
Countering Three Denial-of-Sleep Attacks on ContikiMAC

Konrad-Felix Krentz
Hasso-Plattner-Institut, Germany

konrad-felix.krentz@hpi.de

Christoph Meinel
Hasso-Plattner-Institut, Germany

christoph.meinel@hpi.de

Hendrik Graupner
Bundesdruckerei, Germany

hendrik.graupner@bdr.de

Abstract
Like virtually all media access control (MAC) protocols

for 802.15.4 networks, also ContikiMAC is vulnerable to
various denial-of-sleep attacks. The focus of this paper is
on countering three specific denial-of-sleep attacks on Con-
tikiMAC, namely ding-dong ditching, pulse-delay attacks,
and collision attacks. Ding-dong ditching is when attack-
ers emit interference, inject frames, or replay frames so as
to mislead ContikiMAC into staying in receive mode for ex-
tended periods of time and hence consuming much energy.
Pulse-delay attacks are actually attacks on time synchroniza-
tion, but can also be launched against ContikiMAC’s phase-
lock optimization to cause an increased energy consumption.
Lastly, in collision attacks, an attacker provokes retransmis-
sions via jamming. In this paper, to counter these three kinds
of denial-of-sleep attacks, we propose two optimizations to
ContikiMAC. The dozing optimization, on the one hand, sig-
nificantly reduces the energy consumption under ding-dong
ditching. Beyond that, the dozing optimization helps dur-
ing normal operation as it reduces the energy consumption
of true wake ups, too. The secure phase-lock optimization,
on the other hand, is a version of ContikiMAC’s phase-lock
optimization that resists pulse-delay attacks. Additionally,
the secure phase-lock optimization makes ContikiMAC re-
silient to collision attacks, as well as more energy efficient.
We implemented and evaluated both optimizations using the
Contiki operating system and OpenMotes.
Categories and Subject Descriptors

C.2.1. [Network Architecture and Design]: Wireless
communication; C.2.0. [General]: Security and protection
General Terms

Security, Design.
Keywords

Denial-of-sleep, MAC security, low-power listening.

1 Introduction
ContikiMAC is a widely-used media access control

(MAC) protocol for 802.15.4 networks [6, 1]. Its features
include high energy efficiency and an easy-to-implement de-
sign. These features render ContikiMAC very suitable for
use on Internet of things (IoT) devices as IoT devices typi-
cally are energy and resource constrained.

1.1 Operation of ContikiMAC
The energy efficiency of ContikiMAC stems from leaving

an 802.15.4 node’s transceiver off most of the time. Instead,
as shown in Figure 1, receivers regularly perform two clear
channel assessments (CCAs). If any of these CCAs returns
negative, receivers stay in receive mode to potentially receive
a frame. Senders, on the other hand, repeatedly transmit each
frame (aka strobing) for a whole wake-up interval, plus once
to accommodate corner cases. As for unicast frames, senders
may stop strobing a unicast frame prematurely when the in-
tended receiver replies with an acknowledgement frame. For
this, senders have to scan for acknowledgement frames in
between successively strobed unicast frames. However, if no
acknowledgement frame comes back, senders may retry by
sending another strobe of unicast frames.

Also, ContikiMAC comprises two optimizations. The
phase-lock optimization, on the one hand, lets senders learn
the wake-up times of neighboring nodes in order to start the
strobing of a unicast frame right before the intended receiver
wakes up. Furthermore, once a sender has learned when a
receiver wakes up, the sender no longer needs to strobe uni-
cast frames to the receiver for a whole wake-up interval plus
once if no acknowledgement frame returns, but only for a
shorter time span plus once. However, to handle clock drift,
a sender must relearn the wake-up time of a receiver (i) if
a critical number of consecutive unicast transmissions to the
receiver were unacknowledged, as well as (ii) if, within a cer-
tain period of time, all unicast transmissions to the receiver
were unacknowledged. The fast-sleep optimization, on the
other hand, allows receivers to go back to sleep after they
obtained a negative CCA at three occasions. First, if radio
noise lasts longer than for transmitting a maximum-length
frame, receivers can turn off their 802.15.4 transceiver. Sec-
ond, if the silence period after the radio noise takes longer
than ContikiMAC’s inter-frame period, receivers can go back
to sleep, too. Third, if no frame is detected after the silence
period, receivers can go back to sleep, as well.

108

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2017
20–22 February, Uppsala, Sweden
© 2017 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-1-4

TX
RX
IDLES

e
n
d
e
r

R
e
ce
iv
e
r

acknowledgement frameunicast frame

TX
RX
IDLE

(a)

TX

RX

IDLES
e
n
d
e
r

R
e
c
e
iv
e
r

TX

RX

IDLE

broadcast frame

(b)

Figure 1: Operation of (a) a unicast and (b) a broadcast trans-
mission in ContikiMAC

noise floor

range of CCA thresholds in AEDP

Figure 2: AEDP caps CCA thresholds to fit in between the
minimum RSSI among all incoming links and the floor noise

1.2 Three Denial-of-Sleep Attacks on Contiki-
MAC

While being easy to implement, ContikiMAC’s CCAs in-
cur two problems. First, it is crucial to set the CCA thresh-
old properly. If the CCA threshold is too low, receivers often
wake up unnecessarily, thereby expending their limited en-
ergy. Conversely, if the CCA threshold is too high, transmis-
sions may go undetected [25]. Second, attackers may simply
emit interference, which misleads ContikiMAC into staying
in receive mode for extended periods of time and hence con-
suming much energy. Such attacks can also be carried out
by injecting or replaying 802.15.4 frames [21]. We collec-
tively refer to attacks that mislead ContikiMAC into staying
in receive mode as ding-dong ditching.

Sha et al. considered the first problem [25]. They showed
that setting a static CCA threshold is insufficient to cope with
false wake ups and undetected transmissions. Rather, the
CCA threshold should be adapted dynamically at runtime.
Accordingly, they proposed the Adaptive Energy Detection
Protocol (AEDP), which adjusts the CCA threshold to trade
off false wake ups against undetected transmissions.

At first glance, AEDP might mitigate ding-dong ditch-

Sender Receiver Attacker

acknowledgement frame

(a)

Sender Wormhole Receiver

(b)

Figure 3: Pulse-delay attack via (a) interference and (b) a
hidden wormhole

ing since AEDP increases the CCA threshold as false wake
ups occur. However, AEDP caps CCA thresholds to fit
in between the minimum received signal strength indicator
(RSSI) among all incoming links and the floor noise like
shown in Figure 2. Thus, as long as attackers do ding-dong
ditching with a strong enough transmission power, receivers
still wake up. On the other hand, if ding-dong ditching
causes the floor noise to increase beyond the RSSI of an in-
coming link, AEDP’s behavior is undefined. In such cases,
it is reasonable to set the CCA threshold slightly above the
level of the floor noise. This is because (i) communication
on links with lower RSSIs than the floor noise is error-prone
anyway and (ii) it requires attackers to do ding-dong ditch-
ing with higher and higher transmission powers as otherwise
victim nodes will not wake up. Nevertheless, attackers can
bypass this defense by doing ding-dong ditching without af-
fecting the level of the floor noise, such as by injecting or
replaying 802.15.4 frames. Altogether, AEDP can not miti-
gate all kinds of ding-dong ditching.

