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Abstract
Many virtual machines have been developed for tiny de-

vices with only a few KB of RAM and tens to a few hundred
KB of flash memory. They pack an impressive set of features
in a very limited space, but suffer from a large performance
penalty: a slowdown of one to two orders of magnitude com-
pared to optimised native code is typical for most VMs, re-
ducing throughput and increasing power consumption.

Compiling the VM’s bytecode to native code to improve
performance has been studied extensively for larger devices,
but has not received much attention in the context of sensor
networks, where the restricted resources mean most modern
techniques cannot be applied. Simply replacing each VM in-
struction with a predefined sequence of native instructions is
known to improve performance, but there is still a large gap
to native C performance and the trade off is that the resulting
code is several times larger than the compiled C equivalent,
limiting the amount of code that can be loaded onto a device.

This paper presents techniques to mitigate this code size
overhead, making translation to native code a more attrac-
tive option, and to further improve performance. We start by
analysing the overhead resulting from the basic approach us-
ing a set of benchmarks with different characteristics: sort, bi-
nary search, fft, rc5, xxtea and md5. We identify three distinct
sources of overhead, two of which are related to the JVM’s
stack-based architecture, and propose a set of optimisations
to target each of them.

Combined these optimisations reduce code size overhead
by 59%. While they do increase the size of the VM, the break
even point at which this fixed cost is compensated for is well
within the range of memory typically available on a sensor
device, allowing us to load more code on a device. Perfor-
mance overhead is reduced by 79%, resulting in an average
performance that is only 68% slower than optimised C.

1 Introduction
Sensor nodes and other Internet-of-things devices come in

a wide range, with vastly different performance characteris-
tics, cost, and power requirements. On one end of the spec-
trum are devices like the Intel Edison and Raspberry Pi: pow-
erful enough to run Linux, but relatively expensive and power
hungry. On the other end are CPUs like the Atmel Atmega or
TI MSP430: much less powerful, but also much cheaper and
low power enough to potentially last for months or years on
a single battery. For the first class we can use normal operat-
ing systems, languages, and compilers, but in this paper, we
focus specifically on the latter class for which no such clear
standards exist. Our experiments were performed on an AT-
mega128: a 16MHz 8-bit processor, with 4KB of RAM and
128KB of flash programme memory, but the approach should
yield similar results on other CPUs in this category.

There are several advantages to running a VM. One is
ease of programming. Many VMs allow the developer to
write programmes at a higher level of abstraction than the
bare-metal C programming that is still common for these de-
vices. Second, a VM can offer a safe execution environment,
preventing buggy or malicious code from disabling the de-
vice. A third advantage is platform independence. While
early wireless sensor network applications often consisted of
homogeneous nodes, current Internet-of-Things/Machine-to-
Machine applications are expected to run on a range of differ-
ent platforms. A VM can significantly ease the deployment
of these applications.

While current VMs offer an impressive set of features, al-
most all sacrifice performance. The VMs for which we have
found concrete performance data are all between one and two
orders of magnitude slower than native code. In many scenar-
ios this may not be acceptable for two reasons: for many tasks
such as periodic sensing there is a hard limit on the amount of
time that can be spent on each measurement, and an applica-
tion may not be able to tolerate a slowdown of this magnitude.
Perhaps more importantly, one of the main reasons for using
such tiny devices is their extremely low power consumption.
Often, the CPU will be in sleep mode most of the time, so
little energy is be spent in the CPU compared to communi-
cation, or sensors. But if the slowdown incurred by a VM
means the CPU has to be active 10 to 100 times longer, this
may suddenly become the dominant factor.

As an example, one of the few applications reporting a de-
tailed breakdown of its power consumption is Mercury [22],
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a platform for motion analysis. The greatest energy consumer
is the sampling of a gyroscope, at 53.163 mJ. Only 1.664 mJ
is spent in the CPU on application code for an activity recog-
nition filter and feature extraction. When multiplied by 10 or
100 however, this becomes a very significant, or even by far
the largest energy consumer. A more complex operation such
as a 512 point FFT costs 12.920 mJ. For tasks like this, even
a slowdown by a much smaller factor will have a significant
impact on the total energy consumption.

A better performing VM is needed, preferably one that
performs as close to native performance as possible. Trans-
lating bytecode to native code is a common technique to im-
prove performance. Translation can occur at three moments:
offline, ahead-of-time (AOT), or just-in-time (JIT). JIT com-
pilers translate only the necessary parts of bytecode at run-
time, just before they are executed. They are common on
desktops and on more powerful mobile environments, but are
impractical on sensor node platforms that can often only ex-
ecute code from flash memory. This means a JIT compiler
would have to write to flash memory at runtime, which would
cause unacceptable delays. Translating to native code offline,
before it is sent to the node, has the advantage that more
resources are available for the compilation process. We do
not have a JVM to AVR compiler to test the resulting per-
formance, but we would expect it would be similar to native
code. However, doing so, even if only for small, performance
critical sections of code, sacrifices two of the key advantages
of using a VM: The host now needs knowledge of the tar-
get platform, and needs to prepare a different binary for each
CPU used in the network. For the node it will be harder to
provide a safe execution environment when it receives binary
code.

Therefore, we focus on the middle option in this paper:
translating the bytecode to native code on the device itself, at
load time. The main research question we wish to answer is
what tradeoffs are involved in AOT compilation on a sensor
node, and how close an AOT compiling sensor node VM can
come to native C performance.

2 Related work
Many VMs have been proposed that are small enough to fit

on a resource-constrained sensor node. They can be divided
into two categories: generic VMs and application-specific
VMs, or ASVMs [21] which provide specialised instructions
for a specific problem domain. One of the first VMs proposed
for sensor networks, Maté [20], is an ASVM. It provides sin-
gle instructions for tasks that are common on a sensor node,
so programmes can be very short. Unfortunately they have to
be written in a low-level assembly-like language, limiting its
target users. SwissQM [23] is a more traditional VM, based
on a subset of the Java VM, but extended with instructions
to access sensors and do data aggregation. VM* [18] sits
halfway between the generic and ASVM approach. It is a
Java VM that can be extended with new features according to
application requirements. Unfortunately, it is closed source.

Several generic VMs have also been developed, allowing
the programmer to use general purpose languages like Java,
Python, or even LISP [14, 7, 5, 12]. The smallest official Java
standard is the Connected Device Limited Configuration [1],

but since it targets devices with at least a 16 or 32-bit CPU and
160-512KB of flash memory available, it is still too large for
most sensor nodes. The available Java VMs for sensor nodes
all offer some subset of the standard Java functionality, oc-
cupying different points in the tradeoff between the features
they provide, and the resources they require.

Only a few papers describing sensor node VMs contain
detailed performance measurements. TinyVM [15] reports a
slowdown between 14x and 72x compared to native C, for a
set of 9 benchmarks. DVM [6] has different versions of the
same benchmark, where the fully interpreted version is 108x
slower than the fully native version. Ellul reports some mea-
surements on the TakaTuka VM [5, 9] where the VM is 230x
slower than native code, and consumes 150x as much energy.
SensorScheme [12] is up to 105x slower. Finally, Darjeeling
[7] reports between 30x and 113x slowdown. Since perfor-
mance depends on many factors, it is hard to compare these
numbers directly. But the general picture is clear: current
interpreters are one to two orders of magnitude slower than
native code.

