc. with certain logical sequence and
duration. Current studies have not focused on recognizing
these micro-activities which surely enriches the context and
provide better feedback. CoachMe aims to identify these
micro-activities by segmenting a macro-activity. Recent re-
search efforts have shown that accelerometer data can be
used to identify micro-activities and monitor athlete perfor-
mance [2,11].

Activity label based feedback systems have two major
challenges: (i) Composite activity — an exercise in rehabil-
itation is composed of several instances of simple activities,
i.e., micro-activities. For example, a lunge exercise involves
stepping forward, steady position and stepping back. (ii)
Overlapping labels — most of the labels defined are based on
the visual inspection by the therapist. These labels are gener-
ally overlapping due to the approximation and inconsistency
in defining labels across therapists. Hence label based feed-
back systems need to identify multiple related labels rather
than a single label to provide feedback. CoachMe overcomes
the above problems by developing a two-stage methodol-
ogy, (i) segment a macro-activity into micro-activities and
(ii) enhance the standard machine learning algorithms to ac-
curately detect micro-activities. Recent activity recognition
algorithms have tried to identify the optimal set of features
to identify an activity, which is computationally simple and
also energy efficient [10]. In this paper we present a rank-
ing model, which determines the best feature set to identify
individual micro-activity labels in contrast with a complete
macro-activity. This is challenging since micro-activities are
shorter in length and the number of unique features are much
lesser as compared to a macro-activity.
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(a) Lunge exercise

(b) Knee band with WIMUs

Figure 1. Lunge exercise and the designed knee band.

3 System Design

We now present the details of the considered exercise to
provide feedback during knee rehabilitation.

Exercise: Lunges are one of the most common knee rehabil-
itation exercise. Each lunge exercise is a composite activity,
which includes several micro-activities, (a) step forward, (b)
steady position and (c) step backward (Fig. 1(a)).

Data acquisition: The data acquisition setup includes a knee
band, which contains two WIMUs and an Arduino board
for data processing. The placement of WIMUSs depends on
the positions that can provide the maximum information of
the performed lunge exercise. We identified two positions,
one on the upper leg and the other on the lower leg, which
captures the position and movement of the corresponding
leg [5]. Each WIMU consists of 3-axis accelerometer, gy-
roscope and a magnetometer. Fig. 1(b) shows the knee band
worn by the patient. Furthermore, sampling rate of 50 Hz
was used for data collection. The sensed data is then trans-
mitted to the Arduino board using Bluetooth Low Energy
(BLE). Note that, the sensed data can be sent directly to a
smartphone for processing, eliminating the Arduino board.
The knee band developed is portable and can be used by
the patients anywhere. Unlike other wearables, CoachMe
is used only when patients are performing exercises (few
hours/day). In our experiments, the battery powering up the
knee band lasts for 3 to 4 days. We collected data from six
participants, four males and two females in a physiotherapy
clinic. Participants from different age groups (20-65 years)
were chosen for this study. Each participant was asked to
perform their normal routine during rehabilitation, which in-
cludes a 10 m warm-up followed by several lunges. In total
around 200 lunges were performed by each participant. Fur-
thermore, video footage from the data collection session was
recorded for ground truth. A therapist analyzed the lunge
exercises performed by the participants to label each lunge
along with the help of video footage. Eight labels were de-
fined viz., (i) Over indicates the over flexion of the knee. In
this case, the knee cap is beyond the position of the foot due
to over-leaning in the forward direction. (ii) Knee In (KI) in-
dicates that the knee flexes were inside the body. This is due
to bad rotation of knee or wrong leg angles while performing
the lunge. (iii) Knee Out (KO) indicates that the knee flex is
outside the body. (iv) Unstable (Ins) indicates the instabil-
ity in the end position of legs due to excessive movement or
vibration. (v) OverlIns refers to Over Unstable, which is a
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Figure 2. Accelerometer and gyroscope raw data from
WIMUs for different labels.

combination of Over and Unstable. (vi) Good indicates that
the lunge exercise was performed properly. (vii) Small in-
dicates a small step was used during the lunge and is due to
lack of knee flexes. (viii) Fast indicates that the lunge is done
faster than the average, leading to a short time in the steady
phase.