Moreover, ding-dong ditching is not the only way to make
ContikiMAC consume more energy. Alternatively, attackers
can mislead ContikiMAC into staying more time in trans-
mit mode. One way to do so is by launching pulse-delay at-
tacks against ContikiMAC’s phase-lock optimization. Such
attacks come in two flavors [11]. First, an attacker can
jam during the transmission of an acknowledgement frame
and replay the jammed acknowledgement frame later on, as
shown in Figure 3a. Second, an attacker can tunnel the traf-
fic between two distant nodes verbatim, i.e. set up a hid-
den wormhole [4], and deliberately delay acknowledgement
frames, as shown in Figure 3b. In either case, senders strobe
more often, and, since ContikiMAC’s phase-lock optimiza-
tion learns the wake-up times of neighboring nodes based on

109

when acknowledgement frames are received, ContikiMAC’s
phase-lock optimization may need to relearn the wake-up
time of the affected receiver, which expends additional en-
ergy. Another way to make ContikiMAC spend more time in
transmit mode is via collision attacks. In collision attacks, an
attacker prevents the reception of a unicast or acknowledge-
ment frame by means of jamming [30]. In effect, as no ac-
knowledgement frame is detected, ContikiMAC strobes for
long. The incurred energy consumption increases further if
the attacker interferes with subsequent retransmissions, too.
To some extent, ContikiMAC’s phase-lock optimization mit-
igates collision attacks by shortening the maximum dura-
tion of a strobe of unicast frames once a receiver’s wake-up
time is known. Yet, for handling clock drift, ContikiMAC’s
phase-lock optimization resorts to strobe unicast frames to
a receiver for a whole wake-up interval plus once if unicast
transmissions to the receiver tend to fail. Attackers can hence
aggravate collision attacks by launching them repeatedly.

1.3 Contributions
To counter ding-dong ditching, pulse-delay attacks, as

well as collision attacks, we propose the dozing optimization
and the secure phase-lock optimization:

• The dozing optimization inserts sleeping periods into
the time span between a negative CCA and the detec-
tion of a frame. This way, the dozing optimization mit-
igates all kinds of ding-dong ditching. Beyond that, the
dozing optimization helps during normal operation as it
reduces the energy consumption of true wake ups, too.

• The secure phase-lock optimization is a version of Con-
tikiMAC’s phase-lock optimization that resists pulse-
delay attacks. Additionally, the secure phase-lock opti-
mization obviates the need for relearning wake-up times
if clocks drift apart. Instead, senders only need to learn
a receiver’s wake-up time once in the course of session
key establishment. Within a session, senders then strobe
unicast frames as often as is reasonable according to the
current uncertainty about the phase offset in relation to
the receiver. This greatly mitigates collision attacks.

1.4 Threat Model
For the scope of this paper, we assume an external at-

tacker, i.e. an attacker that has not compromised a single
node of the victim network and does not possess any keys of
any node of the victim network [11]. Still, external attackers
can inject, replay, modify, and jam frames and thus launch
sophisticated attacks, such as hidden wormhole and pulse-
delay attacks. An internal attacker, by contrast, has com-
promised one or more nodes of the victim network and pos-
sesses their keys [11]. Hence, internal attackers can carry out
further attacks compared to external attackers. We leave an
extension of this paper to internal attackers for future work.

2 Related Work
This section sums up related work on ding-dong ditching,

pulse-delay attacks, and collision attacks. For an overview
of alternatives to ContikiMAC and their security issues, we
refer to [13] and [31, 18], respectively.

Denial-of-Sleep Attacks

Ding-Dong Ditching Pulse-Delay Attacks

Jamming

Attacks

Broadcast

Attacks

Droplet

Attacks

Collision Attacks

Unicast

Attacks

Figure 4: Taxonomy of Denial-of-Sleep Attacks

2.1 Ding-Dong Ditching
Ding-dong ditching belongs to the broader class of denial-

of-sleep attacks, which generally cause an increased energy
consumption on victim nodes [3]. As depicted in Figure
4, our term ding-dong ditching subsumes various denial-
of-sleep attacks, namely jamming, broadcast, unicast, and
droplet attacks. In jamming attacks, attackers constantly or
intermittently emit interference [21]. In broadcast attacks,
attackers inject or replay broadcast frames [3]. Likewise, in
unicast attacks, attackers inject or replay unicast frames. In
droplet attacks, an attacker only injects or replays the begin-
ning of 802.15.4 frames and then stops transmitting. Never-
theless, receivers will detect such frames and stay in receive
mode until the pretended end of such frames [12].

Raymond et al. devised a reactive defense against
broadcast attacks, entitled Clustered Adaptive Rate Limiting
(CARL) [22]. CARL detects broadcast attacks by caching
whether recent wake ups led to receiving an inauthentic
or replayed broadcast frame. In response to broadcast at-
tacks, CARL prolongs the wake-up interval. Furthermore,
Raymond et al. addressed the problem that prolonging the
wake-up interval should be done in a coordinated manner as
senders need to be aware of the wake-up interval of receivers.
To this end, they suggest that nodes do not prolong their
wake-up interval immediately when they detect a broadcast
attack. Instead, nodes that detected a broadcast attack and
have a frame to send, send this frame and only thereafter pro-
long their wake-up interval. Other nodes that also detected
a broadcast attack wait until they receive a frame and there-
upon prolong their wake-up intervals. However, if a node
does not receive any frame, the node eventually prolongs its
wake-up interval after a timeout. Unfortunately, this way of
coordinating the response to broadcast attacks (i) defers the
reaction to broadcast attacks and (ii) does not exclude the
possibility that some nodes temporarily use different wake-
up intervals than other nodes, thereby potentially causing an
increased energy consumption due to retransmissions.

Krentz et al. proposed a mitigation technique against
broadcast, unicast, and droplet attacks, named Practical On-
the-fly Rejection (POTR) [16]. The basic approach of POTR
is to embed one-time passwords (OTPs) in the headers of
802.15.4 frames. This enables POTR to cancel the reception
of injected, replayed, and overheard 802.15.4 frames early
on. However, POTR does not leave the receive mode dur-
ing the time span between a negative CCA and the detec-
tion of a frame. During this time span, ContikiMAC still
only leaves the receive mode if the fast-sleep optimization

110

decides so. Hence, our dozing optimization complements
POTR very well. In fact, in Section 6.1, we demonstrate that
POTR and the dozing optimization better mitigate ding-dong
ditching than any of these two mitigation techniques alone.
2.2 Pulse-Delay Attacks

Song et al. defined delay attacks as attacks where an “at-
tacker deliberately delays some of the time messages [. . .]
so as to fail the time synchronization process” [26]. Espe-
cially internal attackers can launch delay attacks since com-
promised nodes can send time messages at will. Moreover,
Ganeriwal et al. found that external attackers can launch so-
called pulse-delay attacks like explained in the introduction.
In order to counter pulse-delay attacks, Ganeriwal et al. sug-
gested setting an upper bound on the round-trip time [11].
Our secure phase-lock optimization refines this approach.
2.3 Collision Attacks

Ren et al. put forward a reactive defense against collision
attacks [23]. Specifically, Ren et al. use an intricate thresh-
old rule to detect collision attacks, as well as many other
denial-of-sleep attacks. If a node detects any denial-of-sleep
attack, they suggest switching to a low-power sleep mode
for some time. However, unlike Raymond et al., Ren et al.
neglected the problem that transmissions fail if a receiver is
currently reacting to denial-of-sleep attacks. Moreover, if a
receiver is sleeping, a sender may detect a collision attack
due to retransmissions and, if so, enter a low-power sleep
mode for some time, too. Thus, a single denial-of-sleep at-
tack may propagate through a whole network, thereby po-
tentially aggravating denial-of-sleep attacks. We avoid such
issues since our approach is to keep the energy consumption
of unicast transmissions low. For this, we estimate the uncer-
tainty about phase offsets and adapt the maximum number of
strobed unicast frames accordingly. While this idea already
came up [10], we seem first to tailor it to ContikiMAC, as
well as to consider pulse-delay attacks in this context.
3 The Dozing Optimization

In the following, we will use the following variables:
• tl is the time to transmit a maximum-length 802.15.4

frame of 127 bytes. When using 802.15.4 channels
in the 2.4-GHz band, tl is 4.256ms. This is because
802.15.4 has a transmission rate of 250kbit/s in the 2.4-
GHz band, and because each frame is prefixed with a 5-
byte synchronization header (SHR) and a 1-byte Frame
Length field.