Translating bytecode to native code to improve perfor-
mance has been a common practice for many years. A wide
body of work exists exploring various approaches, either of-
fline, ahead-of-time or just-in-time. One common offline
method is to first translate the Java code to C as an inter-
mediate language, and take advantage of the high quality C
compilers available [24]. Courbot et al. describe a different
approach, where code size is reduced by partly running the
application before it is loaded onto the node, allowing them
to eliminate code that is only needed during initialisation [8].
Although the initialised objects are translated to C structures
that are compiled and linked into a single image, the bytecode
is still interpreted. While in general we can produce higher
quality code when compiling offline, doing so sacrifices key
advantages of using a VM.

Hsieh et al. describe an early ahead-of-time compiling
desktop Java VM [16], focussing on translating the JVM’s
stack-based architecture to registers. In the Japaleño VM,
Alpern et al. take an approach that holds somewhere between
AOT and JIT compilation [3]. The VM compiles all code to
native code before execution, but contains different compil-
ers to do so. A fast baseline compiler simply mimics the Java
stack, but either before or during runtime, a slower optimising
compiler may be used to speed up critical methods.

Since JIT compilers work at runtime, much effort has gone
into making the compilation process as light weight as pos-
sible, for example [19]. More recently these efforts have in-
cluded JIT compilers targeted specifically at embedded de-
vices. Swift [29] is a light-weight JVM that improves per-
formance by translating a register-based bytecode to native
code. But while the Android devices targeted by Swift may
be considered embedded devices, they are still quite power-
ful and the transformations Swift does are too complex for
the ATmega class of devices. HotPathVM [13] has lower re-
quirements, but at 150KB for both code and data, this is still
an order of magnitude above our target devices.

Given our extreme size constraints - ideally we only want
to use in the order of 100 bytes of RAM to allow our ap-
proach to be useful on a broad range of devices, and leave
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ample space for other tasks on the device - almost all AOT
and JIT techniques found in literature require too much re-
sources. Indeed, some authors suggest sensor nodes are too
restricted to make AOT or JIT compilation feasible [4, 28].

On the desktop, VM performance has been studied exten-
sively, but for sensor node VMs this aspect has been mostly
ignored. To the best of our knowledge AOT compilation on
a sensor node has only been tried by Ellul and Martinez [10],
and our work builds on their approach. They improve perfor-
mance considerably compared to the interpreters, but there
is still much room for improvement. Using our benchmarks,
their approach produces code that is 327% slower and 215%
larger than optimised native C. While the reduced throughput
may be acceptable for some applications, there are two other
reasons why it is important to improve on these results: the
loss of performance results in an equivalent increase in cpu
power consumption, thus reducing battery life. More impor-
tantly, the increased size of the compiled code reduces the
amount of code we can load onto a node. Given that flash
memory is already restricted, this is a major sacrifice to make
when adopting AOT on sensor nodes.

This paper makes the following contributions:
• We reveal three distinct causes of overhead in Ellul’s ap-

proach of directly mapping JVM instructions to prede-
fined fragments of native code.

• Using the results of this analysis, we propose five opti-
misations to address these sources of overhead.

• We reduce the code size overhead by 59%, and show that
the increase in VM size is quickly compensated for, thus
mitigating a drawback of the previous AOT approach.

• We eliminate most of the performance overhead caused
by the JVM’s stack-based architecture, and about 79%
of overhead overall, leading to an average slowdown of
only 1.7x compared to native C.

3 Ahead-of-Time translation
Our implementation is based on Darjeeling [7], a Java VM

for sensor nodes, running on an Atmel ATmega CPU. Like
other sensor node VMs, it is originally an interpreter. We add
an AOT compiler to Darjeeling. Instead of interpreting the
bytecode, the VM translates it to native code at load time, be-
fore the application is started. While JIT compilation is pos-
sible on some devices [9], it depends on the ability to execute
code from RAM, which ATmega CPUs cannot do.

The process from Java source to a native application on the
node is shown in Figure 1. Like all sensor node JVMs, Dar-
jeeling uses a modified JVM bytecode. Java source code is
first compiled to normal Java classes, which are then trans-
formed into Darjeeling’s own format, called an ’infusion’.
For details of this transformation we refer to the Darjeeling
paper [7]. Here it is sufficient to note that the bytecode is
modified to make it more suitable for execution on a tiny de-
vice, for example by adding 16-bit versions of most opera-
tions, but the result remains very similar to standard JVM
bytecode. It is also important to note that no knowledge of
the target platform is used in this transformation, so the result
is still platform independent. This infusion is then sent to the
node, where it is translated to native AVR code at load time.

Figure 1. Java to native AVR compilation

3.1 Goals and limitations
Working on resource-constrained devices means we will

have to make some compromises to improve performance.
We would like our VM to fit as many scenarios as possible.
In some cases multiple applications may be running on a sin-
gle device. When new code is being loaded, the impact on
concurrently running code should be as small as possible.

Therefore, our translation process should be very light
weight. Specifically, we should use as little memory as pos-
sible since memory is a very scarce resource. This means we
cannot do any analysis on the bytecode that would require us
to hold complex data structures in memory. When receiving
a large programme, we should not have to keep multiple mes-
sages in memory, but will process each message in order, and
free it after processing. The actual transmission protocol may
still decide to keep more messages in memory, for example to
handle out of order delivery efficiently, but we note that our
translation process does not require it to do so.

This means we limit ourselves to a single pass, processing
instructions one at a time, and keeping only small, fixed-size
data structures in memory during the process. The only sec-
ond pass we do is one to fill in addresses left blank by branch
instructions, since we cannot know the target address of for-
ward branches until the target instruction is generated.

The two points we compromise on are load time and code
size. Compiling to native code does take longer than simply
storing bytecode and starting the interpreter, but we feel this
load time delay will be acceptable in many cases, and will be
quickly compensated for by improved runtime performance.
The native code produced is also larger than JVM bytecode.
This is the price we pay for increased performance, but the
optimisations we propose do significantly reduce this code
size overhead compared to previous work, thus mitigating a
important drawback of AOT compilation.

Since our compiler is based on Darjeeling, we share its
limitations, most notably a lack of floating point support and
reflection. In addition, we do not support threads because
after compilation, we lose the interpreter loop as a convenient
place to switch between threads.
3.2 Translating bytecode to native code

The basic approach to translate bytecode to native code
was first described by Ellul and Martinez [10]. When we
receive a bytecode instruction, it is replaced with an equiv-
alent sequence of native instructions, using the native stack to
mimic the JVM stack. An example is shown in Table 1.