A simple automated segmentation method that identifies
the starting position (standing still) was employed to seg-
ment the data collected into repetitions. Fig. 2 shows the
raw accelerometer (z-axis) and gyroscope (z-axis) data av-
eraged from 10 repetitions for different labels. The x-axis
indicates the time in seconds and y-axis indicates the units of
accelerometer (g) and gyroscope data (deg/sec). The micro-
activities are labeled as (a), (b) and (c) corresponding to step-
ping forward, steady position and stepping backward respec-
tively. It can be seen that, the time duration of the micro-
activity (b) i.e., steady state, varies for each label.

4 Automatic classification of micro-activities

In this paper, we employ algorithms that are previously
evaluated for macro-activity recognition. We first describe a
traditional approach and then present two methodologies, (i)
Average Signal Model (ASM) and (ii) Ranking Model (RM)
to classify lunges by considering micro-activities.

4.1 Traditional classifier

Fig. 3(a) shows the traditional classifier model used to
classify lunges. As mentioned previously the collected data
from WIMUSs are segmented to repetitions, where each rep-
etition represents a lunge. The data is split according to 10-
fold cross-validation. Several features were extracted from
each repetition and a classifier model is developed using the
features extracted. We employed three well-known classi-
fiers [12] such as NaiveBayes (NB), decision trees (J48),
and K-nearest neighbor (IBk) for classifying each repetition.
During evaluation, each repetition was evaluated to the clos-
est label. The traditional classifier has several drawbacks.
First, since the entire lunge is used for classification, micro-
activity recognition is not possible. This results in consid-
ering activities, which may not be significant. For exam-
ple, in a lunge stepping forward and stepping backward are
not crucial. However, the lunge steady position is the sig-
nificant micro-activity that can provide more information on
how good the lunge was performed. Second, the traditional
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Figure 3. Different micro-activity classification models.

classifiers are generally binary. However, most of the labels
defined in rehabilitation and other human augmentation ap-
plications have multiple overlapping labels.

4.2 Average Signal Model (ASM)

To overcome the above issues, we propose average signal
model (ASM) that first segments (bifurcates) a composite ac-
tivity into micro-activities and then classifies the test data by
comparing it to the average signal for each label. Fig. 3(b)
shows the proposed ASM model. The major components
are: sectioning, creating profiles and extracting features.
Sectioning: The objective of sectioning is to determine the
micro-activities from the composite activity. We employed
an unsupervised clustering approach to determine different
sections from repetition. Clustering approaches [12] such as
Expectation Maximization (EM) and k-means with different
configurations were empirically evaluated across all labels
and repetitions. EM clustering with 3 clusters was able to
accurately identify the micro-activities across all repetitions.
Creating Profiles: This component determines an average
signal for each label, which can be used during the clas-
sification of a new repetition. Since the steady position of
the lunge is the crucial micro-activity, we focus only on this
micro-activity. Profile creation first determines the average
length of the steady state for each label. Since, each repeti-
tion may have varying period, we apply dynamic time wrap-
ping (DTW) to stretch or shrink the micro-activity such that
all the repetitions of a label have the same length. We then
merge all the corresponding signals for that label to obtain
an average signal. For example, we determine the average
length of steady state for all good lunges and then merge all
accelerometer x-axis signals of the good repetitions into one
x-axis signal. Please note, we merge only same axis (same
sensor) data for each repetition. Finally, the merged signal
represents the golden profile for that label.

Extracting Features: Several features from golden pro-
file of each label are then extracted for classification. The
extracted features include fundamental frequencies, mean
crossing, standard deviation, root mean square, max, mini-
mum, mean, size (n samples), and signal difference between
two signals. We employed three classifiers, NB, J48, and

IBk [12] for classifying each repetition. Test repetitions are
evaluated with the average signal of each label. The label
that is similar to the repetition is then selected. However,
ASM model still cannot identify labels that are similar. Con-
sequently, any misclassification will result in providing inac-
curate feedback.

4.3 Ranking model (RM)

Ranking model (RM) aims at determining the set of la-

bels rather than a single label that represent the test data
(Fig. 3(c)). The hypothesis here is that, by providing feed-
back from a set of similar labels increases the accuracy com-
pared to feedback based on a single label. The functionality
of sectioning and feature extraction block remains the same
as ASM. A feature ranking block is added to identify the
most influential features for each label.
Feature Ranking: In ASM all the features were used to clas-
sify the test data. This results in inclusion of features that are
similar or noisy. Feature ranking block identifies the most in-
fluential features for each label. This saves computing time
and considers only features that are important. In order to
identify features that are influential for a particular label, we
apply weighted cost along with attribute selection ranking
tool from WEKA [13] [14]. The attribute selection ranking
provides a set of features that are most influential across all
labels. However, since we want the features that are influ-
ential for each label, a weight cost is applied that penalizes
a feature during misclassification. This ensures we derive
the most influential features for each label. Finally, we use
this ranked features for each label to build a classifier model.
The resulting model includes the probability density function
(PDF) of a feature across labels.