• tr is the duration of one CCA. When using 802.15.4
channels in the 2.4-GHz band, tr is 0.128ms since
802.15.4 specifies that CCAs shall take 8 symbol pe-
riods in the 2.4-GHz band.

• tc is the configurable time span in between the two reg-
ular CCAs, as depicted in Figure 5.

• ti is ContikiMAC’s inter-frame period, as shown in Fig-
ure 5. Though ti is configurable, ti can not be set arbi-
trarily low to allow for sending and detecting acknowl-
edgement frames in between successively strobed uni-
cast frames. Neither can ti be set arbitrarily high as oth-
erwise the two regular CCAs of ContikiMAC may fall
in between successively strobed frames.

TX

RX

IDLES
e
n
d
e
r

R
e
c
e
iv
e
r

TX

RX

IDLE

Figure 5: Illustration of tc, ti, t0, t1, t∗, tw, and ∆

TX
RX

IDLES
e

n
d

e
r

R
e

ce
iv

e
r

TX
RX

IDLE

in each case

positive
CCA

negative
CCAs

Figure 6: Operation of a unicast transmission with dozing
enabled

• td is the time to detect an SHR. Assuming a transmis-
sion rate of 250kbit/s, td is 0.16ms.

• tp is the time that POTR needs to decide if a detected
frame is to be rejected. The actual value of tp depends
on the length of addresses, the length of OTPs, as well
as on whether using 802.15.4 channels in the 2.4-GHz
band or sub-GHz band. According to experimental re-
sults, tp can get as low as 0.253ms [16].

Recall that ContikiMAC’s fast-sleep optimization lets re-
ceivers go back to sleep (i) after tl if the radio noise lasts
longer than tl , (ii) after tl +ti if the silence period takes longer
than ti, and (iii) after tl + ti + td if no SHR is detected. At-
tackers can misuse this behavior by emitting interference.
Moreover, an attacker can act like a normal sender and in-
ject a frame, causing receivers to stay in receive mode as
long as indicated by the Frame Length field. This is where
POTR helps. POTR rejects injected, replayed, and overheard
frames tp after the detection of an SHR. Altogether, in the
worst case, an attacker can cause ContikiMAC to stay in re-
ceive mode for tr + tr + tl + ti + td + tp = woriginal(ti), where
“tr+” accounts for the occasion when the first of the two
regular CCAs returns positive and “+tr+” allows for a min-
imal overlap between the ending of the second CCA and the
beginning of a frame. Analogously, the maximum time that
ContikiMAC stays in receive mode for receiving a legitimate
frame is woriginal(ti)− tp + tl .

The operation of the dozing optimization is exemplified in
Figure 6. As opposed to the original design of ContikiMAC,
if a CCA returns negative, the dozing optimization goes back
to sleep and schedules another CCA after ti− tr. If this CCA
also returns negative, the dozing optimization goes back to
sleep again and performs another CCA after ti− tr and so on.

111

0
2

4
6

8
1

0

inter−frame period ti (in ms)

re
c
e

iv
e

 m
o

d
e

 (
in

 m
s
)

0.3 0.5 0.7 0.9 1.1 1.3 1.5

woriginal (ti)
wdozing (ti)

Figure 7: Worst-case duration that ContikiMAC stays in re-
ceive mode under ding-dong ditching (tl = 4.256ms, tr =
0.128ms, td = 0.16ms, tp = 0.253ms)

In accordance with the fast-sleep optimization, if the radio
noise lasts longer than tl , the dozing optimization schedules
no further CCAs. If, however, a subsequent CCA returns
positive, the dozing optimization stays in receive mode as
this indicates that a silence period in between two succes-
sively strobed frames is found. Also, in accordance with the
fast-sleep optimization, a receiver goes back to sleep if no
radio noise is detected after tl + ti and if no SHR is detected
after tl + ti + td . Essentially, the dozing optimization thus
mimics the fast-sleep optimization except for dozing after a
negative CCA when searching a silence period. Therefore,
the dozing optimization has no adverse effects on reliability.

Observe that, if ti is long, the dozing optimization dozes
longer and hence performs less CCAs, while, if ti is short,
the dozing optimization needs to spend less time in re-
ceive mode once a CCA returns positive. Concretely, in
the adversarial case, the dozing optimization performs up to
2+ d tl

ti
e+ 1 CCAs and stays at most ti + td + tp in receive

mode. Again, “2+” accounts for a positive first CCA and a
negative second CCA. Then, up to d tl

ti
e negative CCAs and

one positive CCA may follow. Next, the dozing optimiza-
tion stays up to ti + td + tp in receive mode. Altogether, the
worst-case time in receive mode in the adversarial case is
(3+ d tl

ti
e)× tr + ti + td + tp = wdozing(ti). Similarly, upon re-

ceiving a legitimate frame, the dozing optimization stays in
receive mode for at most wdozing(ti)− tp + tl .

As shown in Figure 7, wdozing(ti) has a minimum at ti =
0.7094. Figure 7 also shows that, from a theoretical stand-
point, the dozing optimization significantly reduces the time
spent in receive mode when waking up. In Section 6.1, we
will experimentally determine the actual energy savings.

4 The Secure Phase-Lock Optimization
Let us define the following variables like illustrated in

Figure 5:
• t0 is the time when the transmission of the next to last

acknowledged frame from a sender to a receiver began.

• t1 is the time when the transmission of the next to last
acknowledged frame from a sender to a receiver ended.

• t∗ is the time when a receiver woke up when receiving

the last acknowledged frame from a sender.

• tw is ContikiMAC’s wake-up interval.
The original phase-lock optimization schedules the start

of a strobe of unicast frames right before the intended re-
ceiver wakes up. For this, the original phase-lock optimiza-
tion exploits the fact that if an acknowledgement frame is re-
ceived, the next to last strobed unicast frame must have been
transmitted while the receiver did a CCA. As another strobe
of unicast frames to the receiver shall be sent, the original
phase-lock optimization starts strobing at t0 + tw×n− tg and
only strobes once more after t0+tw×n−tg+th, where tg and
th are configurable time spans, and the integer n is chosen so
that t0 + tw×n− tg is in the future.