The first column shows a fragment of JVM code which
does a shift right of variable A, and repeats this while A is
greater than B. While not a very practical function, it is the
smallest example that will allow us to illustrate all our opti-
misations. The second column shows the code the AOT com-
piler will execute for each JVM instruction. Together, the first
and second column match the case labels and body of a big

86



Table 1. Translation of do{A>>>=1;} while(A>B);

JVM AOT compiler AVR cycles
0: BRTARGET(0) « record current addr »
1: SLOAD_0 emit_LDD(R1,Y+0) LDD R1,Y+0 4

emit_PUSH(R1) PUSH R1 4
2: SCONST_1 emit_LDI(R1,1) LDI R1,1 2

emit_PUSH(R1) MOV R2,R1 1
3: SUSHR emit_POP(R2)

emit_POP(R1) POP R1 4
emit_RJMP(+2) RJMP +2 2
emit_LSR(R1) LSR R1 2
emit_DEC(R2) DEC R2 2
emit_BRPL(-2) BRPL -2 3
emit_PUSH(R1)

4: SSTORE_0 emit_POP(R1)
emit_STD(Y+0,R1) STD Y+0,R1 4

5: SLOAD_0 emit_LDD(R1,Y+0) LDD R1,Y+0 4
emit_PUSH(R1) PUSH R1 4

6: SLOAD_1 emit_LDD(R1,Y+2) LDD R1,Y+2 4
emit_PUSH(R1)

7: IF_SCMPGT 0: emit_POP(R1)
emit_POP(R2) POP R2 4
emit_CP(R1,R2) CP R1,R2 2
emit_branchtag(GT,0) BRGT 0: 1 or 2

switch statement in our compiler. The third column shows the
resulting AVR native code, which is currently almost a 1-on-1
mapping, with the exception of some small optimisations by
a simple peephole optimiser described below.

The example has been slightly simplified for readability.
Since the AVR is an 8-bit CPU, in the real code many in-
structions are duplicated for loading the high and low bytes
of a short. The cycle cost is based on the actual number of
instructions generated, and for a single iteration.

Peephole optimisation From Table 1 it is clear that this
approach results in many unnecessary push and pop instruc-
tions. Each instruction must get its operands from the stack
and push any result back onto it. As a result, almost half the
instructions are push or pop instructions.

To reduce this overhead, Ellul proposes a simple peephole
optimiser [9]. The compilation process results in many push
instructions that are immediately followed by a pop. If these
target the same register, they have no effect and are removed.
If the source and destination registers differ, the two instruc-
tions are replaced by a move. The result is shown in the third
column of Table 1. Two push/pop pairs have been removed,
and one has been replaced by a move.

Branches Forward branches pose a problem for our direct
translation approach since the target address is not yet known.
A second problem is that on the ATmega, a branch may take
1 to 3 words, depending on the distance to the target, so it is
also not known how much space should be reserved.

To solve this the infuser modifies the bytecode by insert-
ing a new instruction, BRTARGET, in front of any instruction
that is the target of a branch. The branch instructions them-
selves are modified to target a branch target id instead of a
bytecode offset. When we encounter a BRTARGET during
compilation, we do not emit any code, but record the address
where the next instruction will be emitted in a separate part
of flash. When we encounter a branch instruction, we emit
a temporary 3-word ’branch tag’ instead, containing the BR-

TARGET id and the branch condition. After code generation
is finished and all target addresses are known, we scan the
code again to replace each branch tag with the real branch
instruction.

There is still the matter of the different sizes a branch
may take. We could simply add NOPs to smaller branches
to keep the size of each branch at 3 words, but this causes a
performance penalty on small, non-taken branches. Instead,
we do another scan of the code, before replacing the branch
tags, and update the branch target addresses to compensate
for cases where a smaller branch will be used. This second
scan adds about 500 bytes to the VM, but improves perfor-
mance, especially on benchmarks where branches are com-
mon.

This is an example of something we often see: an optimi-
sation may take a few hundred bytes to implement, but its use-
fulness may depend on the characteristics of the code being
run. In this work we usually decided to implement these op-
timisations, since they also result in smaller generated code.

4 Three sources of overhead
The performance of this basic approach is still far behind

optimised native C. To improve performance it is important to
identify the root causes of this overhead. We find three main
sources, where the first two are a direct result of the JVM’s
stack-based architecture.

Type 1: Pushing and popping values The compilation
process initially results in a large number of push and pop
instructions. In our simple example the peephole optimiser
was able to eliminate some, but two push/pop pairs remain.
For more complex expressions this type of overhead is even
higher, since more values will be on the stack at the same
time. This means more corresponding push and pop instruc-
tions will not be consecutive, and the peephole optimiser can-
not eliminate these cases.

Type 2: Loading and storing values A second source of
overhead is also due to the JVM’s stack-based architecture.
Each operation consumes its operands from the stack, but of-
ten the same value is needed again soon after. In this case,
because the value is no longer on the stack, we need to do
another load, which will result in another read from memory.

In our example, it is clear that the SLOAD_0 instruction at
label 5 is unnecessary since the value is already in R1.

Type 3: Bytecode limitations A final source of overhead
comes from optimisations that are done in native code, but
are not possible in JVM bytecode. The JVM instruction set
is very simple, which makes it easy to implement, but this
also means some things cannot be expressed as efficiently.
Given enough processing power, compilers can do the com-
plex transformations necessary to make the compiled JVM
code run almost as fast as native C, but on a sensor node we
do not have such resources and must simply execute the in-
structions as they are.

In our example we see that there is no way to express a
single bit shift directly. Instead we have to load the constant
1 onto the stack and execute the generic bit shift instruction.
Compare this to addition, where the JVM bytecode does have
a special INC instruction to add a constant value to a local
variable. Another example is iterating over an array. In JVM
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Table 2. Simple stack caching

JVM AOT compiler AVR cycles cache state R1 cache state R2 cache state R3
0: BRTARGET(0) « record current addr »
1: SLOAD_0 operand_1 = sc_getfreereg()

emit_LDD(operand_1,Y+0) LDD R1,Y+0 4
sc_push(operand_1) Int1

2: SCONST_1 « skip codegen » Int1
3: SUSHR « skip codegen, emit special case » Int1

operand_1 = sc_pop()
emit_LSR(operand_1) LSR R1 2
sc_push(operand_1) Int1

4: SSTORE_0 operand_1 = sc_pop()
emit_STD(Y+0,operand_1) STD Y+0,R1 4

5: SLOAD_0 operand_1 = sc_getfreereg()
emit_LDD(operand_1,Y+0) LDD R1,Y+0 4
sc_push(operand_1) Int1

6: SLOAD_1 operand_1 = sc_getfreereg() Int1
emit_LDD(operand_1,Y+2) LDD R2,Y+2 4 Int1
sc_push(operand_1) Int2 Int1

7: IF_SCMPGT 0: operand_1 = sc_pop() Int1
operand_2 = sc_pop()
emit_CP(operand_1, operand_2); CP R2,R1 2
emit_branchtag(GT, 0); BRGT 0: 1 or 2

bytecode, each array access will consume the array reference
and index. We have to load them onto the stack again and
redo the address calculation for each iteration, while native
could would typically just slide a pointer over the array.

5 Optimisations
We now introduce several optimisations, targeting these

three types of overhead in order.

5.1 Improving the peephole optimiser
Our first optimisation is a small but effective extension to

the simple peephole optimiser. Instead of only optimising
consecutive push/pop pairs, we can optimise any pair if the
target register of the pop is not used in between the push and
the pop. Two push/pop pairs remain in Table 1. The pair in
instructions 5 and 7 pops to register R2. Since instruction 6
does not use register R2, we can safely replace this pair with
a direct move. In contrast, the pair in instructions 1 and 3
cannot be optimised since the value is popped into register
R1, which is also used by instruction 2.

This optimisation adds 264 bytes to the optimiser, since it
now needs to understand the bytecode well enough to deter-
mine which registers are being used.