The test data is first sectioned and the top-k feature vec-
tors that are obtained from the feature ranking block are used
for evaluation. The RM model identifies not only the closest
label the test data belong to, but also the similar labels (if
any). To this end, the set of labels whose feature values are
below standard deviation threshold (&) were selected as sim-
ilar labels. The intuition is that similar labels have similar
feature values. Furthermore, by calculating the probability
density function (PDF) for each top feature, one can select
the set of labels that are similar. Feedback systems can now
exploit this to provide feedback based on the set of labels
determined for each repetition.

5 Results

Classification accuracy: The first step in providing feed-
back to participants on how accurately they performed a
lunge is by determining if a lunge was performed or not.
To this end, we applied K-nearest neighbor (IBk) classifier
to distinguish a lunge from other activities such as walking
and running. The classifier accuracy of identifying a lunge
was close to 96%. The high classification accuracy is mainly
due to the unique characteristic of lunges. We applied the
traditional classifier to classify the test data into one of the
labels. We tested with three classifiers viz., IBk, J48 and NB.
IBk performs better than the other classifiers with an average
classification accuracy of 24.8% across all labels. The poor
classification accuracy is due to the inability of identifying
the micro-activities involved in a lunge.
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ASM model first sections the composite activity into
micro-activities. We employed a clustering approach to de-
termine the different micro-activities. The semi-supervised
method first identifies the clusters that correspond to the
micro-activities. These clusters are then labeled with the
help of a domain expert. In our case, the identified clusters
represent the stepping forward, steady position, and stepping
back activities. Furthermore, we merged the signals from
the WIMUs (corresponding to their axis) of a particular la-
bel to derive its golden profile. The test data was evaluated
with the golden profile across multiple classifiers. The aver-
age classification accuracy of identifying the corresponding
label for NB, J48 and IBk were 39.6%, 45.2% and 51.8%, re-
spectively. The metrics employed to study the efficacy of the
classifiers are: (i) Precision (P) is the number of true pos-
itives divided by the total number of repetitions labeled as
belonging to a particular label; (ii) Recall (R) is the number
of true positives divided by the total number of repetitions
that actually belong to a label; (iii) F-measure (F;) indicates
the accuracy of the classifier and it is the harmonic mean of
precision and recall. Table. 1 shows the precision, recall and
F-measure for each label using IBk classifier. It can be seen
that for some labels the accuracy is high (100% for Fast) and
for others the accuracy is as low as 32%.

Ranking model improves ASM by first identifying the
best set of features and then using standard deviation to de-
termine similar labels. If the best set is not determined there
could exist numerous features which might be similar across
labels. Ranking model employs attribute selection ranking
with weighted cost matrix in WEKA tool to obtain the top
features that are important for each label. The attribute selec-
tion ranking performs an exhaustive search over all features
to identify the top features. Then a weighted cost matrix
is applied to ensure misclassifications are highly penalized.
Furthermore, to select the closest set of labels, we compute
the probability distribution function for each feature across
labels. This allows to identify the set of labels that are clos-
est. Fig. 4 shows the probability distribution values for a fea-
ture 3_mean (corresponding to the accelerometer x-axis on
the lower leg WIMU) across all labels. It can be seen that for
Overlns label this feature has unique median value. This en-
ables the classifier to accurately determine the corresponding
label. Fig. 5 shows the probability distribution for 5 test rep-
etitions across different labels with average signal and rank-
ing models. It can be clearly seen that ASM is highly biased
towards one of the labels. However, for ranking model us-
ing the PDF we can identify the set of labels that are similar.
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Figure 6. Overlapping set of labels derived using RM.