4.1 Securing Acknowledgement Frames
In contrast to the original phase-lock optimization, the se-

cure phase-lock optimization ensures both the timeliness and
authenticity of acknowledgement frames. Doing so is desir-
able for two reasons. On the one hand, if a sender accepted
delayed acknowledgement frames, its phase-lock optimiza-
tion might save less energy than usual, as discussed in the in-
troduction. On the one hand, if a sender accepted unauthen-
ticated acknowledgement frames, an attacker could prevent
a receiver from receiving a unicast frame by injecting an ac-
knowledgement frame before the receiver wakes up. More-
over, the sender of the unicast frame would wrongly believe
that the unicast frame was successfully received [24].
4.1.1 Authenticity

For ensuring the authenticity of acknowledgement
frames, the secure phase-lock optimization adds a message
integrity code (MIC) to each acknowledgement frame. These
MICs are generated using the authenticated encryption with
associated data (AEAD) algorithm CCM*, which is also
used for securing other 802.15.4 frames [1]. CCM* takes
a 128-bit key, a 13-byte nonce, data to authenticate and en-
crypt, as well as the desired MIC length as inputs, and out-
puts a MIC, as well as the encrypted data if any. As key,
we use the same as was used for securing the unicast frame
whose receipt is being acknowledged. As nonce, we con-
catenate the receiver’s address, the strobe index of the uni-
cast frame whose receipt is being acknowledged (details fol-
low in Section 4.1.2), the frame counter of the unicast frame
whose receipt is being acknowledged, and, to differentiate
such nonces from others, 0xfe [15]. As data, we require the
contents of acknowledgement frames to be authenticated. Fi-
nally, as MIC length, we, again, use the same as was used in
the unicast frame whose receipt is being acknowledged.

Yet, before sending an authenticated acknowledgement
frame, a receiver should check the authenticity of the re-
ceived unicast frame. Otherwise, the following attack trace
would be possible. Let A and B be neighboring nodes. An at-
tacker can (i) send a unicast frame with A’s address as source
address, some frame counter c, and some strobe index i to
B, (ii) capture the authentic acknowledgement frame that B
replies with, (iii) wait until A sends a unicast frame with
frame counter c and strobe index i to B, and (iv) replay the
captured authentic acknowledgement frame before B wakes
up. As a result, A wrongly thinks that B received A’s unicast
frame with frame counter c and strobe index i.

112

It is, however, problematic to check the authenticity of
a received unicast frame before replying with an authen-
ticated acknowledgement frame since ContikiMAC’s inter-
frame period is pretty short. To this end, we propose four
measures, which accelerate the transmission of authenticated
acknowledgement frames. A first measure is, e.g., to check
the authenticity of a received unicast frames directly within
an interrupt context, rather than waiting for other processes
to finish. A second measure is to exploit the common fea-
ture of 802.15.4 transceivers to accelerate CCM* operations
in hardware. A third measure is to prepare authenticated ac-
knowledgement frames already during the reception of a uni-
cast frame. Finally, a forth measure is to start the transmis-
sion of an authenticated acknowledgement frame before the
authenticity of a received unicast frame is checked. Yet, this
only works if the transmission of the authenticated acknowl-
edgement frame can be aborted early enough if the unicast
frame turns out to be inauthentic. Early enough here means
that the abortion must happen before the MIC of the authen-
ticated acknowledgement frame is being transmitted.

Another issue with authenticating acknowledgement
frames is that session keys are not in place while establishing
session keys. In fact, the session key establishment proto-
col that we use in our implementation, namely the Adaptive
Key Establishment Scheme (AKES) [15], involves two uni-
cast transmissions. To resolve this conflict, we integrated a
special method for authenticating acknowledgement frames
into AKES, which we will specify in Section 4.3.

4.1.2 Timeliness
For ensuring the timeliness of acknowledgement frames,

the secure phase-lock optimization employs two comple-
mentary mechanisms. First, it inserts a 1-byte Strobe Index
field into the headers of unicast frames. The Strobe Index
field indicates how often a unicast frame was strobed already.
Further, since the Strobe Index field changes in each consec-
utively strobed unicast frame, CCM* has to be rerun over
each consecutively strobed unicast frame. To avoid a nonce
reuse in this process, the secure phase-lock optimization in-
corporates the strobe index into the CCM* nonce of unicast
frames, too. Second, the secure phase-lock optimization con-
fines the reception window for acknowledgement frames by
setting an upper bound and, deviating from Ganeriwal et al.’s
Secure Pairwise Synchronization (SPS) protocol [11], also a
lower bound on the round-trip time. We use ta to denote the
duration of this reception window.

These two mechanisms can not prevent pulse-delay at-
tacks per se, but enable us to upper-bound the maximum de-
lay due to pulse-delay attacks by ta. This is because (i) an
authentic acknowledgement frame must belong to the unicast
frame that was just sent and (ii) the duration of the reception
window for acknowledgement frames is ta. (i) holds, on the
one hand, because the CCM* nonce of an authenticated ac-
knowledgement frame includes both the strobe index and the
frame counter of the unicast frame whose receipt is being ac-
knowledged and, on the other hand, because the authenticity
of unicast frames is being checked before replying with au-
thenticated acknowledgement frames.

4.2 Bounding Strobes of Unicast Frames
While in the original phase-lock optimization the guard

time tg is static, the secure phase-lock optimization splits tg
into a static portion and a dynamic portion. The static por-
tion, denoted by ts, should account for inaccuracies. Addi-
tionally, ts must accommodate pulse-delay attacks and there-
fore ts > ta. The dynamic portion, denoted by tu, can be
chosen according to the current uncertainty about the phase
offset in relation to the intended receiver. This uncertainty
can be upper bounded as follows. Let θ be the frequency tol-
erance of the employed clocks and let t be the current time.
Then, tu = (t− t0)× (θ+θ) [10].

The above consideration also implies when the intended
receiver must have woken up, namely before t1 + tw× n+
(ts + tu). Hence, when starting a strobe of unicast frames
at t0 + tw× n− (ts + tu), only one additional unicast frame
must be strobed after t1 + tw× n+(ts + tu). That is, we can
limit the maximum duration of a strobe of unicast frames like
the original phase-lock optimization, but without needing a
fallback mechanism if unicast transmissions tend to fail.

To keep tu low and therefore strobes of unicast frames
short, we can send keep-alive messages. However, in our
implementation, keep-alive messages are sent by AKES any-
way to detect if a neighbor got out of range [15], thus obvi-
ating the need for sending dedicated keep-alive messages.

Note that t0 and t1 serve as lower and upper bounds of
the true wake-up time t∗. To allow for a better estimation
of t∗, the secure phase-lock optimization reports back on
∆ = t1− t∗ to senders by piggybacking ∆ on acknowledge-
ment frames, similar to what was suggested by Michel et
al. [19]. With the knowledge of ∆, the secure phase-lock
optimization starts strobing at t∗+ tw× n− (ts + t∗u), where
t∗u = (t− t∗)× (θ+ θ). Analogously, the secure phase-lock
optimization only strobes one additional unicast frame af-
ter t∗+ tw× n+(ts + t∗u). This interval is more narrow than
[t0 + tw×n− (ts + tu), t1 + tw×n+(ts + tu)], thereby mitigat-
ing collision attacks even better.

In the exceptional case that ts + t∗u ≥ tw
2 , the secure phase-

lock optimization starts strobing unicast frames instantly for
at most a whole wake-up interval plus once. This is because
this uncertainty is unreasonably large. Usually, this condi-
tion should not take effect as keep-alive messages should be
sent early enough so that ts + t∗u is always well below tw

2 .