5.2 Simple stack caching
The improved peephole optimiser can remove part of the

type 1 overhead, but still many cases remain where it cannot
eliminate the push/pop instructions. We use a form of stack
caching [11] to eliminate most of the remaining push/pop
overhead. While not a new technique, the tradeoffs are dif-
ferent depending on the scenario it is applied in, and it turns
out to be exceptionally well suited for a sensor node AOT
compiler:

First, the VM in the original paper is an interpreter, which
means the stack cache has to be very simple or the overhead
from managing it will outweigh the time saved by reducing
memory accesses. Since we only use the cache state at load
time, we can afford to spend more time on it. Second, the
simplicity of the approach means it requires very little mem-
ory: only 11 bytes of RAM and just over 1KB of code more
than the peephole optimiser.

The idea is to keep the top elements of the stack in registers
instead of main memory. We add a cache state to our VM to
keep track of which registers are holding stack elements. For
example, if the top two elements are kept in registers, and
we encounter an ADD instruction, we do not need to access
main memory, but can simply add these registers, and update
the cache state. We only push values to the real stack when
we run out of registers.

In the original approach, each JVM instruction maps to a
fixed sequence of native instructions that always use the same
registers. Using stack caching, the registers are controlled by
a stack cache manager that provides three functions:

• getfree: Instructions such as load instructions will
need a free register to load the value into, which will
later be pushed onto the stack. If all registers are in use,
getfree spills the register that’s lowest on the stack to
memory by emitting a PUSH, and then returns that reg-
ister. This way the top of the stack is kept in registers,
while lower elements may be spilled to memory.

• pop: Pops the top element off the stack and tells the code
generator in which register to find it. If stack elements
have previously been spilled to main memory and no el-
ements are left in registers, pop will emit a real POP
instruction to get the value back from memory.

• push: Simply updates the cache state so the passed reg-
ister is now at the top of the stack. This should be a reg-
ister that was previously returned by getfree, or pop.

Using stack caching, code generation is split between the
instruction translator, which emits the instructions that do the
actual work, and the cache manager which manages the reg-
isters and may emit code to spill stack elements to memory,
or to retrieve them again. But as long as enough registers are
available, it will only manipulate the cache state.

In Table 2 we translate the same example we used before,
but this time using stack caching. To save space, Table 2 also
includes the constant shift optimisation described in Section
5.5. The emit_PUSH and emit_POP instructions have been
replaced by calls to the cache manager, and instructions that
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Table 3. Popped value caching

JVM AOT compiler AVR cycles cache state R1 cache state R2 cache state R3
0: BRTARGET(0) « record current addr »
1: SLOAD_0 operand_1 = sc_getfreereg()

emit_LDD(operand_1,Y+0) LDD R1,Y+0 4
sc_push(operand_1) Int1 LS0

2: SCONST_1 « skip codegen » Int1 LS0
3: SUSHR « skip codegen, emit special case » Int1 LS0

operand_1 = sc_pop_destructive()
emit_LSR(operand_1) LSR R1 2
sc_push(operand_1) Int1

4: SSTORE_0 operand_1 = sc_pop_tostore() LS0
emit_STD(Y+0,operand_1) STD Y+0,R1 4 LS0

5: SLOAD_0 « skip codegen, just update cache state » Int1 LS0
6: SLOAD_1 operand_1 = sc_getfreereg() Int1 LS0

emit_LDD(operand_1,Y+2) LDD R2,Y+2 4 Int1 LS0
sc_push(operand_1) Int2 LS0 Int1 LS1

7: IF_SCMPGT 0: operand_1 = sc_pop_nondestructive() Int1 LS0 LS1
operand_2 = sc_pop_nondestructive() LS0 LS1
emit_CP(operand_1, operand_2); CP R2,R1 2 LS0 LS1
emit_branchtag(GT, 0); BRGT 0: 1 or 2 LS0 LS1

load something on the stack start by asking the cache man-
ager for a free register. The state of the stack cache is shown
in the three columns added to the right. Currently it only
tracks whether a register is on the stack or not. "Int1" marks
the top element, followed by "Int2", etc. In the next two opti-
misations we will extend the cache state further.

The example only shows three registers, but in reality the
ATmega128 has 32 8-bit registers. Since Darjeeling uses a
16-bit stack, we manage them as pairs. 10 registers are re-
served, for example as a scratch register or to store a pointer
to local or static variables, leaving 11 pairs available for stack
caching.

Branches Branch targets may be reached from multiple
locations. We know the cache state if it was reached from
the previous instruction, but not if it was reached through a
branch. To ensure the cache state is the same on both paths,
we simply flush the whole stack to memory whenever we en-
counter either a branch or a BRTARGET instruction.

This may seem bad for performance, but fortunately in
the code generated by javac the stack is empty at almost all
branches. The exception is the ternary ? : operator, which
may cause a conditional branch with elements on the stack,
but in most cases flushing at branches and branch targets does
not result in any extra overhead.
5.3 Popped value caching

Stack caching can eliminate most of the push/pop over-
head, even when the stack depth increases. We now turn our
attention to reducing the overhead resulting from load and
store instructions.

We add a ’value tag’ to each register’s cache state to keep
track of what value is currently held in the register, even af-
ter it is popped from the stack. Some JVM instructions have a
value tag associated with them to indicate which value or vari-
able they load, store, or modify. Each tag consist of a tuple
(type, datatype, number). For example, the JVM instructions
ILOAD_0 and ISTORE_0, which load and store the local in-
teger variable with id 0, both have tag LI0, short for (local,
int, 0). SCONST_1 has tag CS1, or (constant, short, 1), etc.
The tags are encoded in a 16-bit value.

We add a function, sc_can_skip, to the cache manager.
This function will examine the type of each instruction, its
value tag, and the cache state. If it finds that we are loading
a value that is already present in a register, it just updates the
cache state to put that register on the stack, and returns true to
tell the main loop to skip code generation for this instruction.

Table 3 shows popped value caching applied to our exam-
ple. At first, the stack is empty. When sc_push is called,
it detects the current instruction’s value tag, and marks the
fact that R1 now contains LS0. In SUSHR, the pop has been
changed to pop_destructive. This tells the cache manager
that the value in the register will be destroyed, so the value tag
has to be cleared again since R1 will no longer contain LS0.
The SSTORE_0 instruction now calls pop_tostore instead
of pop, to inform the cache manager it will store this value in
the variable identified by SSTORE_0’s value tag. This means
the register once again contains LS0. If any other register was
marked as containing LS0, the cache manager would clear
that tag, since it is no longer accurate after we update the
variable.

In instruction 5, we need to load LS0 again, but now the
cache state shows that LS0 is already in R1. This means we
do not need to load it from memory, but just update the cache
state so that R1 is pushed onto the stack. At run time this
SLOAD_0 will have no cost at all.

There are a few more details to get right. For example
if we load a value that’s already on the stack, we generate a
move to copy it. When sc_getfree is called, it will try to
return a register without a value tag. If none are available,
the least recently used register is returned. This is done to
maximise the chance we can reuse a value later, since recently
used values are more likely to be used again.