This can be seen in Fig. 5 where for some repetitions only
one label has high probability and for other repetitions more
than one label have similar probabilities. For example, Repe-
tition 1, 4 can be clearly identified as a Over lunge, whereas,
in Repetition 3, the probability of being Unstable or KO or
Good is similar. Hence labels that have similar probabilities
are selected as the predicted set of labels. In our evaluation,
the time required to correctly classify a test repetition to a
label is in order of few ms. Furthermore, feedback for most
rehabilitation exercises can accept delay in the order of min-
utes [15]. Finally, Fig. 6 shows the set of labels that are over-
lapping in the entire dataset. The colored column indicates
that the label is similar to the corresponding row label. Note
that this mapping between labels may vary depending on the
training data. This allows our proposed methodology to be
adaptive and learn new patterns in the collected data over
time. Table. 1 shows the precision, recall and F-measure ob-
tained using the ranking model with top three features. The
average accuracy across all labels is around 70% with a pre-
cision of 74%. Note that, the accuracy of the system can be
further improved by adding more training data and having
balanced data across labels. Further experiments were con-
ducted to test the robustness of classification: (i) Excluding
a patient data: leave-one-out approach (training data set did
not include any repetition from one patient) and (ii) Exclud-
ing a class-label data: we excluded a particular label data
(either Over/KI/KO/INS) of the patient. In both experiments
overall classification accuracy was around 70 to 90%.

Feedback mechanisms: Providing real-time feedback is
non-trivial, especially when micro-activities are performed.
In this work, we proposed a micro-activity classifier that
identifies a set of labels representing the activity performed.
Feedback is provided based on the labels that are highly sim-
ilar. For example, if the predicted label of a test repetition is
Over and Unstable label, then the system selects feedback
corresponding to these two labels. This could be the com-



Table 1. Classification accuracy across labels.

ASM RM

Labels P R F P R F

Fast 1.00 1.00 1.00 | 1.00 1.00 1.00
Ins 0.60 060 060 | 1.00 0.57 0.73
KI 0.50 050 050 | 1.00 0.60 0.75
KO 0.35 0.30 032 | 1.00 1.00 1.00
Overlns | 0.50 050 050 | 0.33 1.00 0.50
Good 040 057 047 | 062 1.00 0.77
Over 0.80 080 080 | 090 090 0.90
Small 0.67 067 067 | 1.00 067 0.80

bination of feedback from Over and Unstable such as keep
your upper body straight and do the exercise slower to get
more control, respectively. The developed classifier models
run on user smart phones. Hence, the corresponding feed-
back is provided to the users on their phone or in-home dis-
plays. Further, this feedback can also be sent to the therapist
who can then adapt the feedback to provide more personal-
ized recommendations or incorporate corrections.
Discussions: In this section, we discuss the lessons learnt
in developing a portable knee band and highlight challenges
that exist to make the system applicable to other rehabili-
tation exercises. First, the selection of WIMUSs and their
placement is highly dependent on the application [16]. In
our experiments, one of the major hurdles was to ensure the
mounted WIMUs are properly aligned. The video data col-
lected helped us to eliminate instances where the band was
not worn properly. To this end, we employed iPi motion cap-
ture tool! to map the video data to a 3D model which could
be used to eliminate data instances and to assist in label-
ing. Second, domain knowledge plays a key role in develop-
ing human augmentation technologies. In CoachMe, we ar-
rived at the labels by consulting five physiotherapists. Even-
though physiotherapists had a similar notion on labeling the
lunge repetitions, most of them were overlapping and there
is no clear boundary to differentiate them. Further, to gen-
eralize the proposed methodology to other rehabilitation ex-
ercises, there still exist some challenges viz., (i) Energy con-
straint and time complexity: A key requirement for current
wearables is to have a low-power, low-complexity, higher
lifetime system. Power-aware feature selection, online clas-
sification models and energy budgeting will certainly help to
provide real-time feedback and increase the robustness of the
system. (ii) Datasets: Currently there exists a few datasets
for general activities like walking and running, which is used
to improve activity recognition models. Similarly, for ro-
bust and generic micro-activity recognition, there is a need
to develop similar open datasets. (iii) Feedback: While there
are few studies on the techniques to be employed for pro-
viding feedback such as a smartphone, in-home displays and
Google glass, it is important to study the acceptance of this
feedback by the patients. Hence large-scale studies on how
patients adapt their routine with this feedback are crucial in
developing a persuasive human augmentation system.
6 Conclusions

We designed a system that helps in faster rehabilitation
of patients with knee injury using a knee band comprising
of WIMUs. We described a novel two-stage methodology
to accurately classify the exercises performed by identifying

LiPi Soft: http://ipisoft.com/ [online].

the set of labels for each exercise. Unlike the existing sys-
tems, the techniques presented here can identify the micro-
activities involved in a particular exercise. The proposed
ranking model determines the most influential features that
can accurately identify the set of labels that are similar to
the test repetition. The predicted set of labels is then used
to provide feedback on the quality of exercises performed.
The proposed models perform significantly better than the
traditional classifiers. The classification accuracy of identi-
fying the correct set of labels using ranking model is close
to 70%. We believe that our novel methodology and analy-
sis presented in this paper will make the rehabilitation easy,
simple, faster and accurate.