4.3 Initializing Wake-Up Times
Figure 8a sketches how AKES establishes group session

keys. Initially, a node A broadcasts a HELLO, containing a
random number RA. Any receiver B that has not yet estab-
lished session keys with A also generates a random number
RB. Then, after a random back off period, B replies with
a HELLOACK, carrying RB, B’s group session key KB,∗ en-
crypted, as well as a MIC. For encrypting KB,∗ and generat-
ing the MIC, B derives a temporary pairwise key K′A,B from
a predistributed shared secret KA,B between A and B, as well
as the two random numbers RA and RB. Upon receipt of B’s
HELLOACK, A decrypts KB,∗ and checks, amongst others, the
MIC by deriving K′A,B analogously. If successful, A sends
an ACK to B, which includes A’s group session key KA,∗ en-
crypted and a MIC. Likewise, A encrypts KA,∗ and generates

113

(a)

(b)

Figure 8: Establishment of group session keys (a) as per
AKES and (b) like adapted by the secure phase-lock opti-
mization to securely initialize wake-up times in parallel

the MIC using the temporary pairwise key K′A,B once more.
To enable A and B to securely learn each other’s wake-

up time t∗ in parallel to establishing group session keys,
the secure phase-lock optimization authenticates acknowl-
edgement frames and adds additional data to HELLOACKs and
ACKs like shown in Figure 8b. Specifically, as A receives a
HELLOACK, A generates a random number Q, and acknowl-
edges by replying h(Q), where h is a one-way function. This
acknowledgement frame is sent immediately without execut-
ing AKES’s checks. As B receives h(Q), B stops strobing
and stores h(Q), as well as the current strobe index λ. Next,
if the HELLOACK passes AKES’s checks, A sends an ACK to
B, which includes Q, ∆HELLOACK, and the received strobe in-
dex λHELLOACK of the HELLOACK. Upon receipt of A’s ACK, B
ensures, in addition to AKES’s checks, that h(Q) = Q and
that λHELLOACK = λ. If the ACK passes all checks, B calculates
and stores t∗ by means of ∆HELLOACK. If, however, any check
fails, B ignores subsequent ACKs from A until retrying session
key establishment all over again. In any case, prior to exe-
cuting these checks, B acknowledges A’s ACK by sending an
acknowledgment frame that is authenticated using AKES’s
temporary pairwise key between A and B. Upon receipt of
this acknowledgement frame, A checks its authenticity and
timeliness, and, if successful, calculates and stores t∗. Oth-
erwise, if A’s ACK remains unacknowledged, A aborts session
key establishment with B.

Owing to acknowledging HELLOACKs and ACKs immedi-
ately without executing checks, the sender of a HELLOACK or
ACK may wrongly think that its HELLOACK or ACK was suc-
cessfully received, respectively. Consequently, session key
establishment may fail due to this. However, session key es-
tablishment may also fail due to jamming attacks. In Section
6.2.1, we will discuss the severity of such an occasion.

5 Implementation
Unfortunately, the current implementation of Contiki-

MAC, which is part of the Contiki operating system [7], is

0
2

4
6

8
1

0

inter−frame period ti (in ms)

re
c
e

iv
e

 m
o

d
e

 (
in

 m
s
)

0.3 0.5 0.7 0.9 1.1 1.3 1.5

woriginal (ti)
wdozing (ti)

Figure 9: Worst-case duration that ContikiMAC stays in re-
ceive mode under ding-dong ditching (tl = 4.256ms, tr =
0.32ms, td = 0.16ms, tp = 0.253ms)

subject to two issues. On the one hand, the current imple-
mentation blocks all other processes while sending frames.
On the other hand, Uwase et al. reported timing issues [28].
In view of these issues, we opted for implementing the doz-
ing and the secure phase-lock optimization as part of a whole
new implementation of ContikiMAC. Our target platform are
OpenMotes - a CC2538-based platform [29, 27].

In contrast to the current implementation of ContikiMAC,
our reimplementation allows other processes to progress
while sending and receiving frames. For this, we make use
of various interrupts, as well as the rtimer module of Con-
tiki. For example, we use the rtimer module for scheduling
wake ups, transmissions, dozing, and other events. As for
OpenMotes, the rtimer module is implemented on top of
the sleep timer of the CC2538. The sleep timer makes either
use of a 32,768Hz-RC oscillator or an external 32,768Hz-
crystal oscillator. We select the 32,768Hz-crystal oscillator
of OpenMotes. It has a frequency tolerance of 15ppm [29].

Furthermore, in our reimplementation, all timing issues
appear to be solved. However, unlike specified in 802.15.4,
the CC2538 needs 0.32ms per CCA. This is because the
CC2538 stays 0.192ms in an energy-consuming intermedi-
ate state before it actually starts with a CCA. This affects
the functions woriginal(ti) and wdozing(ti) in Figure 7. Figure
9 shows the updated functions. Now, wdozing(ti) has a min-
imum at 1.064ms. Thus, 1.064ms constitutes the optimal
value for ti in terms of worst-case duration in receive mode.
However, owing to the limited precision of the 32,768Hz-
crystal oscillator, our reimplementation rounds up to ti =
1.068ms. Other timing-related defaults are tc = 0.854ms
(time between the two regular CCAs), tw = 125ms (wake-
up interval), ta = 0.122ms (reception window for acknowl-
edgement frames), ts = 0.183ms (static guard time), and
θ = 15ppm (frequency tolerance).

Figure 10 depicts how our reimplementation of Contiki-
MAC integrates into Contiki’s network stack. At the RADIO
layer, we use our version of the cc2538 rf driver. Our
version deviates from the existing one in that it (i) sup-
ports listening for interrupts, (ii) only contains code that
is needed by our reimplementation of ContikiMAC, (iii)
provides access to the RXFIFO as required by POTR, and

114

NETSTACK_RADIO

cc2538_rf_driver

NETSTACK_RDC

secrdc_driver

NETSTACK_MAC

csma_driver

NETSTACK_LLSEC

adaptivesec_driver

NETSTACK_FRAMER

contikimac_framer

adaptivesec_framer

potr_framer

R
R

R
R

Figure 10: Integration of our reimplementation of Contiki-
MAC into Contiki’s network stack

(iv) supports overwriting bytes in the TXFIFO, which we,
e.g., use for setting the current strobe index. At the RDC
layer, the secrdc driver contains our reimplementation of
ContikiMAC. Optionally, the secrdc driver can also be
configured to act like the original version of ContikiMAC.
The secrdc driver communicates with the contikimac-
framer, which potentially adds and removes padding bytes

to avoid that a frame can fall in between the two regu-
lar CCAs of ContikiMAC. The contikimac framer calls
the adaptivesec framer, which, in turn, calls the potr-
framer. Alternatively, we also support to disable POTR,

in which case an 802.15.4-compliant framer is called in-
stead of the potr framer. Yet, the secure phase-lock opti-
mization can only be enabled if POTR is also enabled. At
the MAC layer, Contiki’s csma driver schedules retransmis-
sions in adherence to 802.15.4. At the LLSEC layer, we run
the adaptivesc driver, which implements both AKES and
802.15.4 security [15]. On top of the LLSEC layer, upper-
layer protocols can be run, such as the 6LoWPAN adap-
tion layer, which compresses and decompresses IPv6 pack-
ets, and potentially fragments and reassembles them [14].