Branches As we do not know the state of the registers if
an instruction is reached through a branch, we have to clear
all value tags when we pass a BRTARGET instruction, mean-
ing that any new loads will have to come from memory. At
branches we can keep the value tags, because if it is not taken,
we do know the state of the registers in the next instruction.
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Table 4. Mark loops

JVM AOT compiler AVR cycles cache state R1 cache state R2 cache state R3
0: MARKLOOP(0,1) « emit markloop prologue: LDD R1,Y+0 4 LS0 PINNED

LS0 and LS1 are live » LDD R2,Y+2 4 LS0 PINNED LS1 PINNED

1: BRTARGET(0) « record current addr » LS0 PINNED LS1 PINNED

2: SLOAD_0 « skip codegen, just update cache state » Int1 LS0 PINNED LS1 PINNED

3: SCONST_1 « skip codegen » Int1 LS0 PINNED LS1 PINNED

4: SUSHR « skip codegen, emit special case » Int1 LS0 PINNED LS1 PINNED

operand_1 = sc_pop_destructive() MOV R3,R1 1 LS0 PINNED LS1 PINNED

emit_LSR(operand_1) LSR R3 2 LS0 PINNED LS1 PINNED

sc_push(operand_1) LS0 PINNED LS1 PINNED Int1
5: SSTORE_0 « skip codegen, move to pinned reg » MOV R1,R3 1 LS0 PINNED LS1 PINNED

6: SLOAD_0 « skip codegen, just update cache state » Int1 LS0 PINNED LS1 PINNED

7: SLOAD_1 « skip codegen, just update cache state » Int2 LS0 PINNED Int1 LS1 PINNED

8: IF_SCMPGT 0: operand_1 = sc_pop_nondestructive() Int1 LS0 PINNED LS1 PINNED

operand_2 = sc_pop_nondestructive() LS0 PINNED LS1 PINNED

emit_CP(operand_1, operand_2); CP R2,R1 2 LS0 PINNED LS1 PINNED

emit_branchtag(GT, 0); BRGT 1: 1 or 2 LS0 PINNED LS1 PINNED

9: MARKLOOP(end) « emit markloop epilogue: LS0 is live » STD Y+0,R1 4 LS0 LS1

5.4 Mark loops
Popped value caching reduces the type 2 overhead signif-

icantly, but the fact that we have to clear the value tags at
branch targets means that a large part of that overhead still
remains. This is particularly true for loops, since each itera-
tion will often use the same variables, but the branch to start
the next iteration clears those values from the stack cache.
This is addressed by the next optimisation.

Again, we modify the infuser to add a new instruction to
the bytecode: MARKLOOP. This instruction is used to mark
the beginning and end of each inner loop. MARKLOOP has
a larger payload than most JVM instructions: it contains a list
of value tags that will appear in the loop and how often they
appear, sorted in descending order.

When we encounter the MARKLOOP instruction, the VM
may decide to reserve a number of registers and pin the most
frequently used local variables to them. If it does, code is
generated to prefetch these variables from memory and store
them in registers. While in the loop, loading or storing these
pinned variables does not require memory access, but only a
manipulation of the cache state, and possibly a simple move
between registers. However, these registers will no longer
be available for normal stack caching. Since 4 register pairs
need to be reserved for code generation, at most 7 of the 11
available pairs can be used by mark loops.

Because the only way into and out of the loop is through
the MARKLOOP instructions, the values can remain pinned
for the whole duration of the block, regardless of the branches
made inside. This lets us eliminate more load instructions,
and also replace store instructions by a much cheaper move to
the pinned register. INC instructions, which increment a local
variable, operate directly on the pinned register, saving both a
load and a store. All these cases are handled in sc_can_skip,
bypassing the normal code generation. We also need to make
a small change to sc_pop_destructive. If the register we’re
about to pop is pinned, we cannot just return it since it would
corrupt the value of the pinned local variable. Instead we will
first emit a move to a free, non-pinned register, and return that
instead.

In Table 4 the first instruction is now MARKLOOP, which

tells the compiler local short variables 0 and 1 will be used.
The compiler decides to pin them both to registers 1 and 2.
The MARKLOOP instruction also tells the VM whether or
not the variables are live, which they are at this point, so the
two necessary loads are generated. This is reflected in the
cache state. No elements are on the stack yet, but register 1 is
pinned to LS0, and register 2 to LS1.

We then load LS0. Since it is pinned to register 1, we do
not generate any code but only update the cache state. Next,
SUSHR pops destructively. We cannot simply return regis-
ter 1 since that would corrupt the value of variable LS0, so
sc_pop_destructive emits a move to a free register and re-
turns that register instead. Since LS0 is pinned, we can also
skip SSTORE_0, but we do need to emit a move back to the
pinned register.

The next two loads are straightforward and can be skipped,
and in the branch we see the registers are popped non-
destructively, so we can use the pinned registers directly.

Finally, we see the loop ends with another MARKLOOP,
telling the compiler only local 0 is live at this point. This
means we need to store LS0 in register 1 back to memory, but
we can skip LS1 since it is no longer needed.

The total cost is now 20 cycles, which appears to be up two
from the 18 cycles spent using only popped value caching.
But 12 of these are spent before and after the loop, while each
iteration now only takes 8 cycles, a big improvement from the
48 cycles spent in the original version in Table 1.

5.5 Constant bit shifts
Finally, we introduce an optimisation that targets the type

3 overhead. This kind of overhead is the hardest to address
because it requires more complex transformations that usu-
ally take more resources than we can afford on a tiny device.
Also, this type of overhead covers many different cases, and
optimisations that help in a specific case may not be general
enough to justify spending additional resources on it.

There is one case that is both common and easy to opti-
mise: shifts by a constant number of bits appear in six of the
seven benchmarks described in Section 6. They appear not
only in computation intensive benchmarks, but also as opti-
mised multiplications or divisions by a power of 2, which are
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Table 5. Performance data per benchmark

BENCHMARK b.sort h.sort b.srch fft xxtea md5 rc5 average
EXECUTED JVM INSTRUCTIONS (%)

Load/store 79.7 71.0 58.8 57.6 51.0 43.9 39.7 57.4
Constant load 0.2 8.1 9.8 10.8 12.5 18.9 18.8 11.3
Processing 8.0 7.9 13.1 22.7 32.4 29.1 37.3 21.5

math 8.0 5.6 9.2 12.0 10.1 12.4 11.3 9.8

bit shifts 0.0 2.3 3.9 7.5 8.1 5.4 7.7 5.0

bit logic 0.0 0.0 0.0 3.2 14.2 11.3 18.3 6.7

Branches 12.0 11.1 17.6 4.2 4.0 5.8 2.2 8.1
Others 0.0 2.0 0.7 4.5 0.1 2.5 2.2 1.7

STACK
Max. stack (bytes) 8.0 8.0 8.0 8.0 24.0 20.0 14.0 12.9
Avg. stack (bytes) 2.6 3.0 2.8 3.0 11.8 6.3 6.8 5.2