7 Acknowledgments

The authors would like to thank Daniel Steginga (Dutch
Coast) and Rick Oppedijk (Oppedijk Sports Engineering) for
their support towards developing the knee band.

8 References

[1] C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, A. Rahim, R. Neisse, and
G. Baldini, “DIAT: A Scalable Distributed Architecture for IoT,” in
Internet of Things Journal, IEEE, vol.2, no.3, pp.230-239, 2015.

[2] O.D. Lara and M. A. Labrador,“A Survey on Human Activity Recog-
nition using Wearable Sensors,” in Communications Surveys & Tuto-
rials, IEEE, vol.15, no.3, pp.1192-1209, 2013.

[3] P. E. Taylor, G. J. M. Almeida, J. K. Hodgins and T. Kanade, “Multi-
label classification for the analysis of human motion quality,” in Engi-
neering in Medicine and Biology Society (EMBC) IEEE, 2012.

[4] S. Ananthanarayan, M. Sheh, A. Chien, H. Profita and K.A. Siek, “De-
signing wearable interfaces for knee rehabilitation,” in Proceedings of
the 8th International Conference on Pervasive Computing Technolo-
gies for Healthcare (PervasiveHealth), ICST, pp.101-108, 2014.

[5] C.L. Bennett, C. Odom and M. Ben-Asher, “Knee Angle Estimation
based on IMU data and Artificial Neural Networks,” in Biomedical
Engineering Conference (SBEC), pp.111-112, 2013.

[6] “Goniometer” https://en.wikipedia.org/wiki/Goniometer [online]

[7] Fernandez-Cervantes, V., Stroulia, E., Castillo, C., Oliva, L., & Gon-
zalez, F, “Serious rehabilitation games with Kinect”, In 2015 IEEE
Games Entertainment Media Conference (GEM), 2015.

[8] Dejnabadi, H., Jolles, B. M., & Aminian, K, “A new approach to accu-
rate measurement of uniaxial joint angles based on a combination of
accelerometers and gyroscopes”, In IEEE Transactions on Biomedi-
cal Engineering, 52(8), pp. 1478-1484, 2005.

[9] Tomaru, A., Kobashi, S., Tsumori, Y., Yoshiya, S., Kuramoto, K.,
Imawaki, S., & Hata, Y., “A 3-DOF knee joint angle measurement
system with inertial and magnetic sensors”, Systems Man and Cyber-
netics (SMC), 2010 IEEE International Conference on, 2010.

[10] H. Ghasemzadeh,N. Amini, R. Saeedi, and M. Sarrafzadeh, “Power-
aware computing in wearable sensor networks: An optimal feature
selection”, IEEE Transactions on Mobile Computing, vol. 14(4), 2015.

[11] A. Ahmadi, E. Mitchell, C. Richter, F. Destelle, M. Gowing,
N. E. O’Connor and K. Moran, “Toward Automatic Activity Classifi-
cation and Movement Assessment During a Sports Training Session,”
in Internet of Things Journal, IEEE, vol.2, no.1, pp.23-32, 2015.

[12] S.B. Kotsiantis, “Supervised machine learning: a review of classifica-
tion techniques”,Informatica, vol. 31, pp. 249-268, 2007.

[13] WEKA: Waikato Environment for Knowledge Analysis [online]
http://www.cs.waikato.ac.nz/ml/weka/

[14] Jankowski, N., and Usowicz, K., “ Analysis of feature weighting
methods based on feature ranking methods for classification”, In Pro-
ceedings ICONIP, 2011.

[15] A. Khan, S. Mellor, E. Berlin, R. Thompson, R. McNaney, P. Olivier,
and T. Plotz, “Beyond activity recognition: skill assessment from ac-
celerometer data”, In Proceedings of UbiComp, 2015.

[16] J. Williamson, Q. Liu, F. Lu, W. Mohrman, K. Li, R. Dick and
L. Shang, “Data sensing and analysis: Challenges for wearables,” in
Design Automation Conference (ASP-DAC), pp.136-141, 2015.

179