6 Evaluation
Using our reimplementation of ContikiMAC, we now as-

sess the effectiveness and efficiency of both of our optimiza-
tions. In particular, we demonstrate that the dozing opti-
mization (i) noticeably reduces the energy consumption of
true wake ups, (ii) significantly reduces the energy consump-
tion under ding-dong ditching, and (iii) practically incurs no
overhead in program memory. Subsequently, we show that
the secure phase-lock optimization (i) mitigates collision at-
tacks greatly, (ii) resists pulse-delay attacks, (iii) makes the
reception and transmission of unicast frames a bit more en-
ergy consuming, and (iv) entails a moderate overhead in pro-
gram memory.
6.1 The Dozing Optimization
6.1.1 Energy Consumption of True Wake Ups

To compare the energy consumption of OpenMotes dur-
ing frame receptions with versus without the dozing opti-
mization, an OpenMote A sent 100-byte broadcast frames
at the rate of 8Hz. Another OpenMote B was placed 50cm
away from A and woke up at a randomized rate. During
100 frame receptions, the current draw of B was recorded

0
2

0
4

0

time (in ms)

c
u

rr
e

n
t

d
ra

w
 (

in
 m

A
)

0 1 2 3 4 5 6 7 8 9 10

Figure 11: Current draw during ContikiMAC’s two regular
CCAs

0
2

0
4

0

time (in ms)

c
u

rr
e

n
t

d
ra

w
 (

in
 m

A
)

0 1 2 3 4 5 6 7 8 9 10

(a)

0
2

0
4

0

time (in ms)

c
u

rr
e

n
t

d
ra

w
 (

in
 m

A
)

0 1 2 3 4 5 6 7 8 9 10

(b)

Figure 12: Current draw during a true wake-up when the
dozing optimization is (a) off and (b) on

by connecting B, a µCurrent Gold, and a Rigol DS1000E
oscilloscope in series. This method of measuring the cur-
rent draw of OpenMotes is further detailed in [29]. Mea-
surements were triggered by setting B’s AD3/DIO3 pin high
1ms before each wake up. This experiment was conducted
two times for the cases of (i) disabling the dozing optimiza-
tion and (ii) enabling the dozing optimization. Furthermore,
as a baseline for comparison, 100 traces of B’s current draw
during ContikiMAC’s two regular CCAs were recorded, too.
POTR and upper-layer protocols were disabled throughout.

Figure 11 exemplifies the current draw during Contiki-
MAC’s two regular CCAs. The area under the curve matches
the consumed charge. According to Simpson’s rule, the area
in this example is 0.0423mAs. This measure can be used
to calculate the energy consumption by multiplying by the
supply voltage. In the following, we assume a constant
supply voltage of 3V, yielding an energy consumption of
0.0423mAs×3V = 0.127mJ in this example.

Figure 12a exemplifies a frame reception, where the doz-
ing optimization is off. Here, the first of the two regular

115

●●●●

energy consumption (in mJ)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

two CCAs

(a)

with dozing

without dozing

energy consumption (in mJ)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

(b)

Figure 13: Energy consumption (a) for two CCAs and (b)
per reception of a 100-byte broadcast frame

CCAs returns negative, which is why B stays in receive mode
and periodically performs CCAs so as to find a silence pe-
riod. As B finds a silence period at time 2ms, B stops doing
CCAs and enables the SHR search of the CC2538. It would
also be possible to enable the SHR search of the CC2538
right from the beginning, but then chances are that an SHR is
found within radio noise or the previously transmitted frame
[25]. Then, B stays in receive mode to receive the approach-
ing 100-byte broadcast frame. Once the frame is received, B
processes it and finally enters a low-power sleep mode.

Figure 12b exemplifies a frame reception, where the doz-
ing optimization is on. Since the first of the two regular
CCAs returns negative, B starts dozing. The second CCA
also returns negative, which is why B continues to doze.
Eventually, the third CCA returns positive, causing B to stay
in receive mode. At this point, B also enables the SHR search
of the CC2538. Again, one could enable the SHR search of
the CC2538 in the first place. Despite this, we disable the
SHR search of the CC2538 during CCAs. This is not be-
cause we want to avoid detecting SHRs (which is unneces-
sary since the dozing optimization disables the receive mode
after negative CCAs anyway), but because the CC2538 ap-
pears to work more reliably this way. Lastly, B processes the
received 100-byte broadcast frame and goes back to sleep.

Figure 13 shows boxplots of the energy consumption per
wake up. The baseline energy consumption, i.e. when just
doing two CCAs, is very low. However, if a frame comes in,
the energy consumption is high. Enabling the dozing opti-
mization saves a good amount of energy.

6.1.2 Energy Consumption under Ding-Dong Ditch-
ing

To determine the energy consumption under jamming,
broadcast, and unicast attacks, the above experiment was
adapted as follows. As for jamming attacks, A continu-
ously emitted radio noise via a special transmit mode of its
CC2538. In four subsequent runs, B was programmed to use
(i) neither POTR nor the dozing optimization, (ii) not POTR,
but the dozing optimization, (iii) POTR, but not the dozing
optimization, and (iv) both POTR and the dozing optimiza-
tion. In each run, 100 traces of B’s current draw during wake

●●●

●●●●

●●

●

both of them

POTR only

dozing only

neither of them

energy consumption (in mJ)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

(a)

both of them

POTR only

dozing only

neither of them

energy consumption (in mJ)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

(b)

both of them

POTR only

dozing only

neither of them

energy consumption (in mJ)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

(c)

Figure 14: Energy consumption per wake up under (a) jam-
ming, (b) broadcast, and (c) unicast attacks

ups were recorded. As for broadcast attacks, the procedure
was the same, except that A continuously strobed a 100-byte
broadcast frame that is rejected by B due to an invalid MIC,
or rather an invalid OTP. Likewise, as for unicast attacks,
A continuously strobed a 100-byte unicast frame that is re-
jected by B due to an invalid MIC, or rather an invalid OTP.

Figure 14a shows the results for jamming attacks. With-
out any defense, ContikiMAC’s fast sleep optimization
leaves the receive mode only after tl = 4.256ms. This
causes a mean energy consumption of 0.372mJ. By con-
trast, when using the dozing optimization, jamming attacks
become much less severe, especially when considering that
the mean energy consumption of doing two CCAs already is
0.123mJ, as shown in Figure 13. Expectably, POTR does not
help in mitigating jamming attacks since POTR only comes
into effect once an SHR is detected.

Figure 14b shows the results for broadcast attacks. If
using no defense or only the dozing optimization, we get
almost the same energy consumption as in Figure 13. On
the one hand, this is because even frames with inauthentic
MICs are fully received and validated before they get re-
jected. On the other hand, we disabled upper-layer protocols
in both experiments. Normally, the processing of authentic
frames is more energy consuming. Enabling POTR mitigates
broadcast attacks significantly since POTR rejects unwanted
frames on the fly. Even more energy can be saved by en-
abling both POTR and the dozing optimization.

116

0
5

0
1

0
0

1
5

0
2

0
0

duration since the last acknowledged frame (in min)

m
a

x
 s

tr
o

b
e

 d
u

ra
ti
o

n
 (

in
 m

s
)

0 10 20 30 40 50 60 70 80 90

original phase−lock

secure phase−lock

Figure 15: Maximum duration of a strobe of unicast frames
(tl = 4.256ms, ti = 1.068ms, ts = 0.183ms, θ = 15ppm)

Figure 14c shows the results for unicast attacks. In con-
trast to broadcast attacks, unicast attacks may cause victim
nodes to send acknowledgement frames. This actually hap-
pened in our experiment because, if POTR is off, even in-
jected and replayed unicast frames are being acknowledged
if they pass basic validity checks. Therefore, unicast attacks
cause a higher energy consumption than broadcast attacks if
POTR is off. If POTR is on, the 100-byte unicast frames are
rejected on the fly and hence no acknowledgement frames
are sent. Unicast attacks can also be further mitigated by
enabling the dozing optimization in addition.

6.1.3 Overhead in Program Memory
The overhead in program memory of the dozing optimiza-

tion was measured with the tool arm-none-eabi-size. Sur-
prisingly, we found that enabling the dozing optimization in-
curs a marginal overhead in program memory of 8 bytes. The
reason for this becomes apparent in the code. In fact, the doz-
ing optimization requires only minor changes to the original
version of ContikiMAC.