PERFORMANCE OVERHEAD BEFORE OPTIMISATIONS (%)
Total 398.6 419.3 416.0 479.0 239.5 213.3 120.1 326.5

push/pop 144.3 185.8 191.7 199.9 154.5 99.6 60.4 148.0

mov(w) -6.0 -5.4 -5.8 -3.3 -1.2 -0.7 -2.4 -3.5

load/store 192.2 181.6 180.1 132.3 44.7 43.9 28.5 114.8

other 68.2 57.3 50.0 150.1 41.5 70.6 33.6 67.3

PERFORMANCE OVERHEAD REDUCTION PER OPTIMISATION (%)
Impr. peephole -126.2 -118.7 -133.0 -96.0 -51.6 -49.7 -26.7 -85.9
Stack caching -10.0 -63.7 -56.6 -108.5 -98.8 -49.4 -34.2 -60.2
Pop. val. caching -111.9 -88.0 -29.7 -50.8 -9.7 -14.2 -8.1 -44.6
Mark loops -63.8 -45.3 -110.3 -47.2 + 11.7 -8.8 -10.9 -39.3
Const shift 0.0 -10.6 -22.3 -77.9 -24.2 -44.6 -19.8 -28.5

PERFORMANCE OVERHEAD AFTER OPTIMISATIONS (%)
Total 86.7 93.0 64.1 98.6 66.9 46.6 20.4 68.0

push/pop 0.0 0.0 0.0 0.0 39.4 0.1 2.9 6.1

mov(w) 10.0 7.5 11.2 4.6 4.7 2.1 0.5 5.8

load/store 8.5 40.1 28.1 21.7 -2.3 20.1 4.3 17.2

other 68.2 45.3 24.8 72.1 25.1 24.4 12.7 38.9
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Figure 2. Perf. overhead per category
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Figure 3. Perf. overhead per benchmark

common in many programmes.
In JVM bytecode the shift operators take two operands

from the stack: the value to shift, and the number of bits to
shift by. While this is generic, it is not efficient for constant
shifts: we first need to push the constant onto the stack, and
then the bit shift is implemented as a simple loop which shifts
one bit at a time. If we already know the number of bits to
shift by, we can generate more efficient code. When we en-
counter a constant push followed by a bit shift, we skip the
code generation for both instructions, and emit a special case
instead. This only adds 594 bytes to our VM, but it improves
performance, sometimes very significantly, for all but one of
our benchmarks.

For arithmetic operations with a constant operand, our
translation process results in loading the constant and per-
forming the operation, similar to what avr-gcc produces in
most cases. But for constant shifts, the loop adds significant
overhead, which is why we optimise it as a special case.

Surprisingly, when we first implemented this, one bench-
mark performed better than native C. It turns out avr-gcc does
not optimise constant shifts in all cases. Since our goal is to
examine how close a sensor node VM can come to native per-
formance, it would be unfair to include an optimisation that
is not found in the native compiler, but could easily be added.
We implemented a version that is close to what avr-gcc does,
but never better. We only consider cases optimised by avr-
gcc. For these, we first emit whole byte moves if the number
of bits to shift by is 8 or more, followed by single bit shifts
for the remainder. As mentioned before, this optimisation
was already included in the example from Table 2 on, so the
effect can be seen by comparing the SCONST_1 and SUSHR
instructions in tables 1 and 2.

6 Evaluation
We use a set of seven different benchmarks to measure the

effect of our optimisations: bubble sort: from the Darjeeling
sources, and used in [7, 9], heap sort: standard heap sort,
binary search: taken from the TakaTuka [5] source code, fft:
fixed point FFT, adapted from the widespread fix_fft.c, xxtea:
as published in [27], md5: also from the Darjeeling sources,
and used in [7, 9], and rc5: from LibTomCrypt [2]. For each,
we implemented both a C and a Java version, keeping both
implementations as close as possible. Since javac does very
few optimisations, we manually optimised the code in some
places. The same optimisations did not affect the C version,
indicating avr-gcc already does similar transformations on the
original code. We use javac version 1.7.0 and avr-gcc version
4.9.1. The C benchmarks are compiled at optimisation level
-O3, the rest of the VM at -Os.

We manually examined the compiled code produced by
avr-gcc. While we identified some points where more effi-
cient code could have been generated, except for the constant
shifts mentioned in the previous section, this did not affect
performance by more than a few percent. This leads us to
believe avr-gcc is a fair benchmark to compare to.

We run our VM in the cycle-accurate Avrora simula-
tor [26], emulating an ATmega128 processor. We modified
Avrora to get detailed traces of the compilation process and of
the runtime performance of both C and AOT compiled code.
While we implemented our approach for AVR, it can be ap-
plied to any CPU in this class that has enough registers for
stack caching, such as Cortex M0 or the MSP430 used in El-
lul’s work [9].

Our main measurement for both code size and perfor-
mance is the overhead compared to optimised native C. To
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Table 6. Code size data per benchmark

BENCHMARK b.sort h.sort b.srch fft xxtea md5 rc5 average
CODE SIZE (BYTES)

JVM 105 293 127 607 456 3060 514
Native C 168 534 188 1214 1238 9458 910
AOT original 530 1660 658 2512 3568 28762 3958
AOT optimised 352 932 462 1490 2250 14548 2130

CODE SIZE OVERHEAD BEFORE OPTIMISATIONS (%)
Total 211.8 209.7 250.0 106.9 187.7 204.1 334.9 215.0

push/pop 82.4 88.1 102.1 59.0 114.2 132.1 166.2 106.3

mov(w) -2.4 -4.1 3.2 -6.6 0.6 -3.4 -3.7 -2.3

load/store 75.3 80.6 78.7 31.8 36.3 56.7 67.9 61.0

other 56.5 45.1 66.0 22.7 36.6 18.7 104.6 50.0

CODE SIZE OVERHEAD REDUCTION PER OPTIMISATION (%)
Impr. peephole -43.6 -45.1 -51.1 -25.4 -36.6 -52.5 -66.5 -45.8
Stack caching -9.4 -35.5 -26.6 -30.6 -71.6 -79.7 -100.9 -50.6
Pop. val. caching -37.6 -39.5 -10.6 -17.1 -7.6 -19.1 -20.7 -21.8
Mark loops -14.1 -12.0 -10.6 -6.1 + 10.2 + 0.2 -10.1 -6.0
Const shift 0.0 -3.7 -5.4 -5.0 -0.6 + 0.8 -2.6 -2.4

CODE SIZE OVERHEAD AFTER OPTIMISATIONS (%)
Total 107.1 73.9 145.7 22.7 81.5 53.8 134.1 88.4

push/pop 25.9 6.0 25.5 4.3 17.4 0.4 7.0 12.4

mov(w) 5.9 4.1 9.6 -2.6 5.6 -2.1 17.8 5.5

load/store 21.2 25.4 53.2 3.8 19.8 36.8 23.5 26.2

other 54.1 38.4 57.4 17.3 38.5 18.7 85.7 44.3
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Figure 4. Code size overhead per category
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Figure 5. Code size overhead per benchmark

compare different benchmarks, we normalise this overhead
to a percentage of the number of bytes or cpu cycles used
by the native implementation: a 100% overhead means the
AOT compiled version takes twice as long to run, or twice as
many bytes to store. The exact results can vary depending on
factors such as which benchmarks are chosen, the input data,
etc., but the general trends are all quite stable.

Using the trace data produced by Avrora, we get a detailed
view into the runtime performance and the different types of
overhead. We count the number of bytes and cycles spent
on each native instruction for both the native C and our AOT
compiled version, and then group them into 4 categories that
roughly match the 3 types of overhead:

• PUSH,POP: Matches the type 1 push/pop overhead
since native code uses almost no push/pop instructions.

• LD,LDD,ST,STD: Matches the type 2 load/store over-
head and directly shows the amount of memory traffic.