6.2 The Secure Phase-Lock Optimization
6.2.1 Mitigation of Collision Attacks

When using the original phase-lock optimization, senders
resort to strobe unicast frames for a whole wake-up interval
plus once if unicast transmissions to the intended receiver
tend to fail. Thus, in the worst case, the duration of a strobe
of unicast frames is tw + tl + ti + tl , where “+tl+” allows for
the situation that the transmission of the next to last unicast
frame may have begun right before tw elapsed.

Conversely, when using the secure phase-lock optimiza-
tion, the severity of collision attacks is much lower. This is
because the maximum duration of a strobe of unicast frames
(other than HELLOACKs or ACKs) is min{2× ts +2× t∗u , tw}+
tl + ti + tl . Taking the minimum over 2× ts + 2× t∗u and tw
accounts for the fact that the secure phase-lock optimization
strobes unicast frames instantly for a full wake-up interval
plus once if ts + t∗u becomes greater or equal than tw

2 . Figure
15 shows how this duration compares to that of the original
phase-lock optimization. Clearly, if the last acknowledged
frame was sent a short time ago, the secure phase-lock op-
timization mitigates collision attacks greatly. For mitigating
collision attacks throughout a session, we rely on the keep-

alive messages of AKES, as mentioned in Section 4.2. By
default, we configure AKES to send a keep-alive message to
a neighbor that sent no timely authentic acknowledgement
frame for 5min. This reduces the maximum duration of a
strobe of unicast frames within a session from 134.58ms to
18.95ms in our implementation. On the other hand, if an at-
tacker jams frames that pertain to AKES’s three-way hand-
shake, AKES’s three-way handshake may either fail or suc-
ceed. If AKES’s three-way handshake fails, victim nodes
may even save energy because of not sending upper-layer
traffic thereafter. However, it remains to be investigated if,
by preventing AKES from establishing session keys, attack-
ers can also cause a higher energy consumption since this
prevents the upper-layer routing protocol from using certain
routes. If AKES’s three-way handshake succeeds despite
collision attacks, at least subsequent collision attacks are be-
nign. Similarly, if an attacker jams keep-alive messages of
AKES, AKES will delete the affected neighbor and, at some
point, try to establish new session keys with that neighbor.
However, up until establishing new session keys, no more
unicast frames will be sent to the affected neighbor. Thus,
again, victim nodes may actually save energy when attack-
ers interfere with keep-alive messages of AKES.
6.2.2 Resistance to Pulse-Delay Attacks

In the introduction, we introduced two methods for
launching pulse-delay attacks against the original phase-lock
optimization. Using either method, attackers can cause the
original phase-lock optimization to strobe unicast frames
more often. Moreover, pulse-delay attacks may necessitate
relearning the wake-up time of the affected receiver.

By contrast, our secure phase-lock optimization resists
pulse-delay attacks by only accepting acknowledgement
frames that are delayed up to ta. Otherwise, if no timely au-
thentic acknowledgement frame is received by a victim node,
a pulse-delay attack actually degrades to a collision attack.
As discussed above, the secure phase-lock optimization mit-
igates collision attacks greatly.
6.2.3 Cost of Securing Acknowledgement Frames

While the secure phase-lock optimization greatly miti-
gates collision attacks and even resists pulse-delay attacks, it
comes at the cost of rendering the reception and transmission
of unicast frames more energy consuming due to authenticat-
ing acknowledgement frames.

In order to get an overview of the increased energy con-
sumption at the receiver side, the experiment in Section 6.1.1
was modified as follows. This time, A sent 100-byte unicast
frames to B. In three subsequent runs, A and B were config-
ured to use (i) the original phase-lock optimization, but not
POTR, (ii) the original phase-lock optimization and POTR,
and (iii) the secure phase-lock optimization and POTR. In
each run, 100 traces of B’s energy consumption during frame
receptions were recorded. Throughout, 8-byte MICs and the
dozing optimization were used.

Figure 16a shows the results. If POTR is disabled, our im-
plementation sends 802.15.4-compliant acknowledgement
frames in software. (Alternatively, one could leverage the
built-in capability of the CC2538 to send 802.15.4-compliant
acknowledgement frames. However, this feature does not
seem to work when enabling the SHR search of the CC2538

117

secure phase−lock and POTR

original phase−lock and POTR

original phase−lock

energy consumption (in mJ)

0.0 0.2 0.4 0.6 0.8

(a)

●

●●

secure phase−lock and POTR

original phase−lock and POTR

original phase−lock

energy consumption (in mJ)

0.0 0.2 0.4 0.6 0.8

(b)

Figure 16: Energy consumption per (a) reception and (b)
transmission of a 100-byte unicast frame

0
2

0
4

0

time (in ms)

c
u

rr
e

n
t

d
ra

w
 (

in
 m

A
)

0 1 2 3 4 5 6 7 8 9 10

Figure 17: Current draw while the secure phase-lock opti-
mization transmits a 100-byte unicast frame

without restarting the receive mode thereafter, which we
do in order to save time.) If POTR is enabled, the energy
consumption per reception decreases slightly because POTR
uses shorter acknowledgement frames. Finally, if the secure
phase-lock optimization is enabled, the energy consumption
per reception increases only marginally since we accelerate
the transmission of authenticated acknowledgement frames
using the four measures that were listed in Section 4.1.1.

To also get an overview of the increased energy consump-
tion at the sender side, the above experiment was repeated
with the difference being that the energy consumption of A,
rather than B, was measured during 100 transmissions per
run. For triggering measurements, A set its AD3/DIO3 pin
high 1ms before strobing. Furthermore, the guard time tg
of the original phase-lock optimization was cut down so that
both the secure and the original phase-lock optimization only
needed to strobe each unicast frame at most twice.

Figure 16b gives the results. Again, when switching the
secure phase-lock optimization on, the overall increase in en-
ergy consumption is low. In this regard, we note that our im-
plementation applies a tweak to the original operation of uni-
cast transmissions. In between the first two unicast frames of
a strobe, our implementation disables the receive mode like
when strobing broadcast frames, as exemplified in Figure 17.
This works because the first frame of a strobe only serves to

overhead in program memory (in bytes)

0 1000 2000 3000 4000 5000 6000 7000 8000

ContikiMAC with dozing

and POTR

and original phase−lock

and secure phase−lock

Figure 18: Overhead in program memory of the secrdc-
driver compared to using the nullrdc driver

wake up the receiver(s).
6.2.4 Overhead in Program Memory

For measuring the overhead in program memory of the
secure phase-lock optimization, the tool arm-none-eabi-
-size was used. In addition, to put this value into per-
spective, the overhead in program memory of the secrdc-
driver compared to using Contiki’s nullrdc driver,

which just always leaves the transceiver in receive mode,
was measured. Specifically, the overhead in program mem-
ory of the secrdc driver was measured in four different
configurations, namely when (i) POTR, as well as any phase-
lock optimization are off, (ii) POTR is on and any phase-lock
optimization is off, (iii) both POTR and the original phase-
lock optimization are on, and (iv) both POTR and the secure
phase-lock optimization are on. Throughout, the dozing, as
well as POTR’s last bits optimization were enabled.