• MOV,MOVW: For moves the picture is less clear since
the AOT compiler emits them for various reasons. Be-
fore we introduce stack caching, it emits moves to re-
place push/pop pairs, and after the mark loops to save a
pinned value when it is popped destructively.

• others: the total overhead, minus the previous three cat-
egories. This roughly matches the type 3 overhead.

We define the overhead from each category as the number
of bytes or cycles spent in the AOT version, minus the number
spent by the native version, and again normalise this to the
total number of bytes or cycles spent in the native C version.
The detailed results for each benchmark and type of overhead
are shown in tables 5 and 6.

6.1 Performance
In Figure 2 we see how our optimisations combine to re-

duce performance overhead. We take the average of the 7
benchmarks, and show both the total overhead, and the over-
head for each instruction category. Figure 3 shows the total
overhead for each individual benchmark. We start with the
original version with only the simple peephole optimiser, and
then incrementally add our five optimisations.

Using the simple optimiser, the type 1 and type 2 over-
head are similar, at 148% and 115%, while the type 3 over-
head is less significant at 67%. The basic approach does not
have many reasons to emit a move, so we see the AOT ver-
sion actually spends fewer cycles on move instructions than
the C version, resulting in a small negative value. When we
improve the peephole optimiser to include non-consecutive
push/pop pairs, push/pop overhead drops by 97%. But if the
push and pop target different registers, they are replaced by
a move instruction, and we see an increase of 11% in move
overhead. For a 16-bit value this takes 1 cycle (for a MOVW
instruction), instead of 8 cycles for two pushes and two pops.
The increase in moves shows most of the extra cases that are
handled by the improved optimiser are replaced by a move
instead of eliminated, since the 11% extra move overhead
matches an 88% reduction in push/pop overhead.

Next we introduce stack caching to utilise all available
registers and eliminate most of the push/pop instructions that
cannot be handled by the improved optimiser. As a result the
push/pop overhead drops to nearly 0, and so does the move
overhead since most of the moves introduced by the peephole
optimiser, are also unnecessary when using stack caching.

Having eliminated the type 1 overhead almost completely,
we now add popped value caching to remove a large number
of the unnecessary load instructions. This reduces the mem-
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Table 7. Code size and memory consumption

size vs AOT code break memory
interpreter reduction even usage

simple peephole 4760B 20B
improved peephole 5024B -14.5% 1.8KB 20B
stack caching 6122B -30.6% 4.5KB 31B
pop. val. caching 7306B -37.5% 6.8KB 79B
mark loops 10164B -39.4% 13.7KB 86B
const shift 10758B -40.2% 14.9KB 87B

ory traffic significantly, as is clear from the reduced load/store
overhead, while the other types remain stable. Adding the
mark loops optimisation further reduces loads, and this time
also stores, by pinning common variables to a register, but
it uses slightly more move instructions, and the fact that we
have fewer registers available for stack caching means we
have to spill stack values to memory more often. While we
save 53% on loads and stores, the push/pop and move over-
head both increase by 7%.

Both the push/pop and load/store overhead have now been
almost eliminated and the type 3 overhead, unaffected by
these optimisations, has become the most significant source
of overhead. This type has many different causes, but we can
eliminate over one third of it by optimising constant shifts.

Combined, these optimisations reduce performance over-
head from 327% to 68% of native C performance.

6.2 Code size
Next we examine the effects of our optimisations on code

size. Two factors are important here: the size of the VM itself
and the size of the code it generates.

The size overhead for the generated code is shown in fig-
ures 4 and 5, again split up per instruction category and
benchmark respectively. For the first three optimisations,
the two graphs follow a similar pattern as the performance
graphs. These optimisations eliminate the need to emit cer-
tain instructions, which reduces code size and improves per-
formance at the same time. For the mark loops and constant
shift optimisations, the effect on code size is much smaller.

The mark loops optimisation moves loads and stores for
pinned variables outside of the loop. This results in a 6% re-
duction of code size overhead, much less than the 39% reduc-
tion in performance overhead. This has two reasons: first, for
stores and loads that are popped destructively, we still need
to emit a move, which saves 3 cycles, but only 1 instruction.
A more important reason however, is that we get the perfor-
mance advantage at each run time iteration, but the code size
advantage of emitting less instructions only once.

The constant shift optimisation unrolls the loop that is nor-
mally generated for bit shifts. This significantly improves
performance, but the effect on the code size depends on the
number of bits to shift by. The constant load and loop take at
least 5 instructions. In most cases the unrolled shifts will be
smaller, but md5 actually shows a small 1% increase in code
size since it contains many shifts by a large number of bits.
6.2.1 VM code size and break-even points

Obviously, more complex code generation techniques will
increase the size of our compiler. The first column in Table
7 shows the difference in code size between the AOT transla-

tor and Darjeeling’s interpreter. The basic AOT approach is
4760B larger than the interpreter, and our optimisations each
add a little to the size of the VM.

They also generate significantly smaller code. The second
column shows the reduction in the generated code size com-
pared to the baseline approach. Here we show the reduction
in total size, as opposed to the overhead used elsewhere, to
be able to calculate the break-even point. Using the improved
peephole optimiser adds 264 bytes to the VM, but it reduces
the size of the generated code by 14.5%. If we have more
than 1.8KB available to store user programmes, this reduc-
tion will outweigh the increase in VM size. More complex
optimisations further increase the VM size, but compared to
the baseline approach, the break-even point is well within the
range of memory typically available, peaking at 15KB when
all optimisations are included.

As is often the case, there is a tradeoff between size and
performance. The interpreter is smaller than each version
of our AOT compiler, and Table 6 shows JVM bytecode
is smaller than both native C and AOT compiled code, but
the interpreter’s performance penalty may be unacceptable
in many cases. Using AOT compilation we can achieve ad-
equate performance, but the most important drawback has
been an increase in generated code size. These optimisations
help to significantly mitigate this drawback, and both improve
performance, and allow us to load more code on a device.

For the smallest devices we may decide to use only the first
three optimisations to limit the VM size and still get both a
reasonable performance, and most of the code size reduction.
This reduces code size by 37.5%, and results in a performance
overhead of 136%.

6.2.2 VM memory consumption
The last column in Table 7 shows the size of the main data

structure that needs to be kept in memory while translating a
method. For the baseline approach we only use 20 bytes on
keeping a number of commonly used values such as a pointer
to the next instruction to be compiled, the number of instruc-
tions in the method, etc. The simple stack caching approach
adds a 11 byte array to store the state of each register pair we
use for stack caching. Popped value caching adds two more
arrays of 16-bit elements to store the value tag and age of each
value. Mark loops only needs an extra 16-bit word to mark
which registers are pinned, and a few other variables. Finally,
the constant shift optimisation only requires a single byte. In
total, our compiler requires 87 bytes of memory during the
compilation process.

6.3 Benchmark details
Finally we have a closer look at some of the benchmarks

and see how the effectiveness of each optimisation depends
on the characteristics of the source code. The first section of
Table 5 shows the distribution of the JVM instructions exe-
cuted in each benchmark, and both the maximum and average
number of bytes on the JVM stack. We can see some impor-
tant differences between the benchmarks. While the left most
are almost completely load/store bounded, towards the right
the benchmarks become more computation intensive, spend-
ing fewer instructions on loads and stores, and more on math
or bitwise operations. The left benchmarks have only a few
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Figure 6. Xxtea performance overhead for different num-
ber of pinned register pairs
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Figure 7. Per benchmark performance overhead different
number of pinned register pairs

bytes on the stack, but as the benchmarks contain more com-
plex expressions, the number of values on the stack increases.