Figure 18 dissects the overhead in program memory in all
four configurations. For example, enabling the secure phase-
lock optimization consumes 1736 bytes of program memory.
All configurations fit comfortably onto OpenMotes as they
have 512KB of program memory [29].
7 Conclusions and Future Work

ContikiMAC falls short of countering denial-of-sleep at-
tacks. We have proposed two optimizations to ContikiMAC
to counter ding-dong ditching, collision attacks, as well as
pulse-delay attacks. Our optimizations come at a low over-
head and also save energy during normal operation. Both
optimizations do, however, not prevent denial-of-sleep at-
tacks entirely. For example, even though the secure phase-
lock optimization resists hidden wormholes, hidden worm-
holes can still cause an energy-consuming reorganization
of the routing topology [17]. Future work should thus in-
vestigate further preventive, detective, and reactive defenses
against denial-of-sleep attacks. Besides, future work should
integrate other supplements to the original version of Con-
tikiMAC into our implementation, such as burst forwarding
[9, 5], opportunistic routing [8, 20], or channel hopping [2].
8 References
[1] IEEE Standard 802.15.4, 2011.
[2] B. Al Nahas, S. Duquennoy, V. Iyer, and T. Voigt. Low-power listening

goes multi-channel. In Proceedings of the 2014 IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS),
pages 2–9. IEEE, 2014.

[3] M. Brownfield, Y. Gupta, and N. Davis. Wireless sensor network de-
nial of sleep attack. In Proceedings of the Sixth Annual IEEE SMC
Information Assurance Workshop (IAW ’05), pages 356–364. IEEE,
2005.

118

[4] H. S. Chiu and K.-S. Lui. DelPHI: wormhole detection mechanism for
ad hoc wireless networks. In Proceedings of the 1st International Sym-
posium on Wireless Pervasive Computing, pages 6–11. IEEE, 2006.

[5] B. Djamaa and M. Richardson. Improved broadcast communication
in radio duty-cycled networks. Technical report, 2015.

[6] A. Dunkels. The ContikiMAC radio duty cycling protocol. Technical
Report T2011:13, Swedish Institute of Computer Science, 2011.

[7] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks (LCN 2004), pages 455–462. IEEE, 2004.

[8] S. Duquennoy, O. Landsiedel, and T. Voigt. Let the tree bloom: scal-
able opportunistic routing with ORPL. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems (SenSys
’13), pages 2:1–2:14. ACM, 2013.

[9] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy links, low power,
high throughput. In Proceedings of the 9th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys ’11), pages 12–25. ACM,
2011.

[10] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: an ultra low power
MAC protocol for multi-hop wireless sensor networks. In Proceedings
of the First International Workshop on Algorithmic Aspects of Wire-
less Sensor Networks (ALGOSENSORS 2004), pages 18–31. Springer,
2004.

[11] S. Ganeriwal, C. Pöpper, S. Čapkun, and M. B. Srivastava. Secure
time synchronization in sensor networks. ACM Transactions on Infor-
mation and System Security (TISSEC), 11(4):23:1–23:35, 2008.

[12] Z. He and T. Voigt. Droplet: a new denial-of-service attack on low
power wireless sensor networks. In Proceedings of the 2013 IEEE
10th International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS 2013), pages 542–550. IEEE, 2013.

[13] P. Huang, L. Xiao, S. Soltani, M. Mutka, and N. Xi. The evolution of
MAC protocols in wireless sensor networks: a survey. IEEE Commu-
nications Surveys Tutorials, 15(1):101–120, 2013.

[14] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282, 2011. Updates RFC
4944.

[15] K.-F. Krentz and Ch. Meinel. Handling reboots and mobility in
802.15.4 security. In Proceedings of the 31st Annual Computer Se-
curity Applications Conference (ACSAC ’15), pages 121–130. ACM,
2015.

[16] K.-F. Krentz, Ch. Meinel, and M. Schnjakin. POTR: practical on-the-
fly rejection of injected and replayed 802.15.4 frames. In Proceedings
of the International Conference on Availability, Reliability and Secu-
rity (ARES 2016). IEEE, 2016.

[17] K.-F. Krentz and G. Wunder. 6LoWPAN security: avoiding hidden
wormholes using channel reciprocity. In Proceedings of the 4th Inter-
national Workshop on Trustworthy Embedded Devices (TrustED ’14),
pages 13–22. ACM, 2014.

[18] A. Mauro, X. Fafoutis, S. Mödersheim, and N. Dragoni. Detecting
and preventing beacon replay attacks in receiver-initiated MAC pro-

tocols for energy efficient WSNs. In Proceedings of the 18th Nordic
Conference (NordSec 2013).

[19] M. Michel, T. Voigt, L. Mottola, N. Tsiftes, and B. Quoitin. Pre-
dictable MAC-level performance in low-power wireless under inter-
ference. In Proceedings of the 2016 International Conference on Em-
bedded Wireless Systems and Networks (EWSN ’16), pages 13–22.
Junction, 2016.

[20] G. Z. Papadopoulos, A. Gallais, T. Noel, V. Kotsiou, and P. Chatz-
imisios. Enhancing ContikiMAC for bursty traffic in mobile sensor
networks. In Proceedings of IEEE SENSORS 2014, pages 257–260.
IEEE, 2014.

[21] D. R. Raymond, R. Marchany, M. Brownfield, and S. Midkiff. Effects
of denial-of-sleep attacks on wireless sensor network MAC protocols.
IEEE Transactions on Vehicular Technology, 58(1):367–380, 2009.

[22] D. R. Raymond and S. Midkiff. Clustered adaptive rate limiting:
defeating denial-of-sleep attacks in wireless sensor networks. In
Proceedings of the Military Communications Conference (MILCOM
2007), pages 1–7. IEEE, 2007.

[23] Q. Ren and Q. Liang. Secure media access control (MAC) in wireless
sensor networks: intrusion detections and countermeasures. In Pro-
ceedings of the 15th IEEE International Symposium on Personal, In-
door and Mobile Radio Communications (PIMRC 2004), pages 3025–
3029. IEEE, 2004.

[24] N. Sastry and D. Wagner. Security considerations for IEEE 802.15.4
networks. In Proceedings of the 3rd ACM Workshop on Wireless Se-
curity (WiSe ’04), pages 32–42. ACM, 2004.

[25] M. Sha, G. Hackmann, and C. Lu. Energy-efficient low power listen-
ing for wireless sensor networks in noisy environments. In Proceed-
ings of the 12th International Conference on Information Processing
in Sensor Networks (IPSN ’13), pages 277–288. ACM, 2013.

[26] H. Song, S. Zhu, and G. Cao. Attack-resilient time synchronization
for wireless sensor networks. In Proceedings of the 2005 IEEE In-
ternational Conference on Mobile Adhoc and Sensor Systems (MASS
2005). IEEE, 2005.

[27] Texas Instruments. CC2538 SoC for 2.4-GHz IEEE 802.15.4 & Zig-
Bee/ZigBee IP Applications User’s Guide (Rev. C). http://www.ti.
com/lit/ug/swru319c/swru319c.pdf.

[28] M. P. Uwase, M. Bezunartea, J. Tiberghien, J.-M. Dricot, and
K. Steenhaut. Poster: ContikiMAC, some critical issues with the
CC2420 radio. In Proceedings of the 2016 International Confer-
ence on Embedded Wireless Systems and Networks (EWSN ’16), pages
257–258. Junction, 2016.

[29] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister. OpenMote: open-
source prototyping platform for the industrial IoT. In Ad Hoc Net-
works, volume 155, pages 211–222. Springer, 2015.

[30] A. D. Wood and J. A. Stankovic. Denial of service in sensor networks.
IEEE Computer, 35(10):54–62, 2002.

[31] W. Yang, Q. Wang, Y. Qi, and S. Sun. Time synchronization attacks
in IEEE802.15.4e networks. In Proceedings of the International Con-
ference on Identification, Information and Knowledge in the Internet
of Things (IIKI 2014), pages 166–169. IEEE, 2014.

119