The second part of tables 5 and 6 first shows the overhead
before optimisation, split up in the four instruction categories.
We then list the effect of each optimisation on the total over-
head. Finally we show the overhead per category after apply-
ing all optimisations.

The improved peephole optimiser and stack caching both
target the push/pop overhead. Stack caching can eliminate
almost all, and replaces the need for a peephole optimiser, but
it is interesting to compare the two. The improved peephole
optimiser does well for the simple benchmarks like sort and
search, leaving less overhead to remove for stack caching.
Moving to the right, the more complicated expressions mean
there is more distance between a push and a pop, leaving more
cases that cannot be handled by the peephole optimiser, and
replacing it with stack caching yields a big improvement.

The benchmarks on the left spend more time on load/store
instructions. This results in higher load/store overhead, and
the two optimisations that target this overhead, popped value
caching and mark loops, have a big impact. For the compu-
tation intensive benchmarks on the right, the load/store over-
head is much smaller, but the higher stack size means stack
caching is very important for these benchmarks.

Bit shifts Interestingly, the reason fft is the slowest, is sim-
ilar to the reason rc5 is fastest: they both spend a large amount
of time doing bit shifts. Rc5 shifts by a variable, but large
number of bits. Only 7.7% of the executed JVM instructions
are bit shifts, but they account for 52% of the execution time.
For these variable bit shifts, our translator and avr-gcc gener-
ate a similar loop, so the two share a large constant factor.

On the other hand fft is a hard case because it does many
constant shifts by 6 bits. For these, our VM simply emits
6 single shifts, which is slower than the special case avr-gcc
emits for shifts by exactly 6 bits. While we could do the same,
we feel this special case is too specific to include in our VM.

Bubble sort Next we look at bubble sort in some more
detail. After optimisation, we see most of the stack related
overhead has been eliminated and of the 87% remaining per-
formance overhead, most is due to other sources. For bubble
sort there is a single, clearly identifiable source. When we ex-
amine the detailed trace output, this overhead is largely due to
ADD instructions, but bubble sort hardly does any additions.
This is a good example of how the simple JVM instruction set

leads to less efficient code. To access an array we need to cal-
culate the address of the indexed value, which takes one move
and seven additions for an array of ints. This calculation is re-
peated for each access, while the C version has a much more
efficient approach, using the auto-increment version of the
AVR’s LD and ST instructions to slide a pointer over the ar-
ray. Of the remaining 87% overhead, 72% is caused by these
address calculations.

Xxtea and the mark loops optimisation Perhaps the most
interesting benchmark is xxtea. Its high average stack depth
means popped value caching does not have much effect: most
registers are used for real stack values, leaving few chances
to reuse a value that was previously popped from the stack.

When we apply the mark loops optimisation, performance
actually degrades by 11.7%, and code size overhead increases
10.2%! Here we have an interesting tradeoff: if we use a reg-
ister to pin a variable, accessing that variable will be cheaper,
but this register will no longer be available for stack caching,
so more stack values may have to be spilled to memory.

For most benchmarks the maximum of 7 register pairs to
pin variables to was also the best option. At a lower average
stack depth, the fewer number of registers available for stack
caching is easily compensated for by the cheaper variable ac-
cess. For xxtea however, the cost of spilling more stack val-
ues to memory outweighs the gains of pinning more variables
when too many variables are pinned. Figure 6 shows the over-
head for xxtea from the different instruction categories. When
we increase the number of register pairs used to pin variables
from 1 to 7, the load/store overhead steadily decreases, but
the push/pop and move overhead increase. The optimum is
at 5 pinned register pairs, at which the total overhead is only
51%, instead of 67% at 7 pinned register pairs.

Figure 7 shows the performance for each benchmark, as
the number of pinned register pairs is increased. The three
benchmarks that stay stable or even slow down when the
number pinned pairs is increased beyond 5 are exactly the
benchmarks that have a high stack depth: xxtea, md5 and rc5.
It should be possible to develop a simple heuristic to allow the
VM to make a better decision on the number of registers to
pin. Since our current VM always pins 7 pairs, we used this
as our end result and leave this heuristic to future work.

7 Conclusions and future work
A major problem for sensor node VMs has been perfor-

mance. Most interpreters are between one to two orders of
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magnitude slower than native code, leading to both lower
maximum throughput and increased energy consumption.

Previous work on AOT translation to native code by Ellul
and Martinez [10] improves performance, but still a signifi-
cant overhead remains, and the tradeoff is that the resulting
native code takes up much more space, limiting the size of
programmes that can be loaded onto a device.

In this paper, we presented techniques to reduce the code
size overhead after AOT compilation by 59% and the per-
formance overhead by 79%, resulting in a compiler that pro-
duces code that is on average only 1.7 times slower and 1.9
times larger than optimised C.

Our optimisations do increase the size of our VM, but
the break-even point at which this is compensated for by the
smaller code it generates, is well within the range of pro-
gramme memory typically available on a sensor node. This
leads us to believe that these optimisations will be useful in
many scenarios, and make using a VM a viable option for a
wider range of applications.

Many opportunities for future work remain. For the mark
loops optimisation, a heuristic is needed to make a better de-
cision on the number of registers to pin, and we can consider
applying this optimisation to other blocks that have a single
point of entry and exit as well. Since supporting preemptive
threads is expensive to implement without the interpreter loop
as a place to switch threads, we believe a cooperative concur-
rency model where threads explicitly yield control is more
suitable for sensor nodes using AOT, and we are working on
building this on top of Darjeeling’s existing thread support.

A more general question is what the most suitable archi-
tecture and instruction set is for a VM on tiny devices. Hsieh
et al. note that the performance problem lies in the mismatch
between the VM and the native machine architecture [16]. In
fact, we believe JVM is probably not the best choice for a
sensor node VM. It has some advanced features, such as ex-
ceptions, preemptive threads, and garbage collection, which
add complexity but may not be necessary on a tiny device. At
the same time, there is no support for constant data, which is
common in embedded code: a table with sine wave values in
the fft benchmark is represented as a normal array at runtime,
using up valuable memory. We may also consider extending
the bytecode with instructions to express common operations
more efficiently. For example, an instruction to loop over an
array such as the one found in Lua [17] would allow us to gen-
erate more efficient code and eliminate most of the remaining
overhead in the bubble sort benchmark.

Our reason to use JVM is the availability of a lot of infras-
tructure to build on. Like Hsieh et al., we do not claim that
Java is the best answer for a sensor node VM, but we believe
the techniques presented here will be useful in developing
better sensor node VMs, regardless of the exact instruction
set used.

One important question that should be considered is
whether that instruction set should be stack-based or register-
based. Many modern bytecode formats are register-based,
and a number of publications report on the advantages of this
approach [29, 25]. However, these tradeoffs are quite differ-
ent for a powerful JIT compiler, and a resource-constrained
VM. When working with tiny devices, an important advan-

tage of a stack-based architecture is its simplicity, and our
results here show that much of the overhead associated with
the stack-based approach can be eliminated during the trans-
lation process.
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